2023年小學因數(shù)和倍數(shù)教案(優(yōu)秀21篇)

格式:DOC 上傳日期:2023-11-10 19:23:23
2023年小學因數(shù)和倍數(shù)教案(優(yōu)秀21篇)
時間:2023-11-10 19:23:23     小編:念青松

教案的編寫要注重學生的學習規(guī)律和教學的實際情況,以提高教學效果為目標。教案的編寫要注重情感教育和學生的綜合素質(zhì)培養(yǎng)。教案范文的實施效果也是可以借鑒的參考指標。

小學因數(shù)和倍數(shù)教案篇一

讓學生能利用最大公因數(shù)知識解決生活中的實際問題。

教學重點。

利用最大公因數(shù)知識解決生活中的實際問題。

教學難點。

利用最大公因數(shù)知識解決生活中的實際問題。

課件。

一、導入新課。

1.什么是公因數(shù)?什么是最大公因數(shù)?

2.找出每組數(shù)的最大公因數(shù)。

5和1521和2830和188和911和3312和42。

過渡:在現(xiàn)實生活中,有的問題需要用最大公因數(shù)的知道來解決,這就是我們今天要學習的內(nèi)容。

二、新課教學。

出示教材第62頁例3。

(1)引導學生審題,理解題意。在貯藏室的長方形地面上鋪正方形地磚。要求既要鋪滿,又要都用整塊的方磚。

(2)學生以小組為單位,探究如何拼擺。

每組4人,在課前印好畫有長方形的方格紙,每人選擇一種邊長的方磚,試一試,只要畫滿一條長邊,一條寬邊就可以。

教師巡視指導,輔導學生。

(3)多媒體演示拼擺過程,進一步驗證學生動手操作的情況。

(4)教師:應該怎樣選擇方磚來鋪地呢?

通過交流,得出結(jié)論:要使所用的正方形地磚都是整塊的,地磚的邊長必須既是16的因數(shù),又是12的因數(shù)。

(5)12和16的公因數(shù)有1、2、4,其中最大公因數(shù)是4。所以可選邊長是1dm、2dm、4dm的地磚,邊長最大的是4dm。

三、鞏固練習。

1.教材第63頁練習十五第5題。

此題是有關兩數(shù)最大公因數(shù)的實際問題。教師要引導學生理解題意,要剪成“同樣大小的正方形而沒有剩余”。正方形的邊長必須既是70的因數(shù)又是50的因數(shù),要使正方形的邊長最大,所以要找70和50的最大公因數(shù)。學生弄清題意后,由學生獨立完成,然后全班反饋。

2.教材第63頁練習十五第6題。

此題也是有關兩數(shù)最大公因數(shù)的實際問題,“要使每排的人數(shù)相等”則每排的人數(shù)必須既是48,又是36的因數(shù),要使每排的人數(shù)最多,所以要找48和36的最大公因數(shù),學生理解題意即可完成。

3.教材第64頁練習十五第9題。

此題檢查學生當兩數(shù)是倍數(shù)關系、互質(zhì)關系、一般關系情況下求最大公因數(shù)的能力。

5.長方形的邊長是70和50的最大公因數(shù)是10cm,所以小正方形的邊長最長是10cm。

6.每排人數(shù)是36和48的最大公因數(shù),是12人。

男生:48÷12=4(排)女生:36÷12=3(排)。

9.(1)a(2)c(3)c。

四、課堂小結(jié)。

今天你學習了什么?有什么收獲?

五、布置作業(yè)。

教材第64頁練習十五第7、8、10題。

小學因數(shù)和倍數(shù)教案篇二

第6課時。

1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現(xiàn)規(guī)律,運用數(shù)的奇偶性解決生活中的一些簡單問題。

2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過程,在活動中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動中體驗研究的方法,提高推理能力。

1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現(xiàn)規(guī)律,運用數(shù)的奇偶性解決生活中的一些簡單問題。

2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過程,在活動中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動中體驗研究的方法,提高推理能力。

活動1:利用數(shù)的奇偶性解決一些簡單的實際問題。

讓學生嘗試解決問題,尋找解決問題的策略,利用解決問題的策略發(fā)現(xiàn)規(guī)律,教師適當進行“列表”“畫示意圖”等解決問題策略的指導。

本題是讓學生應用上述活動中解決問題的策略嘗試自己解決問題,最后的結(jié)果是:翻動10次,杯口朝上;翻動19次,杯口朝下。解決問題后,讓學生以“硬幣”為題材,自己提出問題、解決問題,還可以開展游戲活動。

活動2:探索奇數(shù)、偶數(shù)相加的規(guī)律。

[板書設計]。

數(shù)的奇偶性。

12+34=48偶數(shù)+偶數(shù)=偶數(shù)。

11+37=48奇數(shù)+奇數(shù)=偶數(shù)。

12+11=23奇數(shù)+偶數(shù)=奇數(shù)。

小學因數(shù)和倍數(shù)教案篇三

1.學生通過回憶和整理,進一步明確因數(shù)和倍數(shù)的相關知識,加深認識相關概念之間的聯(lián)系與區(qū)別,能求兩個數(shù)的公因數(shù)和公倍數(shù),并能運用這些知識解決相關實際問題。

2.學生在應用相關知識進行判斷和推理的過程中,能說明思考過程,進一步培養(yǎng)歸納概括和演繹推理等思維能力,進一步增強分析問題和解決問題的能力。

3.學生進一步體會數(shù)學知識之間的內(nèi)在聯(lián)系,感受數(shù)學思考的嚴謹性和數(shù)學結(jié)論的確定性,激發(fā)學習數(shù)學的興趣和學好數(shù)學的自信心。

掌握倍數(shù)和因數(shù)等相關概念,以及應用概念判斷、推理。

理解相關概念的聯(lián)系和區(qū)別。

一、揭示課題。

1.回顧知識。

提問:上節(jié)課,我們已經(jīng)復習了整數(shù)和小數(shù)的有關知識。

結(jié)合學生交流,板書。

2.揭示課題。

引入:這節(jié)課,我們復習因數(shù)和倍數(shù)的相關知識。

通過復習,能進一步了解關于因數(shù)和倍數(shù)的知識,理解它們之間的聯(lián)系和區(qū)別,并能應用這些知識。

二、基本練習。

1.知識梳理。

提高:回想一下,在學習因數(shù)和倍數(shù)時,我們還學習了哪些相關的知識?

學生回顧,交流,教師適當引導回顧。

根據(jù)學生回答,板書整理。

2.做練習與實踐第10題。

學生獨立完成,指名板演。

集體交流,讓學生說說找一個數(shù)的因數(shù)和倍數(shù)的方法。

3.做練習與實踐第11題。

出示題目,學生直接口答。

提問:怎樣判斷一個數(shù)是不是2的倍數(shù)?判斷是3和5的倍數(shù)呢?

追問:這里哪些是偶數(shù),哪些是奇數(shù)?說說你是怎樣想的。

4.做練習與實踐第12題。

學生先獨立寫出質(zhì)數(shù)和合數(shù),再指名口答。

追問:最小質(zhì)數(shù)是幾?最小的合數(shù)呢?

小學因數(shù)和倍數(shù)教案篇四

1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現(xiàn)規(guī)律,運用數(shù)的奇偶性解決生活中的一些簡單問題。

2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過程,在活動中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動中體驗研究的.方法,提高推理能力。

1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現(xiàn)規(guī)律,運用數(shù)的奇偶性解決生活中的一些簡單問題。

2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過程,在活動中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動中體驗研究的方法,提高推理能力。

活動1:利用數(shù)的奇偶性解決一些簡單的實際問題。

讓學生嘗試解決問題,尋找解決問題的策略,利用解決問題的策略發(fā)現(xiàn)規(guī)律,教師適當進行“列表”“畫示意圖”等解決問題策略的指導。

本題是讓學生應用上述活動中解決問題的策略嘗試自己解決問題,最后的結(jié)果是:翻動10次,杯口朝上;翻動19次,杯口朝下。解決問題后,讓學生以“硬幣”為題材,自己提出問題、解決問題,還可以開展游戲活動。

活動2:探索奇數(shù)、偶數(shù)相加的規(guī)律。

[板書設計]。

數(shù)的奇偶性。

12+34=48偶數(shù)+偶數(shù)=偶數(shù)。

11+37=48奇數(shù)+奇數(shù)=偶數(shù)。

12+11=23奇數(shù)+偶數(shù)=奇數(shù)。

小學因數(shù)和倍數(shù)教案篇五

1.我能理解什么是質(zhì)數(shù)和合數(shù),掌握了判斷質(zhì)數(shù)、合數(shù)的方法。

2.我知道100以內(nèi)的質(zhì)數(shù),記住了20以內(nèi)的質(zhì)數(shù)。

3.我能在自主探究中獨立思考,合作探究時暢所欲言。

能理解質(zhì)數(shù)、合數(shù)的意義,正確判斷一個數(shù)是質(zhì)數(shù)還是合數(shù)。

用恰當?shù)姆椒ㄕ页?00以內(nèi)的質(zhì)數(shù);會給自然數(shù)分類。

一、導入新課

二、檢查獨學

1.互動分享收獲。

2.質(zhì)疑探討。

3.試試身手:第23頁做一做。

三、合作探究

1.小組合作,利用課本24頁的表格,用恰當?shù)姆椒ㄕ页?00以內(nèi)的質(zhì)數(shù),做一個質(zhì)數(shù)表。

2.展示、交流:你們是怎樣找出100以內(nèi)質(zhì)數(shù)的?

3.小組討論:

(1)有沒有最大的質(zhì)數(shù)或合數(shù)?

(2)根據(jù)因數(shù)的個數(shù),可把非零自然數(shù)分成哪幾類?

4.我能很快熟記20以內(nèi)的質(zhì)數(shù)。

5.獨立思考:

(1)是不是所有的`質(zhì)數(shù)都是奇數(shù)?

(2)是不是所有的奇數(shù)都是質(zhì)數(shù)?

(3)是不是所有的合數(shù)都是偶數(shù)?

(4)是不是所有的偶數(shù)都是合數(shù)?

6.組內(nèi)交流。

小學因數(shù)和倍數(shù)教案篇六

掌握因數(shù)、倍數(shù)的概念,知道因數(shù)、倍數(shù)的相互依存關系。

2、過程與方法。

通過自主探究,使學生學會用因數(shù)、倍數(shù)描述兩個數(shù)之間的關系。

3、情感態(tài)度與價值觀。

使學生感悟到數(shù)學知識的內(nèi)在聯(lián)系的邏輯之美。

教學重點。

掌握找一個數(shù)的因數(shù)、倍數(shù)的方法。

教學難點。

能熟練地找一個數(shù)的因數(shù)和倍數(shù)。

課件、投影。

一、遷移引入。

同學們,在我們的日常生活中,人與人之間存在著許多相互依存的關系,如:佳爸是佳佳的爸爸,佳佳是佳爸的兒子。其實在我們的數(shù)學王國里,數(shù)與數(shù)回見也存在著這種相互依存的關系,請看大平米,認識這些嗎?(課件出示:0,1,2,3,4,5……)。

這些自然數(shù)。(課件去“0”)。

去0后這又是什么數(shù)?(非零自然數(shù)中。)這節(jié)課我們就在非零自然數(shù)中來研究數(shù)與數(shù)之間的這種相互依存的關系。

二、情境創(chuàng)設,探究新知。

1、理解整除的意義。

(1)出示例1,在前面學習中,我們見過下面的算式。

12÷2=68÷3=2……230÷6=519÷7=2……59÷5=1.8。

26÷8=3.2520÷10=221÷21=163÷9=7。

你能把這些算式分類嗎?

(2)分類所得:

12÷2=620÷10=2。

30÷6=521÷21=1。

63÷9=7。

8÷3=2……29÷5=1.8。

19÷7=2……526÷8=3.25。

(3)觀察發(fā)現(xiàn),合作交流。

觀察算式,說一說誰是誰的倍數(shù),誰是誰的約數(shù)。

12÷2=6中,我們就說12是2的倍數(shù),2是12的因數(shù)。12÷6=2,所以12是6的倍數(shù),6是12的因數(shù)。由此可知:(在整數(shù)除法中,如果商是整數(shù)而沒有余數(shù),我們就說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。)。

3、總結(jié)歸納。

(1)在整數(shù)除法中,如果商是整數(shù)而沒有余數(shù),我們就說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。

4、注意:

為了方便,在研究因數(shù)和倍數(shù)的時候,我們所說的數(shù)指的是自然數(shù)(一般不包括0)。

5、做一做。

下面的4組數(shù)中,誰是誰的因數(shù)?誰是誰的倍數(shù)?

4和2436÷1375÷2581÷9。

6、教學例2。

18的因數(shù)有哪幾個?

18的因數(shù)有1、2、3、6、9、18。

也可以這樣用圖表示。

18的因數(shù)。

1,2,3,

6,9,18。

30的因數(shù)有哪些?36呢?

7、教學例3。

2的倍數(shù)有哪些?

2的倍數(shù)有2、4、6、8……。

2的倍數(shù)。

2,4,6,

8,10,12,

14,……。

3的倍數(shù)有哪些?5呢?

8、小組討論,歸納總結(jié)。

一個數(shù)的最小因數(shù)是1,最大的因數(shù)是它本身。一個數(shù)的最小倍數(shù)是它本身,沒有最大倍數(shù)。

一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。

一個數(shù)的最小因數(shù)是有限的,其中最小的因數(shù)是1,最大的因數(shù)是它本身。一個數(shù)的最小倍數(shù)是它本身,沒有最大倍數(shù)。

一個數(shù)的因數(shù)的個數(shù)是有限的,最大的因數(shù)是它本身。一個數(shù)的倍數(shù)的個數(shù)是無限的。

1、填空。

(1)36是4的()數(shù)。

(2)5是25的()。

(3)2.5是0.5的()倍。

2、下面各組數(shù)中,有因數(shù)和倍數(shù)關系的有哪些?

(1)18和3(2)120和60(3)45和15(4)33和7。

3、24和35的因數(shù)都有哪些?

一個數(shù)的最小因數(shù)是有限的,其中最小的因數(shù)是1,最大的因數(shù)是它本身。一個數(shù)的最小倍數(shù)是它本身,沒有最大倍數(shù)。

一個數(shù)的因數(shù)的個數(shù)是有限的,最大的因數(shù)是它本身。一個數(shù)的倍數(shù)的個數(shù)是無限的。

小學因數(shù)和倍數(shù)教案篇七

3、能熟練地找一個數(shù)的因數(shù)和倍數(shù);

4、培養(yǎng)學生的觀察能力。

掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。

能熟練地找一個數(shù)的因數(shù)和倍數(shù)。

一、引入新課。

1、出示主題圖,讓學生各列一道乘法算式。

2、師:看你能不能讀懂下面的算式?

出示:因為26=12。

所以2是12的因數(shù),6也是12的因數(shù);

12是2的倍數(shù),12也是6的倍數(shù)。

3、師:你能不能用同樣的方法說說另一道算式?

(指名生說一說)。

師:你有沒有明白因數(shù)和倍數(shù)的關系了?

那你還能找出12的其他因數(shù)嗎?

4、你能不能寫一個算式來考考同桌?學生寫算式。

師:誰來出一個算式考考全班同學?

5、師:今天我們就來學習因數(shù)和倍數(shù)。(出示課題:因數(shù)倍數(shù))。

齊讀p12的注意。

二、新授。

(一)找因數(shù)。

1、出示例1:18的因數(shù)有哪幾個?

學生嘗試完成:匯報。

(18的因數(shù)有:1,2,3,6,9,18)。

師:說說看你是怎么找的?(生:用整除的方法,181=18,182=9,183=6,184=;用乘法一對一對找,如118=18,29=18)。

師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。

2、用這樣的方法,請你再找一找36的因數(shù)有那些?

匯報36的因數(shù)有:1,2,3,4,6,9,12,18,36。

師:你是怎么找的?

舉錯例(1,2,3,4,6,6,9,12,18,36)。

師:這樣寫可以嗎?為什么?(不可以,因為重復的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)。

仔細看看,36的因數(shù)中,最小的是幾,最大的是幾?

看來,任何一個數(shù)的因數(shù),最小的一定是(),而最大的一定是()。

小學因數(shù)和倍數(shù)教案篇八

1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現(xiàn)規(guī)律,運用數(shù)的奇偶性解決生活中的一些簡單問題。

2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過程,在活動中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動中體驗研究的方法,提高推理能力。

1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現(xiàn)規(guī)律,運用數(shù)的奇偶性解決生活中的一些簡單問題。

2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過程,在活動中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動中體驗研究的方法,提高推理能力。

活動1:利用數(shù)的奇偶性解決一些簡單的實際問題。

讓學生嘗試解決問題,尋找解決問題的策略,利用解決問題的策略發(fā)現(xiàn)規(guī)律,教師適當進行“列表”“畫示意圖”等解決問題策略的指導。

試一試:

本題是讓學生應用上述活動中解決問題的策略嘗試自己解決問題,最后的結(jié)果是:翻動10次,杯口朝上;翻動19次,杯口朝下。解決問題后,讓學生以“硬幣”為題材,自己提出問題、解決問題,還可以開展游戲活動。

活動2:探索奇數(shù)、偶數(shù)相加的規(guī)律。

[板書設計]。

例子:結(jié)論:

12+34=48偶數(shù)+偶數(shù)=偶數(shù)。

11+37=48奇數(shù)+奇數(shù)=偶數(shù)。

12+11=23奇數(shù)+偶數(shù)=奇數(shù)。

小學因數(shù)和倍數(shù)教案篇九

尊敬的各位領導、老師大家上午好:我們團隊所執(zhí)教的是《因數(shù)和倍數(shù)》。

一、說教材:

《因數(shù)和倍數(shù)》是小學人教版課程標準實驗教材五年級下冊第二單元的內(nèi)容,也是小學階段“數(shù)與代數(shù)”部分最重要的知識之一?!兑驍?shù)和倍數(shù)》的學習,是在初步認識自然數(shù)的基礎上,探究其性質(zhì)。其中涉及到的內(nèi)容屬于初等數(shù)論的基本內(nèi)容,相當抽象。在這一內(nèi)容的編排上與以往教材不同,沒有數(shù)學化的語言給“整除”下定義,而是在本課時通過乘法算式借助整除的模式na=b直接給出因數(shù)與位數(shù)的概念。這節(jié)課是因數(shù)與倍數(shù)的概念的引入,為本單元最后的內(nèi)容,以及第四單元的最大公因數(shù),最小公倍數(shù)提供了必須且重要的鋪墊。

根據(jù)教材所處的地位和前后關系,確定了以下目標:

知識技能目標:

掌握因數(shù)倍數(shù)的概念,理解因數(shù)與倍數(shù)的意義,掌握找一個數(shù)因數(shù)與倍數(shù)的方法。

情感,價值目標:培養(yǎng)學生合作、觀察、分析和抽象概括能力,體會教學內(nèi)容的奇妙、有趣,產(chǎn)生對數(shù)學的好奇心和求知欲。

教學重點和難點:理解倍數(shù)和因數(shù)的意義,掌握找出一個數(shù)因數(shù)和倍數(shù)的方法。

二、學情分析:

學生在平時學習中缺少主動性,一部分學生怕困難,缺乏獨立思考的習慣,同時考慮問題也不夠全面。在本堂課的教學中,主要調(diào)動學生學習的積極性,提高學生課堂學習的參與性,體驗成功的樂趣,通過學生的親自探索和合作交流,來達到學習知識,掌握所學知識的目的。同時感受數(shù)學中的奧妙。

三、教法與學法指導。

當今社會,人類的語言離不開素質(zhì)教育,而實施素質(zhì)教育必須“以學生為本”課堂教學要圍繞培養(yǎng)學生的探索精神、創(chuàng)新精神出發(fā),為全面提高學生的綜合素質(zhì)打下一定的基礎。本節(jié)課根據(jù)學生的認知能力與心理特征來進行教學策略和方法的設計。

1、遵循學生主體,老師主導,自主探究,合作交流為主線的理念,利用學生對乘法的運算理解概念。

2、小組合作討論法。以學生討論,交流,互相評價,促成學生對找一個數(shù)的因數(shù)和倍數(shù)的方法進行優(yōu)化處理,提升。鞏固學生方法表達的完整性,有效性,避免學生只掌握方法的理解,而不能全面的正確的表達。

四,教學過程。

1、揭示主題。

老師直接揭示主題,大膽創(chuàng)新,打破了傳統(tǒng)的為了導入而導入的教學模式。為學生的自主合作學習提供了開放的空間。

2、合作交流,理解因數(shù),倍數(shù)的概念及其意義。

教師出示前置性作業(yè),小組內(nèi)交流,匯報學習成果,教師適時點撥,真正把課堂還給學生,也充分體現(xiàn)了教師的主導作用和學生的主體地位。使學生在交流中培養(yǎng)了合作學習的意識,對因數(shù)和倍數(shù)的概念有了初步的認識,對它們之間的聯(lián)系也有了更好的理解。

一個數(shù)的因數(shù)和倍數(shù)是本節(jié)課中技能目標中很重要的一部分。使學生在已有的經(jīng)驗基礎上,獨立的列舉一個數(shù)的因數(shù),在小組合作交流中得出。找一個數(shù)的因數(shù)和倍數(shù)的方法。真正地把主動權(quán)交給學生,教師通過引導,使學生加深理解,化解難點。

4、引導學生分析,比較歸納尋找共性,找出不同,得出一個數(shù)的因數(shù),使學生學會有序思考,從而形成基本技能與方法,做到即關注了過程,又關注了結(jié)果。教師的教學水到渠成,學生的學習則是山重水復疑無路,柳暗花明又一村。

5、引導學生置疑,集體交流,化解疑問。

便于學生對本課所學知識更好的消化理解。

三、練習。

練習題設計形式多樣,有梯度。既注重基礎,又有所提高,從而真正實現(xiàn)了課堂教學的有效性。

小學因數(shù)和倍數(shù)教案篇十

教學目標:

1、通過操作活動得出相應的乘除法算式,幫助學生理解倍數(shù)和因數(shù)的意義;探索求個數(shù)的倍數(shù)和因數(shù)的方法,發(fā)現(xiàn)一個數(shù)倍數(shù)和因數(shù)的某些特征。

2、在探索一個數(shù)的倍數(shù)和因數(shù)的過程中培養(yǎng)學生觀察、分析、概括能力,培養(yǎng)有序思考能力。

3、通過倍數(shù)和因數(shù)之間的互相依存關系使學生感受數(shù)學知識的內(nèi)在聯(lián)系,體會到數(shù)學內(nèi)容的奇妙、有趣。

教學重點:理解倍數(shù)和因數(shù)的意義。

教學難點:探索求一個數(shù)的倍數(shù)和因數(shù)的方法。

教學準備:每桌準各12個一樣大小的正方形,每人準備一張自己學號的卡片。

設計理念:通過竟猜、操作、比一比誰寫得多,找朋友等形式多樣的活動激發(fā)學生持續(xù)的學習興趣;學生通過獨立思考、合作文流進行自主探索;教師引導學生掌握數(shù)學思考的方法。

教學過程:

1、讓學生進行智力競猜春暖花香的季節(jié),公園里許多人在劃船,一條船上有兩個父親兩個兒子,但總共只有3個人,這是怎么回事呢?(部分學生能猜出三個人分別是孫子、爸爸、和爺爺)

2、孫子、爸爸、爺爺?shù)拿址謩e是韓韓,韓有才、韓廣發(fā)。請學生以韓有才為中心介紹下三個人的關系。學生可能會說出韓有才.是爸爸,韓有才是兒子的語句,這時引導學生說出誰是誰的爸爸誰是準的兒子。

3、上述父子關系是一種互相依存的關系,在表述時一定要完整。并向?qū)W生說明自然數(shù)中某兩個數(shù)之間也有這種類似的依存關系倍數(shù)和因數(shù)。

設計說明:智力競猜走學生喜歡的形式,因為每個學生都有爭強好勝之心,競猜有兩個作用,一是激發(fā)學生的學習興趣,二是以此引出相互依存的關系,為理解倍數(shù)和因數(shù)的相互依存關系作鋪墊。

1、師:智慧從手指問流出,通過操作我們能發(fā)現(xiàn)許多的知識。請同桌同學拿出課前準備的12個同樣大小的正方形,試一試能擺出幾個不同的長方形,并思考一下其中蘊涵著哪些不同的乘除法算式。

2、請學生匯報不同的擺法,以及相應的乘除法算式。(乘法算式和除法算式分開寫)再向?qū)W生說明:如果一個圖形經(jīng)過旋轉(zhuǎn)后和另一個圖形一樣,我們就認為這兩個圖形是一樣的,讓學生特重復的圖形和算式去掉。(板書三十乘法算式,和幾十相應的除法算式)

設計說明;讓學生寫出蘊涵的乘除法算式符合學生的知識基礎,學生有的可能用乘法表示,也有的可能用除法表示;讓學生將旋轉(zhuǎn)后相同的去掉,這是一次簡化,很多學生并不知道,需要指導,這樣可以使學生認識到事物的本質(zhì)。

3、讓學生一起看乘法算式43=12,向?qū)W生指出:12是4的倍數(shù),12也是3的倍數(shù),4是12的因數(shù),3也是12的因數(shù)。

4、先請一個學生站起來說一說.然后同桌的同學再互相說一說。

5、讓學生仿照說出62=12和121=12中哪個數(shù)是哪個數(shù)的倍數(shù),哪個數(shù)是哪個數(shù)的因數(shù)。

6、學生相互出一道乘法算式,并說一說誰是誰的倍數(shù),誰是誰的因數(shù)。學生可能會出現(xiàn)0( )=0的情況,借此向?qū)W生說明我們研究因敷和倍數(shù)一般指不是0的自然數(shù)。

設計說明:倍數(shù)和因數(shù)是全新的概念,需要教師的傳授、講解,需要學生的適當記憶重復、仿照。當然,要使學生真正理解還必須舉一反三,通過互相舉例可以逐步完善學生對倍數(shù)和因數(shù)的認識,同時使學生明確倍數(shù)和因數(shù)的研究范圍。

7、以43=12與123=4為例,向?qū)W生說明后面的除法算式是由前面的乘法算式得到的,根據(jù)這個除法算式可以說誰是誰的倍數(shù),誰是誰的因數(shù),說好后再讓學生試一試其他幾個除法算式中的關系。

8、練習:根據(jù)下面的算式,說說哪個數(shù)是哪個數(shù)的因數(shù),哪個數(shù)是哪個數(shù)的倍數(shù)

54=20 357=5 3+4=7

(1)學生回答后引發(fā)學生思考:能不能說20是倍數(shù),4是因數(shù)。使學生進一步理解倍數(shù)是兩個數(shù)之間的一種相互依存的關系,必須說哪個是哪個的倍數(shù),因數(shù)也同樣如此。

(2)通過3+4=7使學生進一步理解倍數(shù)和因數(shù)都是建立在乘法或除法的基礎之上的。

設計說明:乘法和除法是一種互逆的關系,在學習中應該溝通它們之間的聯(lián)系;通過三道練習可以鞏固剛剛獲得的對倍數(shù)和因數(shù)的認識,將融會貫通落到實處。

1、找一個數(shù)的因數(shù)。

(1)聯(lián)系板書的乘除法算式觀察思考12的因數(shù)有哪些,井想辦法找出15的所有因數(shù)。

(2)學生獨立思考,明白根據(jù)一個乘法(除法)算式可以找出15的兩個因數(shù),在學生充分交流的基礎上引導學生有條理的一對一對說出15的因數(shù)。

(3)用一對一對的方法找出36的所有因數(shù)??赡苡械膶W生根據(jù)乘法算式找的,也有的學生是根據(jù)除法算式找的,都應該給予肯定。

(4)引導學生觀察12、15、36的因數(shù),說一說有什么發(fā)現(xiàn)。一個數(shù)的因數(shù)個數(shù)是有限的,其中最小的因數(shù)都是1,最大的都是它本身。

設計說明:先安排學生找一個數(shù)的因數(shù)可以使學生利用操作得到的算式進行,觀察,這樣比較自然,而且為于找一個數(shù)的因數(shù)指明了方向。學生交流時突出了方法的多樣性,既可以根據(jù)乘法算式想,也可以根據(jù)除法算式想,交流后引導學生一對一對的找是必要的,它可以培養(yǎng)學生的有序思考。最后引導學生觀察。使學生自主發(fā)現(xiàn)、歸納出一個數(shù)的因數(shù)的某些特征。

2、找一個數(shù)的倍數(shù)。

(1)讓學生找3的倍數(shù),比一比誰找得多。

(2)學生匯報后,引導學生有序思考,并得出3的倍數(shù)可以用3乘連續(xù)的自然數(shù)1、2、3,3的倍數(shù)的個數(shù)是無限的,所以寫3的`倍數(shù)時要借助省略號表示結(jié)果。

(3)找出2的倍數(shù)和5的倍數(shù),并引導學生觀察3、2、5的倍數(shù)情況,說一說有什么發(fā)現(xiàn)。一個數(shù)的倍數(shù)個數(shù)是無限的,其中最小的倍數(shù)是它本身,沒有最大的倍數(shù)。

設計說明:讓學生比一比誰找的倍數(shù)多,可以使學生產(chǎn)生認知沖突,認識到一個數(shù)的倍數(shù)個數(shù)是無限的,在學生匯報后同樣需要引導學生的有序思考,需要引導學生自主發(fā)現(xiàn)、歸納一個數(shù)倍數(shù)的特征。

1、想想做做的第l題。學生表述后強調(diào)哪個是哪個的倍數(shù)(或因數(shù))。

設計說明:第l題是基礎練習.可以鞏固對倍數(shù)和因數(shù)的認識,2、3兩題聯(lián)系實際,使學生感悟到其中蘊藏著求一個數(shù)倍數(shù)和因數(shù)的方法,以及倍數(shù)和因數(shù)的某些特征。第4題通過游戲活動進一步激發(fā)學生持續(xù)的學習熱情,而且可以綜合應用求倍數(shù)和因數(shù)的方法,再次認識到倍數(shù)和因數(shù)的某些特征。

1、通過這節(jié)課的學習你有什么收獲?向你的同伴介紹一下。

2、生活中許多現(xiàn)象與我們學習的倍數(shù)和因數(shù)的知識有關,課后同學們可以利用今天所學的知識探索一下1小時等于60分的好處。通過探索使學生明白由于60的因數(shù)是兩位數(shù)中最多的,可以方便計算。

設計說明:向同伴介紹自己的收獲可以將課堂中學到的知識進行自我梳理,同時通過探索1小時等于60分的好處,可以鞏固倍數(shù)和因數(shù)的相關知識,溝通知識間的聯(lián)系,拓展學生的知識面,使學生認識到數(shù)學知識的應用價值。

小學因數(shù)和倍數(shù)教案篇十一

教學內(nèi)容:

蘇教版義務教育教科書《數(shù)學五年級下冊第47~48頁整理與練習“回顧與整理”和“練習與應用”第1~7題。

教學目標:

1.使學生加深認識因數(shù)和倍數(shù),能找一個數(shù)的因數(shù)或倍數(shù),進一步認識質(zhì)數(shù)和合數(shù);掌握2、5、3的倍數(shù)的特征,進一步認識偶數(shù)和奇數(shù);加深理解質(zhì)因數(shù),能正確分解質(zhì)因數(shù)。

2.使學生能整理因數(shù)和倍數(shù)的知識內(nèi)容,感受知識之間的內(nèi)在聯(lián)系;能應用相關概念進行分析、判斷、推理,進一步掌握思考、解決數(shù)學問題的方法,積累數(shù)學思維的初步經(jīng)驗,提高分析、推理、判斷等思維能力;加深對數(shù)的認識,進一步發(fā)展數(shù)感。

3.使學生主動參與回顧、整理知識和分析、解決問題等活動,培養(yǎng)樂于思考的品質(zhì)和與同伴互相交流、傾聽等合作意識和能力;感受數(shù)學方面的知識積累和進步,提高學好數(shù)學的自信心。

教學重點:

整理、應用因數(shù)和倍數(shù)的知識。

教學難點:

應用概念正確判斷、推理。

教學過程:

一、揭示課題

談話:最近的數(shù)學課,我們學習了哪方面的內(nèi)容?回憶一下,都學到了哪些知識?

揭題:我們已經(jīng)學完了因數(shù)和倍數(shù)這一單元的內(nèi)容,今天開始主要整理與練習這一單元內(nèi)容。(板書課題)通過整理與練習,我們要進一多認識因數(shù)與倍數(shù),2.5.3的倍數(shù)的特征,能熟練掌握找一個數(shù)的因數(shù)或倍數(shù)的方法;能判斷偶數(shù)和奇數(shù)、質(zhì)數(shù)和合數(shù),了解這些概念之間的聯(lián)系與區(qū)別,能正確分解質(zhì)因數(shù),提高對數(shù)的特征的認識,加深對數(shù)的認識。

二、回顧與整理

1.回顧討論。

出示討論題:

(1)你是怎樣理解因數(shù)和倍數(shù)的?舉例說明你的認識。

(2)2、5、3的倍數(shù)有什么特征?我們是怎樣發(fā)現(xiàn)的?

(3)自然數(shù)可以怎樣分類,各能分成哪幾類?舉例說說什么是質(zhì)因數(shù)和分解質(zhì)因數(shù)。

(4)什么是兩個數(shù)的公因數(shù)和最大公因數(shù),公倍數(shù)和最小公倍數(shù)?

讓學生在小組里討論,結(jié)合討論適當記錄自己的認識或例子。

2.交流整理。

圍繞討論題,引導學生展開交流,結(jié)合交流板書主要內(nèi)容。

(1)提問:能說說什么是因數(shù)和倍數(shù)嗎?可以用例子說明。(結(jié)合交流板書一兩個乘法或除法算式)

(指名學生說一說,再集體說一說)

你能找出6的因數(shù)嗎?(板書因數(shù))6的倍數(shù)呢?(板書倍數(shù))

能說說找一個數(shù)的因數(shù)或倍數(shù)的方法嗎?

說明:一個數(shù)的因數(shù)可以從小到大一對一對地找,到中間兩個因數(shù)之間沒有因數(shù)為止;一個數(shù)的倍數(shù)可以用依次乘1、2、3……這樣的方法找,注意一個數(shù)的倍數(shù)是無限的,寫一個數(shù)的倍數(shù)要注意用省略號。

(2)提問:2、5、3的倍數(shù)各有什么特征?我們是怎樣發(fā)現(xiàn)的?

自然數(shù)可以怎樣分類,各可以分成哪幾類?

你能舉出偶數(shù)和奇數(shù)、質(zhì)數(shù)和合數(shù)的一些例子嗎?(學生舉出各類數(shù)的例子)

說明:按是不是2的倍數(shù)可以把自然數(shù)分成偶數(shù)和奇數(shù)兩類,是2的倍數(shù)的是偶數(shù),不是2的倍數(shù)的是奇數(shù);按因數(shù)的個數(shù)可以把自然數(shù)分成1和質(zhì)數(shù)、合數(shù)三類,只有兩個因數(shù)的是質(zhì)數(shù),有兩個以上因數(shù)的是合數(shù),1既不是質(zhì)數(shù)也不是合數(shù)。

什么是質(zhì)因數(shù)和分解質(zhì)因數(shù)?6有哪些質(zhì)因數(shù)?怎樣把6分解質(zhì)因數(shù)?(板書式子,并說明其中的質(zhì)因數(shù))

(3)提問:什么是公因數(shù)和最大公因數(shù),什么是公倍數(shù)和最小公倍數(shù)?

說明:兩個數(shù)公有的因數(shù)叫公因數(shù),其中最大的叫最大公因數(shù);兩個數(shù)公有的倍數(shù)叫公倍數(shù),其中最小的叫最小公倍數(shù)。

結(jié)合交流內(nèi)容,逐步板書成:

l

質(zhì)數(shù)質(zhì)因數(shù)

合數(shù)分解質(zhì)因數(shù)

因數(shù)公因數(shù)最大公因數(shù)

(互相依存)

倍數(shù)公倍數(shù)最小公倍數(shù)

2、5、3的倍數(shù)的特征

偶數(shù)

奇數(shù)

(4)引導:請同學們現(xiàn)在觀察我們整理的這一單元學過的內(nèi)容,了解知識之間的聯(lián)系,同桌互相說說知識是怎樣發(fā)展的。

學生互相交流,教師巡視、傾聽。

交流:哪位同學能看黑板上整理的內(nèi)容,說說我們怎樣逐步認識這些知識的,知識是怎樣發(fā)展起來的。

三、練習與應用

1.做“練習與應用”第1題。

指名學生交流,說說每組里因數(shù)和倍數(shù)關系。

提問:3和7有沒有因數(shù)和倍數(shù)關系?為什么沒有?

2.做“練習與應用”第2題。

(1)讓學生獨立寫出前四個數(shù)的所有因數(shù),指名兩人板演。

交流:你是怎樣找它們的因數(shù)的?(檢查板演題)

(2)口答后三個數(shù)的因數(shù)。

引導:能說出后面每個數(shù)的全部因數(shù)嗎?(學生口答,教師板書)

提問:一個數(shù)的因數(shù)有什么特點?

說明:一個數(shù)因數(shù)的個數(shù)是有限的,最小的是1.最大的是它本身。

3.分別說出下面各數(shù)的倍數(shù)。

581217

分別指名學生說出各數(shù)的倍數(shù),教師板書。

提問:為什么要寫省略號?一個數(shù)的倍數(shù)有什么特點?

說明:一個數(shù)倍數(shù)的個數(shù)是無限的,最小的是它本身,沒有最大的倍數(shù)。

4.做“練習與應用”第3題。

(1)讓學生獨立完成填數(shù)。

交流:題里各是怎樣填的?(呈現(xiàn)結(jié)果)填數(shù)時怎樣想的?

提問:哪些數(shù)既是3的倍數(shù),又是5的倍數(shù)?你是怎樣想的?

同時是2和5的倍數(shù)的數(shù)有什么特征?

哪些數(shù)既是2的倍數(shù),又是5和3的倍數(shù)?說說你的判斷方法。

(2)這里哪些數(shù)是偶數(shù)?奇數(shù)呢?

你是怎樣判斷偶數(shù)和奇數(shù)的?

5.做“練習與應用”第4題。

要求學生獨立思考,自己選出兩張卡片,按各題的要求分別組成兩位數(shù),把能組成的數(shù)記錄下來。

交流:同時是5和3的倍數(shù)的數(shù)有哪些?(板書:30)如果是三位數(shù)呢?

(板書:180810)

組成的兩位數(shù)中最大的偶數(shù)是多少?(板書:80)最小的奇數(shù)呢?(板書:13)

6.做“練習與應用”第5題。

讓學生把質(zhì)數(shù)圈出來,在合數(shù)下面畫線。

交流:哪些是質(zhì)數(shù),哪些是合數(shù)?(板書成兩類)質(zhì)數(shù)和合數(shù)是按什么分的?

說明:質(zhì)數(shù)只有2個因數(shù),合數(shù)至少有3個因數(shù)。

7.做“練習與應用’’第6題。

讓學生選出質(zhì)數(shù)和偶數(shù)。

交流、呈現(xiàn)結(jié)果。

提問:觀察表里選出的質(zhì)數(shù)和偶數(shù),所有的質(zhì)數(shù)都是奇數(shù)嗎?請舉出一個具體例子。

所有的合數(shù)都是偶數(shù)嗎?你能舉例子說明嗎?

指出:如果要說明一個結(jié)論是錯誤的,只要舉一個反例。比如,要判斷質(zhì)數(shù)都是奇數(shù)的說法是錯的,只要舉出質(zhì)數(shù)2是偶數(shù)這個例子。這里質(zhì)數(shù)2是偶數(shù)就是一個反例。要判斷合數(shù)都是偶數(shù)是錯的,也只要舉一個反例,比如合數(shù)9就是奇數(shù)。

8.下面的說法正確嗎?

(1)大于0的自然數(shù)不是奇數(shù)就是偶數(shù)。

(2)大于0的自然數(shù)不是質(zhì)數(shù)就是合數(shù)。

(3)奇數(shù)都是質(zhì)數(shù),偶數(shù)都是合數(shù)。

(4)自然數(shù)中最小的偶數(shù)是2,最小的合數(shù)是4。

(5)一個數(shù)本身既是它的因數(shù),又是它的倍數(shù)。

9.做“練習與應用”第7題。

(1)讓學生填空,指名板演。交流并確認結(jié)果。

提問:這里填寫的質(zhì)數(shù)都叫積的什么數(shù)?為什么稱它是積的質(zhì)因數(shù)?

說明:這里把合數(shù)寫成這種質(zhì)數(shù)相乘的形式,叫什么?

(2)把30、42分別分解質(zhì)因數(shù)。

學生完成,交流板書,檢查訂正。

四、全課總結(jié)

提問:這節(jié)課主要復習的哪些內(nèi)容?你有哪些收獲?

將本文的word文檔下載到電腦,方便收藏和打印

推薦度:

點擊下載文檔

搜索文檔

小學因數(shù)和倍數(shù)教案篇十二

1、使學生理解質(zhì)數(shù)和合數(shù)的概念,能正確地判斷一個數(shù)是質(zhì)數(shù)還是合數(shù)。

2、培養(yǎng)學生觀察、比較、抽象、慨括的能力。

3、培養(yǎng)學生自主探究的精神和獨立思考的能力。教學重點:質(zhì)數(shù)和合效的概念。

質(zhì)數(shù)、臺數(shù)、濟數(shù)、偶數(shù)的區(qū)別

給教室里的人分類。體會:同樣的事物,依據(jù)不問的分類標準,可以有多種小_的分類方法。明確:分類的際準很重要。

說一說,在我們學習的空間,你可以得到那些數(shù)?(要求與同學說的盡也不重復)

給這些自然數(shù)分類。根據(jù)自然數(shù)能不能被2整除,可以分成新數(shù)和偶數(shù)兩類。

板書對應的集合圖。

自然數(shù)

(能不能被2整除)

把學生列舉的數(shù)填寫在對應的集合圈里。

問:看了集合圖,你想說什么么?(學生看圖說自己的想法,復習奇數(shù)和偶數(shù)的有關知識)

說明:這是一種有價值的分類方法,在以后的學習中很有用。

問:想不想學一種新的分類方法?關于新的分類方法,你想知道些什么?

今天我們就用找約數(shù)的方法來給自然數(shù)分類。

復習:什么叫約數(shù)?怎樣找一個數(shù)所有的約數(shù)?

同桌合作。找出列舉的各數(shù)的所有的約數(shù)。(同時板演)

引導學生觀察:觀察以上各數(shù)所含的數(shù)的個數(shù),你能把它們分成幾種情況‘!

根據(jù)學生的回答板書。

自然數(shù)

(約數(shù)的個數(shù))

(只有兩個約數(shù))(有3個或3個以上的約數(shù))

引導學生思考:只含有兩個約數(shù)的,這兩個約數(shù)有什么特點?引出約數(shù)的概念。

明確:這是一種新的分類方法。看廠集合圈,你想說什么?(學生看圖說自己的想法,鞏固寺數(shù)陽臺數(shù)的知識)

猜一猜:奇數(shù)有多少個?合數(shù)呢?

明確:因為自然數(shù)的個數(shù)是無限的,所以,新數(shù)陽偶數(shù)的個數(shù)也是無限的。運用新知,解決問題。

出示例1下面各數(shù),哪些是質(zhì)數(shù)?哪些是合數(shù)?

15 28 31 53 77 89 1ll

學生獨立完成。

問:你是怎么判斷的?

明確:可以找出每個數(shù)所有的約數(shù),再根據(jù)質(zhì)數(shù)和合數(shù)的意義來判斷;一個數(shù),只有找到1和它本身以外的第三個約束,就能判斷這個數(shù)是合數(shù)還是質(zhì)數(shù)。不必找出所有的約數(shù)來,這樣可以提高判斷的效率。

說明:判斷一個數(shù)是不是質(zhì)數(shù)還可以查表。100以內(nèi)的質(zhì)數(shù)比較常用,看書本上的100以內(nèi)的質(zhì)數(shù)表。用質(zhì)數(shù)表檢查對例子1的判斷是否正確。

完成練一練。

1、堅持下面各數(shù)的約數(shù)的個數(shù),指出哪些是質(zhì)數(shù)哪些是合數(shù),再用質(zhì)數(shù)表檢查。

22 29 35 49 51 79 83

2、出示2到50的數(shù)。先劃掉2的倍數(shù),再依次劃掉3、5、7的倍數(shù)(但2、3、5、7本身不劃掉。)

學生操作后,提問:剩下的都是什么數(shù)?

告訴學生:古代的數(shù)學家就是用這樣的方法來找質(zhì)數(shù)的。

學到這里,一種新的分類方法,你掌握了嗎?學生回答:相機揭示課題,質(zhì)數(shù)和合數(shù)

討論:質(zhì)數(shù)、合數(shù)、奇數(shù)、偶數(shù)之間是這樣的關系呢?

(略)。

小學因數(shù)和倍數(shù)教案篇十三

2、學生能了解一個數(shù)的因數(shù)是有限的,倍數(shù)是無限的;

4、培養(yǎng)學生的觀察能力。

1、出示主題圖,讓學生各列一道乘法算式。

2、師:看你能不能讀懂下面的算式?

出示:因為2×6=12。

所以2是12的因數(shù),6也是12的因數(shù);

12是2的倍數(shù),12也是6的倍數(shù)。

3、師:你能不能用同樣的方法說說另一道算式?

(指名生說一說)。

師:你有沒有明白因數(shù)和倍數(shù)的關系了?

那你還能找出12的其他因數(shù)嗎?

4、你能不能寫一個算式來考考同桌?學生寫算式。

師:誰來出一個算式考考全班同學?

5、師:今天我們就來學習因數(shù)和倍數(shù)。(出示課題:因數(shù)倍數(shù))。

齊讀p12的注意。

(一)找因數(shù):

1、出示例1:18的因數(shù)有哪幾個?

學生嘗試完成:匯報。

(18的因數(shù)有:1,2,3,6,9,18)。

師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)。

師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。

2、用這樣的方法,請你再找一找36的因數(shù)有那些?

匯報36的因數(shù)有:1,2,3,4,6,9,12,18,36。

師:你是怎么找的?

舉錯例(1,2,3,4,6,6,9,12,18,36)。

師:這樣寫可以嗎?為什么?(不可以,因為重復的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)。

仔細看看,36的因數(shù)中,最小的'是幾,最大的是幾?

看來,任何一個數(shù)的因數(shù),最小的一定是(),而最大的一定是()。

3、你還想找哪個數(shù)的因數(shù)?(18、5、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。

4、其實寫一個數(shù)的因數(shù)除了這樣寫以外,還可以用集合表示:如。

18的因數(shù)。

小結(jié):我們找了這么多數(shù)的因數(shù),你覺得怎樣找才不容易漏掉?

從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。

(二)找倍數(shù):

1、我們一起找到了18的因數(shù),那2的倍數(shù)你能找出來嗎?

匯報:2、4、6、8、10、16、……。

師:為什么找不完?

你是怎么找到這些倍數(shù)的?(生:只要用2去乘1、乘2、乘3、乘4、…)。

那么2的倍數(shù)最小是幾?最大的你能找到嗎?

2、讓學生完成做一做1、2小題:找3和5的倍數(shù)。

匯報3的倍數(shù)有:3,6,9,12。

師:這樣寫可以嗎?為什么?應該怎么改呢?

改寫成:3的倍數(shù)有:3,6,9,12,……。

你是怎么找的?(用3分別乘以1,2,3,……倍)。

5的倍數(shù)有:5,10,15,20,……。

師:表示一個數(shù)的倍數(shù)情況,除了用這種文字敘述的方法外,還可以用集合來表示。

2的倍數(shù)3的倍數(shù)5的倍數(shù)。

師:我們知道一個數(shù)的因數(shù)的個數(shù)是有限的,那么一個數(shù)的倍數(shù)個數(shù)是怎么樣的呢?

(一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù))。

我們一起來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?

完成練習二1~4題。

小學因數(shù)和倍數(shù)教案篇十四

教材第6頁例3及練習二第3~8題及思考題。

1.通過學習,使學生能自主探究,找出求一個數(shù)的倍數(shù)的方法。

2.結(jié)合具體情境,使學生進一步認識自然數(shù)之間存在因數(shù)和倍數(shù)的關系,掌握求一個數(shù)的因數(shù)和倍數(shù)的方法。

3.初步學會從數(shù)學的角度提出問題、理解問題,并能用所學知識解決問題。在解決問題的過程中,培養(yǎng)學生概括、分析和比較的能力,使學生體會數(shù)學知識的內(nèi)在聯(lián)系。

重點:掌握求一個數(shù)的倍數(shù)的方法。

難點:理解因數(shù)和倍數(shù)兩者之間的關系。

1、探索找倍數(shù)的方法。(教學例3)。

出示例3:2的倍數(shù)有哪些?

師:你會找2的倍數(shù)嗎?給你們1分鐘的時間,看誰寫得又對、又快、又多!準備好了嗎?開始!

師:時間到,你寫了多少個2的倍數(shù)?生1:15個。生2:24個。

師:大家都是用的什么方法呢?

生1:我是用乘法口訣,一二得二,二二得四……這樣寫下去的。

生2:我也是用乘法,用2去乘1、乘2……。

師:哪些同學也是用乘法做的?

師:你們都是用2去乘一個數(shù),所得的積就是2的倍數(shù)。還有不同的方法嗎?

生3:我用的'是除法,用2÷2=1,4÷2=2,6÷2=3,……依次除下去。

師:很好!如果給你更長的時間,你能把2的倍數(shù)全部寫出來嗎?(不能)。

師:為什么?(因為2的倍數(shù)有無數(shù)個)。

師:怎么辦?(用省略號)。

師:通過交流,你有什么發(fā)現(xiàn)?

引導學生初步體會2的倍數(shù)的個數(shù)是無限的。

追問:你能用集合圖表示2的倍數(shù)嗎?

學生填完后,教師組織學生進行核對。

(4)即時練習。讓學生找出3的倍數(shù)和5的倍數(shù),并組織交流。學生舉例時可能會產(chǎn)生錯誤,教師要引導學生根據(jù)錯例進行適時剖析。

2、反思提煉。師:從前面找因數(shù)和倍數(shù)的過程中,你有什么發(fā)現(xiàn)?

先讓學生在小組內(nèi)交流,再組織全班集體交流,通過全班交流,引導學生認識以下三點:

(1)一個數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。

(2)一個數(shù)的最小倍數(shù)是它本身,沒有最大倍數(shù)。

(3)一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。

1、指導學生完成教材第7~8頁練習二第3~8題及思考題。

學生獨立完成全部練習后教師組織學生進行集體訂正。

集體訂正時,教師著重引導學生認識以下幾點:

(1)第4題“15的因數(shù)有哪些?”和“15是哪些數(shù)的倍數(shù)”答案是一樣的。

(2)第5題中的第(2)小題是錯的,因為一個數(shù)的倍數(shù)的個數(shù)是無限的,第(4)小題也是錯的,因為在研究因數(shù)和倍數(shù)時,我們所說的數(shù)指的是自然數(shù),不含小數(shù)。

(3)思考題:兩數(shù)如果都是7(或9)倍數(shù),它們的和也一定是7(或9)的倍數(shù),即如果兩數(shù)都是n的倍數(shù),它的和也是n的倍數(shù)。

2、利用求倍數(shù)的方法解決生活中的實際問題。

理解題意,分析解答。

教師提示“2個2個地數(shù),正好數(shù)完,說明西瓜的個數(shù)是2的倍數(shù),5個5個地數(shù),也正好數(shù)完,說明西瓜的個數(shù)是5的倍數(shù),所以西瓜的個數(shù)同時是2和5的倍數(shù)。

交流匯報:2的倍數(shù)有2,4,6,8,10,12,14,16,18,20,…。

5的倍數(shù)有5,10,15,20,25,30,…。

2和5共同的倍數(shù)有10,20,…所以2和5共同的倍數(shù)最小的是10。

答:這些西瓜最少有10個。

1、師:通過本節(jié)課的學習,你有什么收獲?(學生交流)。

2、讓學生自學“你知道嗎?”

2×1=22÷2=1。

2×2=44÷2=2。

2×3=66÷2=3。

2×4=88÷2=4。

2的倍數(shù)有2,4,6,……。

一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。

小學因數(shù)和倍數(shù)教案篇十五

1.理解因數(shù)和倍數(shù)的意義以及兩者之間相互依存的關系,掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。

2.在探究的過程中體會數(shù)學知識之間的內(nèi)在聯(lián)系,在解決問題的過程中培養(yǎng)學生思維的有序性和條理性。

3.培養(yǎng)學生的探索意識以及熱愛數(shù)學學習的情感。

1.理解因數(shù)和倍數(shù)的意義以及兩者之間相互依存的關系。

2.掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。

教學課件。

(一)創(chuàng)設情境,引入新課。

人與人之間存在著許多種關系,你們和爸爸(媽媽)的關系是?

(父子、母子、母女關系)我和你們的關系是?(師生關系)。

在數(shù)學中,數(shù)與數(shù)之間也存在著多種關系,這節(jié)課,我們一起研究兩數(shù)之間的因數(shù)與倍數(shù)關系。

(二)探究新知-理解因數(shù)和倍數(shù)的意義。

教學例1:

1.觀察算式的特點,進行分類。

(1)仔細觀察算式的特點,你能把這些算式分類嗎?

(2)交流學生的分類情況。(預設:學生會根據(jù)算式的計算結(jié)果分成兩類)。

第一類是被除數(shù)、除數(shù)、商都是整數(shù);第二類是被除數(shù)、除數(shù)都是整數(shù),而商不是整數(shù)。

2.明確因數(shù)和倍數(shù)的意義。

(1)同學們,在整數(shù)除法中,如果商是整數(shù)而沒有余數(shù),我們就說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。例如,12÷2=6,我們就說12是2的倍數(shù),2是12的因數(shù)。12÷6=2,我們就說12是6的倍數(shù),6是12的因數(shù)。

(2)在第一類算式中找一個算式,說一說,誰是誰的因數(shù)?誰是誰的倍數(shù)?

(3)強調(diào)一點:為了方便,在研究倍數(shù)與因數(shù)的時候,我們所說的數(shù)指的是自然數(shù)(一般不包括0)。

3.理解因數(shù)和倍數(shù)的依存關系。

(1)獨立完成教材第5頁“做一做”。

(2)我們能不能說“4是因數(shù)”“24是倍數(shù)”呢?表述時應該注意什么?

4.理解一個數(shù)的“因數(shù)”和乘法算式中的“因數(shù)”的區(qū)別以及一個數(shù)的“倍數(shù)”與“倍”的區(qū)別。

(1)今天學的一個數(shù)的“因數(shù)”與以前乘法算式中的“因數(shù)”有什么區(qū)別呢?

課件出示:

乘法算式中的“因數(shù)”是相對于“積”而言的,可以是整數(shù),也可以是小數(shù)、分數(shù);而一個數(shù)的“因數(shù)”是相對于“倍數(shù)”而言的,它只能是整數(shù)。

(2)今天學的“倍數(shù)”與以前的“倍”又有什么不同呢?

“倍數(shù)”是相對于“因數(shù)”而言的,只適用于整數(shù);而“倍”適用于小數(shù)、分數(shù)、整數(shù)。

(3)交流匯報。

(三)探究新知-找一個數(shù)的因數(shù)。

教學例2:

1.探究找18的因數(shù)的方法。

(1)18的因數(shù)有哪些?你是怎么找的?

(2)交流方法。

預設:方法一:根據(jù)因數(shù)和倍數(shù)的意義,通過除法算式找18的因數(shù)。

因為18÷1=18,所以1和18是18的因數(shù)。

因為18÷2=9,所以2和9是18的因數(shù)。

因為18÷3=6,所以3和6是18的因數(shù)。

方法二:根據(jù)尋找哪兩個整數(shù)相乘的積是18,尋找18的因數(shù)。

因為1×18=18,所以1和18是18的因數(shù)。

因為2×9=18,所以2和9是18的因數(shù)。

因為3×6=18,所以3和6是18的因數(shù)。

2.明確18的因數(shù)的表示方法。

(1)我們怎樣來表示18的因數(shù)有哪些呢?怎樣表示簡潔明了?

(2)交流方法。

預設:列舉法,18的因數(shù)有:1,2,3,6,9,18。

集合圖的方法(如下圖所示)。

3.練習找一個數(shù)的因數(shù)。

(1)你能找出30的因數(shù)有哪些嗎?36的因數(shù)呢?

(2)怎樣找才能不遺漏、不重復地找出一個數(shù)的所有因數(shù)?

(四)探究新知-找一個數(shù)的倍數(shù)。

教學例3:

1.探究找2的倍數(shù)的方法。

(1)2的倍數(shù)有哪些?你是怎么找的?

(2)想方法:利用乘法算式找2的倍數(shù)。

因為2×1=2,所以2是2的倍數(shù)。

因為2×2=4,所以4是2的倍數(shù)。

因為2×3=6,所以6是2的倍數(shù)?!?。

(3)2的倍數(shù)能寫完嗎?你能繼續(xù)找嗎?寫不完怎么辦?

(4)根據(jù)前面的經(jīng)驗,試著表示出2的倍數(shù)有哪些?(預設:列舉法、集合圖的方法)。

2.練習找一個數(shù)的倍數(shù)。

你能找出3的倍數(shù)有哪些嗎?5的倍數(shù)呢?

(五)我的發(fā)現(xiàn)-因數(shù)與倍數(shù)的特征。

舉例子,找規(guī)律,勾畫知識點,讀一讀。

預設:一個數(shù)的因數(shù)的個數(shù)是有限的`,最小的因數(shù)是1,最大的因數(shù)是它本身;一個數(shù)的倍數(shù)的個數(shù)是無限的,沒有最大的倍數(shù),最小的倍數(shù)是它本身。1是所有非零自然數(shù)的因數(shù)。

(六)智慧樂園。

1.在練習本上完成下列填空題。(獨立完成后,師訂正答案)。

一個數(shù)的最大因數(shù)是17,這個數(shù)是(),它的最小的因數(shù)是()。

一個數(shù)的最小倍數(shù)是17,這個數(shù)是(),它()最大的倍數(shù),17的倍數(shù)的個數(shù)是().

一個數(shù)既是12的因數(shù),又是12的倍數(shù),這個數(shù)是()。

2.在練習本上完成下列判斷題。(獨立完成后,師訂正答案)。

(1)在算式6×4=24中,6是因數(shù),24是倍數(shù)。()。

(2)15的倍數(shù)一定大于15。()。

(3)1是除0以外所有自然數(shù)的因數(shù)。()。

(4)40以內(nèi)6的倍數(shù)有12、18、24、30、36這5個。()。

(5)34的最小倍數(shù)是34;34的最小因數(shù)是17。()。

(6)1.2是3的倍數(shù)。()。

(七)全課總結(jié),交流收獲。

這節(jié)課我們學了哪些知識?你有什么收獲?

(八)布置作業(yè)。

完成課時練第3、4頁,提交家校本。

小學因數(shù)和倍數(shù)教案篇十六

1、通過“活動建構(gòu)”,使學生領會因數(shù)和倍數(shù)的意義;通過獨立思考、交流談論,初步掌握求一個數(shù)所有因數(shù)的方法。

2、在解決問題的過程中,培養(yǎng)學生思維的有序性、條理性,增強學生的探究意識和求索精神。

3、通過教學,讓學生從中感受到數(shù)學思考的魅力,體驗到數(shù)學學習的樂趣。

小學因數(shù)和倍數(shù)教案篇十七

7--16頁的學習內(nèi)容。

1.進一步學習求一個數(shù)的所有因數(shù)和倍數(shù);掌握一般方法,學會用常見的幾種形式表達。

2.經(jīng)過多次的求解經(jīng)歷過程,在事實面前讓學生進一步明確因數(shù)是可數(shù)的,自然得出因數(shù)的個數(shù)是有限的,其中最大的因數(shù)自己;而倍數(shù)是無法寫完全,也就是說倍數(shù)的個數(shù)是無限的,其中最小的倍數(shù)也是自己。

掌握求一個數(shù)的因數(shù)和倍數(shù)的常用方法及常用的幾種書寫表達形式。

完整地求出一個數(shù)的因數(shù)和倍數(shù)。

實物投影。

口答:

根據(jù)下面算式,說說哪個數(shù)是哪個數(shù)的倍數(shù),哪個數(shù)是哪個數(shù)的因數(shù)?

4×9=3625×40=100032×7=224。

解答題:

18的因數(shù)有哪些?10是哪些數(shù)的倍數(shù)?

典型例題:

1.教學:

(1)你還能找出18的因數(shù)碼?并說出你的找法(要板書)。

(2)小比賽??凑l既快又能完整地把30和36所有因數(shù)找出來(基礎練習)?

(3)分享冠軍經(jīng)驗(介紹方法)。

(4)我們再來一次尋找32和48的所有因數(shù)的比賽(基礎練習)?

(5)請你試著把18所有找出的因數(shù)表述出來。(如果學生能用常見的兩種表達最好;如果不能需要教師的引導)。

第一種習慣書面表達形式。18的'因數(shù)有(有可能是亂的):

第二種集合圖的書面表達形式。18的因數(shù)。

(6)通過眼看,自我感覺調(diào)整這些因數(shù)最好按序排列。

第一種習慣書面表達形式。18的因數(shù)有(按大小順序):

第二種集合圖的書面表達形式。18的因數(shù)。

(7)做基礎練習第2題。

小結(jié):

1.尋找的方法。

2.能否找全?

3.教學。

(1)讓學生自己嘗試找。

(2)有沒有發(fā)什么問題?如何解決?

(3)如何表達?

(4)找出3和5的倍數(shù)。

小結(jié):

1.尋找的方法。

2.能否找全?

基礎練習:

1.用盡快的速度找出30、36、32和48的所有因數(shù)?

2.填空。30的因數(shù)有:36的因數(shù)有:

3.5的倍數(shù)有:3的倍數(shù)。

提高練習:

1.分別寫出17的因數(shù)和倍數(shù),再寫出28。

拓展練習:數(shù)學小知識:了解完全數(shù)。

有的學生認為某個數(shù)的最小倍數(shù)是0倍,因此最小倍數(shù)是0。要向?qū)W生強調(diào),小學階段學倍數(shù)不涉及到0,因此,某個數(shù)的最小倍數(shù)應該是它的1倍。

小學因數(shù)和倍數(shù)教案篇十八

課本第15頁,練習二第一題前半題15的因數(shù)有哪些?,第二題,第4題前半題填在書上。

設計意圖:本節(jié)課主要的學習目標一是使生明白因數(shù)和倍數(shù)的意義,二是讓生掌握求一個數(shù)因數(shù)的方法,作業(yè)中鞏固了學生今天的數(shù)學技能。

小學因數(shù)和倍數(shù)教案篇十九

蘇教版義務教育教科書《數(shù)學五年級下冊第47~48頁整理與練習“回顧與整理”和“練習與應用”第1~7題。

1.使學生加深認識因數(shù)和倍數(shù),能找一個數(shù)的因數(shù)或倍數(shù),進一步認識質(zhì)數(shù)和合數(shù);掌握2、5、3的倍數(shù)的特征,進一步認識偶數(shù)和奇數(shù);加深理解質(zhì)因數(shù),能正確分解質(zhì)因數(shù)。

2.使學生能整理因數(shù)和倍數(shù)的知識內(nèi)容,感受知識之間的內(nèi)在聯(lián)系;能應用相關概念進行分析、判斷、推理,進一步掌握思考、解決數(shù)學問題的方法,積累數(shù)學思維的初步經(jīng)驗,提高分析、推理、判斷等思維能力;加深對數(shù)的認識,進一步發(fā)展數(shù)感。

3.使學生主動參與回顧、整理知識和分析、解決問題等活動,培養(yǎng)樂于思考的品質(zhì)和與同伴互相交流、傾聽等合作意識和能力;感受數(shù)學方面的知識積累和進步,提高學好數(shù)學的自信心。

整理、應用因數(shù)和倍數(shù)的知識。

應用概念正確判斷、推理。

一、揭示課題

談話:最近的數(shù)學課,我們學習了哪方面的內(nèi)容?回憶一下,都學到了哪些知識?

揭題:我們已經(jīng)學完了因數(shù)和倍數(shù)這一單元的內(nèi)容,今天開始主要整理與練習這一單元內(nèi)容。(板書課題)通過整理與練習,我們要進一多認識因數(shù)與倍數(shù),2.5.3的倍數(shù)的特征,能熟練掌握找一個數(shù)的因數(shù)或倍數(shù)的方法;能判斷偶數(shù)和奇數(shù)、質(zhì)數(shù)和合數(shù),了解這些概念之間的聯(lián)系與區(qū)別,能正確分解質(zhì)因數(shù),提高對數(shù)的特征的認識,加深對數(shù)的認識。

二、回顧與整理

1.回顧討論。

出示討論題:

(1)你是怎樣理解因數(shù)和倍數(shù)的?舉例說明你的認識。

(2)2、5、3的倍數(shù)有什么特征?我們是怎樣發(fā)現(xiàn)的?

(3)自然數(shù)可以怎樣分類,各能分成哪幾類?舉例說說什么是質(zhì)因數(shù)和分解質(zhì)因數(shù)。

(4)什么是兩個數(shù)的公因數(shù)和最大公因數(shù),公倍數(shù)和最小公倍數(shù)?

讓學生在小組里討論,結(jié)合討論適當記錄自己的認識或例子。

2.交流整理。

圍繞討論題,引導學生展開交流,結(jié)合交流板書主要內(nèi)容。

(1)提問:能說說什么是因數(shù)和倍數(shù)嗎?可以用例子說明。(結(jié)合交流板書一兩個乘法或除法算式)

(指名學生說一說,再集體說一說)

你能找出6的因數(shù)嗎?(板書因數(shù))6的倍數(shù)呢?(板書倍數(shù))

能說說找一個數(shù)的因數(shù)或倍數(shù)的方法嗎?

說明:一個數(shù)的因數(shù)可以從小到大一對一對地找,到中間兩個因數(shù)之間沒有因數(shù)為止;一個數(shù)的倍數(shù)可以用依次乘1、2、3……這樣的方法找,注意一個數(shù)的倍數(shù)是無限的,寫一個數(shù)的倍數(shù)要注意用省略號。

(2)提問:2、5、3的倍數(shù)各有什么特征?我們是怎樣發(fā)現(xiàn)的?

自然數(shù)可以怎樣分類,各可以分成哪幾類?

你能舉出偶數(shù)和奇數(shù)、質(zhì)數(shù)和合數(shù)的一些例子嗎?(學生舉出各類數(shù)的例子)

說明:按是不是2的倍數(shù)可以把自然數(shù)分成偶數(shù)和奇數(shù)兩類,是2的倍數(shù)的是偶數(shù),不是2的倍數(shù)的是奇數(shù);按因數(shù)的個數(shù)可以把自然數(shù)分成1和質(zhì)數(shù)、合數(shù)三類,只有兩個因數(shù)的是質(zhì)數(shù),有兩個以上因數(shù)的是合數(shù),1既不是質(zhì)數(shù)也不是合數(shù)。

什么是質(zhì)因數(shù)和分解質(zhì)因數(shù)?6有哪些質(zhì)因數(shù)?怎樣把6分解質(zhì)因數(shù)?(板書式子,并說明其中的質(zhì)因數(shù))

(3)提問:什么是公因數(shù)和最大公因數(shù),什么是公倍數(shù)和最小公倍數(shù)?

說明:兩個數(shù)公有的因數(shù)叫公因數(shù),其中最大的叫最大公因數(shù);兩個數(shù)公有的倍數(shù)叫公倍數(shù),其中最小的叫最小公倍數(shù)。

結(jié)合交流內(nèi)容,逐步板書成:

l

質(zhì)數(shù)質(zhì)因數(shù)

合數(shù)分解質(zhì)因數(shù)

因數(shù)公因數(shù)最大公因數(shù)

(互相依存)

倍數(shù)公倍數(shù)最小公倍數(shù)

2、5、3的倍數(shù)的特征

偶數(shù)

奇數(shù)

(4)引導:請同學們現(xiàn)在觀察我們整理的這一單元學過的內(nèi)容,了解知識之間的聯(lián)系,同桌互相說說知識是怎樣發(fā)展的。

學生互相交流,教師巡視、傾聽。

交流:哪位同學能看黑板上整理的內(nèi)容,說說我們怎樣逐步認識這些知識的,知識是怎樣發(fā)展起來的。

三、練習與應用

1.做“練習與應用”第1題。

指名學生交流,說說每組里因數(shù)和倍數(shù)關系。

提問:3和7有沒有因數(shù)和倍數(shù)關系?為什么沒有?

2.做“練習與應用”第2題。

(1)讓學生獨立寫出前四個數(shù)的所有因數(shù),指名兩人板演。

交流:你是怎樣找它們的因數(shù)的?(檢查板演題)

(2)口答后三個數(shù)的因數(shù)。

引導:能說出后面每個數(shù)的全部因數(shù)嗎?(學生口答,教師板書)

提問:一個數(shù)的因數(shù)有什么特點?

說明:一個數(shù)因數(shù)的個數(shù)是有限的,最小的是1.最大的是它本身。

3.分別說出下面各數(shù)的倍數(shù)。

581217

分別指名學生說出各數(shù)的倍數(shù),教師板書。

提問:為什么要寫省略號?一個數(shù)的倍數(shù)有什么特點?

說明:一個數(shù)倍數(shù)的個數(shù)是無限的,最小的是它本身,沒有最大的倍數(shù)。

4.做“練習與應用”第3題。

(1)讓學生獨立完成填數(shù)。

交流:題里各是怎樣填的?(呈現(xiàn)結(jié)果)填數(shù)時怎樣想的?

提問:哪些數(shù)既是3的倍數(shù),又是5的倍數(shù)?你是怎樣想的?

同時是2和5的倍數(shù)的數(shù)有什么特征?

哪些數(shù)既是2的倍數(shù),又是5和3的倍數(shù)?說說你的判斷方法。

(2)這里哪些數(shù)是偶數(shù)?奇數(shù)呢?

你是怎樣判斷偶數(shù)和奇數(shù)的?

5.做“練習與應用”第4題。

要求學生獨立思考,自己選出兩張卡片,按各題的要求分別組成兩位數(shù),把能組成的數(shù)記錄下來。

交流:同時是5和3的倍數(shù)的數(shù)有哪些?(板書:30)如果是三位數(shù)呢?

(板書:180810)

組成的兩位數(shù)中最大的偶數(shù)是多少?(板書:80)最小的奇數(shù)呢?(板書:13)

6.做“練習與應用”第5題。

讓學生把質(zhì)數(shù)圈出來,在合數(shù)下面畫線。

交流:哪些是質(zhì)數(shù),哪些是合數(shù)?(板書成兩類)質(zhì)數(shù)和合數(shù)是按什么分的?

說明:質(zhì)數(shù)只有2個因數(shù),合數(shù)至少有3個因數(shù)。

7.做“練習與應用’’第6題。

讓學生選出質(zhì)數(shù)和偶數(shù)。

交流、呈現(xiàn)結(jié)果。

提問:觀察表里選出的質(zhì)數(shù)和偶數(shù),所有的質(zhì)數(shù)都是奇數(shù)嗎?請舉出一個具體例子。

所有的合數(shù)都是偶數(shù)嗎?你能舉例子說明嗎?

指出:如果要說明一個結(jié)論是錯誤的,只要舉一個反例。比如,要判斷質(zhì)數(shù)都是奇數(shù)的說法是錯的,只要舉出質(zhì)數(shù)2是偶數(shù)這個例子。這里質(zhì)數(shù)2是偶數(shù)就是一個反例。要判斷合數(shù)都是偶數(shù)是錯的,也只要舉一個反例,比如合數(shù)9就是奇數(shù)。

8.下面的說法正確嗎?

(1)大于0的自然數(shù)不是奇數(shù)就是偶數(shù)。

(2)大于0的自然數(shù)不是質(zhì)數(shù)就是合數(shù)。

(3)奇數(shù)都是質(zhì)數(shù),偶數(shù)都是合數(shù)。

(4)自然數(shù)中最小的偶數(shù)是2,最小的合數(shù)是4。

(5)一個數(shù)本身既是它的因數(shù),又是它的倍數(shù)。

9.做“練習與應用”第7題。

(1)讓學生填空,指名板演。交流并確認結(jié)果。

提問:這里填寫的質(zhì)數(shù)都叫積的什么數(shù)?為什么稱它是積的質(zhì)因數(shù)?

說明:這里把合數(shù)寫成這種質(zhì)數(shù)相乘的形式,叫什么?

(2)把30、42分別分解質(zhì)因數(shù)。

學生完成,交流板書,檢查訂正。

四、全課總結(jié)

提問:這節(jié)課主要復習的哪些內(nèi)容?你有哪些收獲?

小學因數(shù)和倍數(shù)教案篇二十

1.理解因數(shù)和倍數(shù)的意義以及兩者之間相互依存的關系,掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。

2.在探究的過程中體會數(shù)學知識之間的內(nèi)在聯(lián)系,在解決問題的過程中培養(yǎng)學生思維的有序性和條理性。

3.培養(yǎng)學生的探索意識以及熱愛數(shù)學學習的情感。

小學因數(shù)和倍數(shù)教案篇二十一

1、理解倍數(shù)和因數(shù)之間的關系是相互依存的。

2、根據(jù)具體的問題情景,能正確確定某個非零自然數(shù)的所有因數(shù)。

3、使學生體味數(shù)學的趣味性,激發(fā)學生對數(shù)學的探究熱情。

理解倍數(shù)和因數(shù)之間的關系是相互依存的,能正確求一個數(shù)的倍數(shù)和因數(shù)。

能正確有序求一個數(shù)的倍數(shù)和因數(shù)。

師:同學們,在我們的日常生活中,人與人之間存在著許多相互依存的關系,如:丁爸是丁丁的爸爸,丁丁是丁爸的兒子。丁哥是丁丁的哥哥,丁丁是丁哥的弟弟。其實在我們的數(shù)學王國里,數(shù)與數(shù)之間也存在著這種相互依存的關系,請看大屏幕,認識這些數(shù)嗎?(課件出示:0,1,2,3,4,5)。

生:自然數(shù)。

(課件去“0”)。

(研究范圍:非零自然數(shù)中)。

(一)找一個數(shù)的因數(shù)。

1、(課件出示例1情境圖)。

師:請看大屏幕,這是36人列隊操練,每排人數(shù)要一樣多,可以怎樣排列?同學們可以先同桌討論,作好記錄,再匯報。(引導生說:可以站幾排,每排站幾個。)。

根據(jù)這些信息我們能列出哪些乘法算是呢?

板書:1×36=362×18=363×12=364×9=366×6=361。

師:在4×9=36這個算式中,4和9叫什么?(因數(shù))36是?(積),這是我們以前學的乘法各部分名稱。其實,在整數(shù)乘法中,因數(shù)和積之間還存在一種相互依存的關系,也就是說4是36的因數(shù),36是4的倍數(shù)。,同樣,在這個算式中,我們還可以說9是36的?(因數(shù)),36是9的?(倍數(shù))。

2、誰能像老師這樣,說一說3×12=36他們之間的關系。(先請一個學生站起來說一說)。

4、你能根據(jù)左邊的乘法算式寫出相應的除法算式嗎?(師根據(jù)生的回答板書)。

我們現(xiàn)在就以36÷4=9為例,你能從這個除法算式中說一說誰是誰的倍數(shù),誰是誰的因數(shù)?(說好后再讓學生逐個說出除法算式中的關系)。

5、剛才同學們都說4是36的因數(shù),那能單獨說4是因數(shù)嗎?(生發(fā)表意見)。

到底可以不可以這樣說,請看大屏幕,(課件出示:4×9=362×2=4),請你說說4是倍數(shù)還是因數(shù)?(課件著重強調(diào)數(shù)字“4”)。

引導學生說:第一個式子中,4是36的因數(shù),第二個式子中4是2的'倍數(shù)。(課件出示結(jié)果)。

師:從剛才的回答中你明白了什么?(引導生知道:因數(shù)和倍數(shù)是相互依存的,不能單獨存在)。

6、師:下面,請同學們看這個式子,說一說誰是誰的倍數(shù),誰是誰的因數(shù)。(課件出示:4×5=2014÷3=53+6=96-4=20.3×2=0.6)。

生回答后,引導生知道:通過后三個算式使生進一步理解,倍數(shù)和因數(shù)都是建立在乘法或除法的基礎之上的,他們的研究范圍在非零自然數(shù)中。

7、你能根據(jù)上面所寫的乘法算式或除法算式說出36的所有因數(shù)嗎?

師;那么你知道怎樣找一個數(shù)的所有因數(shù)呢?(同桌商討后,指名回答,課件出示。)。

找一個數(shù)的所有因數(shù)時,可以先寫出用這個數(shù)作積的所有乘法算式,或者寫出用這個數(shù)作被除數(shù)的所有除法算式,再寫出它的所有因數(shù)。注意,最好按照順序從小到大來寫,這樣不容易遺漏。

8、師:現(xiàn)在,我們來練習一下。同學們分組有序的找出15、16、24、25的所有因數(shù)嗎?打開練習本,快速的寫出來,開始。(師巡視指導困難學生)。

寫完后生匯報,并說出你是怎樣找出它們的因數(shù)的,課件出示。

9、引導歸納概括一個數(shù)的因數(shù)的特點。

師:看來同學們已經(jīng)充分掌握了找一個數(shù)因數(shù)的方法,觀察剛才我們找的這些數(shù)的因數(shù),你有什么發(fā)現(xiàn)嗎?(出示合作學習要求和目的)下面請小組合作,仔細觀察、比較我們找出的這些數(shù)的因數(shù),你從這幾個例子中發(fā)現(xiàn)了什么?請把你的發(fā)現(xiàn)和小組的成員說一說,注意:當一個同學在說的時候,其他成員一定要認真聽,不要打斷別人的發(fā)言,開始。

(二)找一個數(shù)的倍數(shù)。

1、師:找了這么多數(shù)的因數(shù),現(xiàn)在我們來找一個數(shù)的倍數(shù),好不好?

(課件出示例2)。

生寫,師巡視。

2、指明匯報后,并說出你是如何找一個數(shù)的倍數(shù)的?

歸納(出示找一個數(shù)的倍數(shù)的方法):找一個數(shù)的倍數(shù)從它本身開始,用非零自然數(shù)1,2,3···去乘,就可以得到。

那請大家觀察這些數(shù)的倍數(shù),你又能發(fā)現(xiàn)什么呢?同桌兩個先互相說一說,開始吧。

生發(fā)言。

4、引導學生發(fā)現(xiàn):一個數(shù)的倍數(shù)個數(shù)是無限的,其中最小的倍數(shù)是它本身,沒有最大的倍數(shù)。(課件出示)。

師;同學們認識了倍數(shù)和因數(shù),探索了因數(shù)和倍數(shù)的特點,并且能正確求一個數(shù)因數(shù)和倍數(shù)的,其實,這些這些知識就在課本125、126頁,打開書本,看一看書上的老師是如何說的,并把需要填寫的部分填寫以下。

這節(jié)課同學們通過自己的努力又發(fā)現(xiàn)了數(shù)學海洋里的新知識,真讓老師感到開心,在我們今后的學習中希望大家繼續(xù)帶著這些熱情和精神去探索、去發(fā)現(xiàn)。

書本127頁練習二十1、2、3題(課件出示)。

(非零自然數(shù)中)。

1×36=3636÷1=3636÷36=1。

2×18=3636÷2=1836÷18=2。

3×12=3636÷3=1236÷12=3。

4×9=3636÷4=936÷9=4。

6×6=3636÷6=6。

36的因數(shù)有:1、2、3、4、6、9、12、18、36.

【本文地址:http://m.aiweibaby.com/zuowen/10368008.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔