教案是教師進行教學活動的有機組成部分,對于提高教學質(zhì)量、實現(xiàn)教學目標起到重要的指導作用。在編寫教案時,我們需要合理選擇教學方法,以激發(fā)學生的學習積極性和主動性。在教案中,學生可以通過反思和評價來加深對所學內(nèi)容的理解。
數(shù)學二次函數(shù)教案及反思篇一
二次函數(shù)應用題型一般情況下,解題思路不外乎建立平面直角坐標系,標出圖象上的點的坐標,求圖象解析式,利用圖象解析式及性質(zhì),來解決最優(yōu)化等實際問題。一開始我引導學生回憶二次函數(shù)的三種不同形式的解析式,即一般式、頂點式、交點式,并說出它們各自的性質(zhì)如拋物線的開口方向,對稱軸,頂點坐標,最大最小值,函數(shù)在對稱軸兩側(cè)的增減性。結(jié)合北師大版教材教學內(nèi)容,呈現(xiàn)習題,讓學生分小組去試驗探索解決問題。各小組很快就求出了拋物線的解析式,當然速度有快有慢,第二問,及少學生舉手示意完成,我很高興,也沒細究他們的情況。繼續(xù)按照預定方案,組織學生活動,開始對第二問進行探究。對于這個問題,不少學生表情凝重,目光迷惘,思路不暢,不知從何處下手。我反復引導,幾次提醒按例題的方法,從函數(shù)的'圖象上進行考慮,但就是沒有人響應,探究幾乎陷于停頓,讓我大感意外,超乎我的想象。好在我尚能應付,便提問素有“學霸”之稱的小熊,你是怎樣思考的?小熊說,他也知道首先建立平面直角坐標系,畫出草圖,但是不知道卡車是如何穿過橋洞,是靠中間走,還是靠邊通過?我一聽,才恍然大悟。原來學生的認知和老師想象的不一樣,加上生活經(jīng)驗較少,難怪學生會沉默不語。對于坐標系的建立方法,學生面對多種可能的選擇,往往束手無策,根本原因就是老師不重視對學生思考水平的研究,導致以老師思維代替學生思維,造成學生思考與實踐脫節(jié)。這就要求老師要從學生的實際出發(fā),了解學生的學習狀況,善于啟發(fā)和引導,才能較好的達到教學目標。
本節(jié)課的設計初衷,原是讓學生從具體的生活實踐中,感知數(shù)學模型,達到從實際問題中抽象出數(shù)學模型,并用數(shù)學知識解決問題,同時讓學生感知和體會一題多變的變式訓練,增加對數(shù)學解題思想的認識。但在教學時,學生對一些常規(guī)知識的缺失突出的暴露出來。如利用三點坐標求二次函數(shù)解析式,學生解三元一次方程組感到困難等。
當我充滿自信準備進行下一問時,有學生說,我還沒得出答案呢?我說,你們小組不是展示過了,怎么你還不會呢?他說,我的解析式設y=ax2+bx+c,我代入得不出來,組長設的和我不一樣。我告訴他,其實你用一般式同樣可以做的很準,只不過速度稍慢一些,這就需要加強運算練習。下課后我一直在思考,學生越是基礎差,那些好的方法他們就越難掌握。學起來既吃力有費氣,這就需要在平常加強雙基訓練,每個學生都必須掌握好基本概念和基本技能。
教師要想在開放的課堂上具有靈活駕馭的能力,就需要在備課時盡量考慮周到,既要備教材,又要備學生,更需要教師具有豐富的科學文化知識,這樣才能使我們的學生在輕松活躍的課堂上找到學習的樂趣與興趣。
由于本節(jié)課是二次函數(shù)的應用問題,重在通過學習總結(jié)解決問題的方法和數(shù)學思想的應用,故而本節(jié)課以“啟發(fā)探究式”為主線開展教學活動,以學生的合作交流為主,必要時加以引導,充分調(diào)動學生學習積極性和主動性,突出學生的主體地位,達到“不但使學生學會,而且使學生會學”的目的。二次函數(shù)應用的教學后,比我預想的效果要好一些,出現(xiàn)了幾個點引人深思:
本節(jié)以《二次函數(shù)的綜合應用》為契機,培養(yǎng)學生的分析問題、解決問題的能力。本節(jié)課重點放在分析問題,將實際問題轉(zhuǎn)化為數(shù)學問題,建立數(shù)學模型解決問題。所以在教學時,教師應有意鍛煉學生從讀題開始,分析題意,搜索與問題有聯(lián)系的數(shù)學知識,運用知識和技能使問題獲得解決。在備課中,我發(fā)現(xiàn)學生對例題的理解存在困難,采用設計小問題,設小臺階,引導學生探究,突破教學難點,帶領學生尋找解決的方法。我設鋪計的問題如下:
(1)讀題,檢索有用信息;
(2)分析已知,他們講的是什么含義?根據(jù)題意畫出圖形;
(3)分析所求,是讓我們求什么?將實際問題可轉(zhuǎn)化為什么知識來解決?
學生根據(jù)老師提出的問題,小組討論,同學間互相交流與補充,在教師的引領下,發(fā)現(xiàn)本題就是轉(zhuǎn)化為求二次函數(shù)的最大值問題,逐步將難點突破,幫助學生建立數(shù)模解決問題。學生在動手畫圖、討論的基礎上找到解決的方法與步驟,先求二次函數(shù)的解析式,再求二次函數(shù)的最大值。學生在理解題意后畫圖形,又加深了對題目的理解,為解決問題奠定了基礎,進一步體會運用數(shù)形結(jié)合的思想方法求解二次函數(shù)的問題,將數(shù)學思想與方法滲透到整個教學過程中。
3、為學生提供思考的空間,注重一題多解。
學生在建立平面直角坐標系后,根據(jù)題意知道,對稱軸是x=1,a點坐標(0,2),b點坐標(0,0),c點坐標(0,2),確定二次函數(shù)解析式時,出現(xiàn)了一個小插曲。學生用一般式確定二次函數(shù)解式后,有同學想用其他的方法求解想法,我馬上鼓勵學生去尋找新的方法。個別學生思維活躍,有個學生想用兩根式求解析式,讓這個學生說出自己的思路,其他學生幫助他進行分析與補充。該同學將a、b、c三點坐標帶入兩根式求解,發(fā)現(xiàn)求得解析式與用一般式求得解析式不同,很疑惑,不知道問題出在哪里?我并沒有否定該同學的方法,而是讓其他學生幫助糾正,在大家的分析圖形中發(fā)現(xiàn),b點坐標不在拋物線上,不能將其帶入。
在教學中出現(xiàn)分歧時,要給學生空間去思考,發(fā)現(xiàn)問題的原因,從而確定解決得方法,避免今后出現(xiàn)類似錯誤。而學生善于思考,在用兩根式求解析式時,我設計一個小陷阱,故意引導學生選用a、b、c三點求解析式,學生通過計算與觀察,同樣發(fā)現(xiàn)了這個問題:b點坐標不在拋物線上,不能將其帶入求解。在這種情景下,追問:如何利用兩根式確定解析式呢?學生積極性很高,小組討論,學生根據(jù)拋物線的對稱性找到它與x軸另一個交點d(—0。5,0),將a、d、c三點帶入可求出二次函數(shù)的解析式。在教學中,要注重解題方法的靈活性,一題多解,開闊學生的思維,提高學生的發(fā)現(xiàn)問題,解決問題的能力。在教學過程中,層層設疑,激發(fā)學生求知欲,積極主動參與教學活動,大大提高了課堂效率。
4、數(shù)學來源于生活并運用于生活。
例題有較強的現(xiàn)實感,例題的選擇增加數(shù)學教學的現(xiàn)實性,使學生體驗數(shù)學知識與日常生活的密切聯(lián)系,從而培養(yǎng)學生喜愛數(shù)學,學好數(shù)學的情感。課堂中,學生在解決數(shù)學情境問題的過程中,感悟數(shù)學來源于生活并運用于生活,激發(fā)學生學習數(shù)學的興趣。在課上,學生因問題來自于身邊而思維活躍,有強烈的探索欲望,這樣才能充分發(fā)揮學生學習的積極性,進而提高課堂教學質(zhì)量。
5、不足之處:
《數(shù)學課程標準》提出:教師不僅是學生的引導者,也是學生的合作者。教學中,要讓學生通過自主討論、交流,來探究學習中碰到的問題、難題,教師從中點撥、引導,并和學生一起學習探討。在本節(jié)課的教學中,教師引導學生較多,沒有完全放開讓學生自主探究學習,獲得新知;學生在數(shù)學學習中還是有較強的依賴性,教師要有意培養(yǎng)學生自主學習的能力。
教師要想在開放的課堂上具有靈活駕馭的能力,就需要在備課時盡量考慮周到,既要備教材,又要備學生,更需要教師具有豐富的科學文化知識,這樣才能使我們的學生在輕松活躍的課堂上找到學習的樂趣與興趣。
數(shù)學二次函數(shù)教案及反思篇二
二、立足課堂,提高效率:做到教師入題海,學生出題海.教師應多做題、多研究近幾年的中考試題,并根據(jù)本班學生的實際情況,從眾多復習資料中,選擇適合本班學生的最佳練習,也可通過對題目的重組。
三、教師在設計教學目標時,要做到胸中有書,目中有人,讓每一節(jié)課都給學生留有時間,讓他們有獨立思考、合作探究交流的過程,最大限度的調(diào)動學生的參與度,激發(fā)他們的學習興趣,達到最佳的復習效果.
四、激發(fā)興趣,提高質(zhì)量:興趣是學習最好的動力,在上復習課時尤為重要.因此,我們在授課的過程中,在關注知識復習的同時,也要關注學生的學習欲望和學習效果,要讓學生在學習的過程中體驗成功的快感.這樣他們才會更有興趣的學習下去.
數(shù)學二次函數(shù)教案及反思篇三
1.質(zhì)疑問難是學生自主學習的重要表現(xiàn),優(yōu)化課堂結(jié)構(gòu),激活學生的主體意識,必須鼓勵學生質(zhì)疑問難。教師要創(chuàng)造和諧融合的課堂氣氛,允許學生隨時“插嘴”、提問、爭辯,甚至提出與教師不同的看法。
2.二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學生要學習的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實世界變量之間關系的重要的數(shù)學模型。
3.學生有疑而問、質(zhì)疑問難,是用心思考、自主學習、主動探究的可貴表現(xiàn),理應得到老師的熱情鼓勵和贊揚?,F(xiàn)在對學生的隨時“插嘴”,提出的各種疑難問題,應抱歡迎、鼓勵的態(tài)度給與肯定,并做出正確的解釋。
4.初中階段主要研究二次函數(shù)的概念、圖像和性質(zhì),用二次函數(shù)的觀點審視一元二次方程,用二次函數(shù)的相關知識分析和解決簡單的實際問題。
數(shù)學二次函數(shù)教案及反思篇四
這節(jié)課在學習了二次函數(shù)的基本形式和二次函數(shù)的圖象、頂點坐標、對稱軸等性質(zhì)的基礎上來學習用二次函數(shù)解決實際問題。學生對前面所學的知識已經(jīng)掌握,但綜合應用能力較差。因此在教學設計時將本節(jié)知識分兩課時進行,這節(jié)是第一課時,從課堂上學生的反應和課堂練習可知本節(jié)課教學效果較好,大部分學生能準確分析題意并能寫出函數(shù)關系式,培養(yǎng)了學生理論聯(lián)系實際的能力和分析問題的能力;但在確定自變量的取值范圍和函數(shù)的最值時只有少數(shù)學習較好的學生能準確解答,這說明稍復雜的數(shù)量關系分析是學生的難點,單一的知識應用能準確找到解決途徑,而綜合起來應用學生就有些茫然,無法確定切入點。
本節(jié)課在兩個地方學生出現(xiàn)疑難:一是分析題意時理不清價格和數(shù)量之間的對應關系;二是不能準確判斷自變量的取值范圍和函數(shù)的最值。對于這些難點我是這樣處理的:
首先在回顧了前面的知識點后提出實際問題:某商品現(xiàn)在的售價為每件60元,每星期可賣出300件。市場調(diào)查反映:如調(diào)整價格,每漲價1元,每星期要少賣出10件;每降價1元,每星期可多賣出20件。已知商品的進價為每件40元,如何定價才能使利潤最大?在分析題意時學生能分清漲價、降價所對應的商品銷量,但一小部分學生依教材上的解題思路不能理解售價和銷量之間的對應關系。對于這個難點我是這樣處理的:設每漲x個1元,則每件售價為(60+x)元,少賣出10x件,共賣出(300—10x)件;每降價x個1元,則每件售價為(60-x)元,多賣出20x件,共賣出(300+x)件。重點強調(diào)“x個”!雖然在分析中只多了個“每(漲或降)…個1元”,但就這幾個字卻能幫一部分學生理清關系和思路,如漲3元8元的問題,則售價為(60+3x)元或(60+8x)元,這樣學生從最小單元開始分析,逐層遞進,很容易理清思路找準關系。這個關系弄清了,函數(shù)關系自然水到渠成就寫出來了。
其次是由函數(shù)解析式確定最大值,而確定最值時必須考慮實際問題中自變量的取值范圍。在這個問題中x首先是非負數(shù),同時(300—10x)也是非負數(shù),所以x大于等于0且小于等于30。結(jié)合函數(shù)解析式y(tǒng)=-10x2+100x+6000可知該函數(shù)圖象開口向下,有最大值。由頂點坐標公式可以計算出當x=5時(在自變量的取值范圍內(nèi)),y有最大值,且此時y=6250。強調(diào)此時不僅要考慮頂點坐標公式,還要結(jié)合題意看這個x值是否在其取值范圍內(nèi)。x值確定后將其代入就可求出最值y的大小。
從學生課堂練習來看,大部分學生會用這個分析方法解決相應問題。雖然這節(jié)課沒能按課時安排學習探究二的問題,但學生能掌握商品漲(降)價與售價、利潤間這類問題的分析并會列函數(shù)關系也算是一點點收獲了。
數(shù)學二次函數(shù)教案及反思篇五
這節(jié)課明顯是要讓學生明白什么是二次函數(shù),能區(qū)別二次函數(shù)與其他函數(shù)的不同,能深刻理解二次函數(shù)的一般形式,并能初步理解實際問題中對定義域的限制。通過學生的討論,解決了自己不能解決的問題,拓展應用題通過學生的展示講解讓大部分學生基本掌握,使學生在原有知識的儲備基礎上很容易遷移和接受了這些知識.這節(jié)課的重點內(nèi)容放在“經(jīng)歷探索和表示二次函數(shù)關系的過程,使學生獲得了用二次函數(shù)表示變量之間關系的體驗。
在教學中我采用了體驗探究的教學方式,在教師的配合引導下,讓學生自己動手作圖,觀察、歸納出二次函數(shù)的性質(zhì),體驗知識的形成過程,力求體現(xiàn)"主體參與、自主探索、合作交流、指導引探"的教學理念。整個教學過程主要分為三部分:第一部分是前置性作業(yè),前置作業(yè)是前一天發(fā)給學生的,主要涉及如何作圖、一次函數(shù)和反比例函數(shù)的性質(zhì)等問題。我的設計目的就上讓學生在復習這些知識的過程中體會從函數(shù)圖像來研究函數(shù)性質(zhì)的。應該說這樣設計既讓初四同學復習了舊知又使他們體會到如何研究函數(shù),從哪些方面研究函數(shù),從思維層面鍛煉了學生的探究能力。第二部分是學習探究,探求活動前先讓一名同學讀了學習目標,讓大家?guī)е繕巳ヌ骄俊?/p>
整節(jié)課的流程可以這樣概括:學生討論問題——學生展示重點內(nèi)容——完善訓練題討論實際問題對自變量的限制——課堂的小結(jié),最關鍵的是我認為這符合學生的基本認知規(guī)律,是容易讓學生理解和接受的。
對于實際問題的選擇,我將4個問題整和于同一個實際背景下,這樣設計既能引起學生興趣,也盡量減少學生審題的時間,顯得非常有層次性,這些實際問題貫穿整個課堂的始終,使整個課堂有渾然天成的感覺。
對于練習的設計,仍然采取了不重復的原則性,盡量做到每題針對一個問題,并進行及時的小結(jié),也遵循了從開放到封閉的原則,達到了良好的效果。
數(shù)學二次函數(shù)教案及反思篇六
1.教學案例、教學設計、教學實錄、教學敘事的區(qū)別:教學案例與教案:教案(教學設計)是事先設想的教育教學思路,是對準備實施的教育措施的簡要說明,反映的是教學預期;而教學案例則是對已發(fā)生的教育教學過程的描述,反映的是教學結(jié)果。
2.教學案例與教學實錄:它們同樣是對教育教學情境的描述,但教學實錄是有聞必錄(事實判斷),而教學案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷)。
4.教學案例必須從教學任務分析的目標出發(fā),有意識地選擇有關信息,必須事先進行實地作業(yè),因此日常教育敘事日志可以作為寫作教學案例的素材積累。
數(shù)學二次函數(shù)教案及反思篇七
1.從具體函數(shù)的圖象中認識二次函數(shù)的基本性質(zhì),了解二次函數(shù)與二次方程的相互關系.
2.探索二次函數(shù)的變化規(guī)律,掌握函數(shù)的最大值(或最小值)及函數(shù)的增減性的概念.能夠利用二次函數(shù)的圖象求一元二次方程的近似根.
3.通過具體實例,讓學生經(jīng)歷概念的形成過程,使學生體會到函數(shù)能夠反映實際事物的變化規(guī)律,體驗數(shù)學來源于生活,服務于生活的辯證觀點.
教學重點。
二次函數(shù)的最大值,最小值及增減性的理解和求法.
教學難點。
二次函數(shù)的性質(zhì)的應用.
數(shù)學二次函數(shù)教案及反思篇八
1.經(jīng)歷探索二次函數(shù)y=ax2的圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗。
2.能夠利用描點法作出函數(shù)y=ax2的圖象,并能根據(jù)圖象認識和理解二次函數(shù)y=ax2的性質(zhì),初步建立二次函數(shù)表達式與圖象之間的聯(lián)系。
3.能根據(jù)二次函數(shù)y=ax2的圖象,探索二次函數(shù)的性質(zhì)(開口方向、對稱軸、頂點坐標)。
教學重點:二次函數(shù)y=ax2的圖象的作法和性質(zhì)。
教學難點:建立二次函數(shù)表達式與圖象之間的聯(lián)系。
教學方法:自主探索,數(shù)形結(jié)合。
利用具體的二次函數(shù)圖象討論二次函數(shù)y=ax2的性質(zhì)時,應盡可能多地運用小組活動的形式,通過學生之間的合作與交流,進行圖象和圖象之間的比較,表達式和表達式之間的比較,建立圖象和表達式之間的聯(lián)系,以達到學生對二次函數(shù)性質(zhì)的真正理解。
一、認知準備:
1.正比例函數(shù)、一次函數(shù)、反比例函數(shù)的圖象分別是什么?
2.畫函數(shù)圖象的方法和步驟是什么?(學生口答)。
你會作二次函數(shù)y=ax2的圖象嗎?你想直觀地了解它的性質(zhì)嗎?本節(jié)課我們一起探索。
二、新授:
(一)動手實踐:作二次函數(shù)y=x2和y=-x2的圖象。
(同桌二人,南邊作二次函數(shù)y=x2的圖象,北邊作二次函數(shù)y=-x2的圖象,兩名學生黑板完成)。
(二)對照黑板圖象議一議:(先由學生獨立思考,再小組交流)。
1.你能描述該圖象的形狀嗎?
2.該圖象與x軸有公共點嗎?如果有公共點坐標是什么?
3.當x0時,隨著x的增大,y如何變化?當x0時呢?
4.當x取什么值時,y值最???最小值是什么?你是如何知道的?
5.該圖象是軸對稱圖形嗎?如果是,它的對稱軸是什么?請你找出幾對對稱點。
(三)學生交流:
1.交流上面的五個問題(由問題1引出拋物線的概念,由問題2引出拋物線的頂點)。
2.二次函數(shù)y=x2和y=-x2的圖象有哪些相同點和不同點?
3.教師出示同一直角坐標系中的兩個函數(shù)y=x2和y=-x2圖象,根據(jù)圖象回答:
(1)二次函數(shù)y=x2和y=-x2的圖象關于哪條直線對稱?
(2)兩個圖象關于哪個點對稱?
(3)由y=x2的圖象如何得到y(tǒng)=-x2的圖象?
(四)動手做一做:
1.作出函數(shù)y=2x2和y=-2x2的圖象。
(同桌二人,南邊作二次函數(shù)y=-2x2的圖象,北邊作二次函數(shù)y=2x2的圖象,兩名學生黑板完成)。
2.對照黑板圖象,數(shù)形結(jié)合,研討性質(zhì):
(1)你能說出二次函數(shù)y=2x2具有哪些性質(zhì)嗎?
(2)你能說出二次函數(shù)y=-2x2具有哪些性質(zhì)嗎?
(3)你能發(fā)現(xiàn)二次函數(shù)y=ax2的圖象有什么性質(zhì)嗎?
(學生分小組活動,交流各自的發(fā)現(xiàn))。
3.師生歸納總結(jié)二次函數(shù)y=ax2的圖象及性質(zhì):
(2)性質(zhì)。
a:開口方向:a0,拋物線開口向上,a〈0,拋物線開口向下[。
b:頂點坐標是(0,0)。
c:對稱軸是y軸。
d:最值:a0,當x=0時,y的最小值=0,a〈0,當x=0時,y的最大值=0。
e:增減性:a0時,在對稱軸的左側(cè)(x0),y隨x的增大而減小,在對稱軸的右側(cè)(x0),y隨x的增大而增大,a〈0時,在對稱軸的左側(cè)(x0),y隨x的增大而增大,在對稱軸的右側(cè)(x0),y隨x的增大而減小。
4.應用:(1)說出二次函數(shù)y=1/3x2和y=-5x2有哪些性質(zhì)。
(2)說出二次函數(shù)y=4x2和y=-1/4x2有哪些相同點和不同點?
三、小結(jié):
通過本節(jié)課學習,你有哪些收獲?(學生小結(jié))。
1.會畫二次函數(shù)y=ax2的圖象,知道它的圖象是一條拋物線。
2.知道二次函數(shù)y=ax2的性質(zhì):
a:開口方向:a0,拋物線開口向上,a〈0,拋物線開口向下。
b:頂點坐標是(0,0)。
c:對稱軸是y軸。
d:最值:a0,當x=0時,y的最小值=0,a〈0,當x=0時,y的最大值=0。
e:增減性:a0時,在對稱軸的左側(cè)(x0=,y隨x的增大而減小,在對稱軸的右側(cè)(x0),y隨x的增大而增大,a〈0時,在對稱軸的左側(cè)(x0),y隨x的增大而增大,在對稱軸的右側(cè)(x0),y隨x的增大而減小。
數(shù)學二次函數(shù)教案及反思篇九
一、教材分析:
《34.4二次函數(shù)的應用》選自義務教育課程標準試驗教科書《數(shù)學》(冀教版)九年級上冊第三十四章第四節(jié),這節(jié)課是在學生學習了二次函數(shù)的概念、圖象及性質(zhì)的基礎上,讓學生繼續(xù)探索二次函數(shù)與一元二次方程的關系,教材通過小球飛行這樣的實際情境,創(chuàng)設三個問題,這三個問題對應了一元二次方程有兩個不等實根、有兩個相等實根、沒有實根的三種情況。這樣,學生結(jié)合問題實際意義就能對二次函數(shù)與一元二次方程的關系有很好的體會;從而得出用二次函數(shù)的圖象求一元二次方程的方法。這也突出了課標的要求:注重知識與實際問題的聯(lián)系。
本節(jié)教學時間安排1課時。
二、教學目標:
知識技能:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關系的過程,體會方程與函數(shù)之間的聯(lián)系.
2.理解拋物線交x軸的點的個數(shù)與一元二次方程的根的個數(shù)之間的關系,理解何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根.
3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
數(shù)學思考:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關系的過程,培養(yǎng)學生的探索能力和創(chuàng)新精神.
2.經(jīng)歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗.
3.通過觀察二次函數(shù)圖象與x軸的交點個數(shù),討論一元二次方程的根的情況,進一步培養(yǎng)學生的數(shù)形結(jié)合思想。
解決問題:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關系的過程,體驗數(shù)學活動充滿著探索與創(chuàng)造,感受數(shù)學的嚴謹性以及數(shù)學結(jié)論的確定性。
2.通過利用二次函數(shù)的圖象估計一元二次方程的根,進一步掌握二次函數(shù)圖象與x軸的交點坐標和一元二次方程的根的關系,提高估算能力。
情感態(tài)度:
1.從學生感興趣的問題入手,讓學生親自體會學習數(shù)學的價值,從而提高學生學習數(shù)學的好奇心和求知欲。
2.通過學生共同觀察和討論,培養(yǎng)大家的合作交流意識。
三、教學重點、難點:
教學重點:
1.體會方程與函數(shù)之間的聯(lián)系。
2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
教學難點:
1.探索方程與函數(shù)之間關系的過程。
2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關系。
四、教學方法:啟發(fā)引導合作交流。
五:教具、學具:課件。
六、教學過程:
[活動1]檢查預習引出課題。
預習作業(yè):
1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.
2.回顧一次函數(shù)與一元一次方程的關系,利用函數(shù)的圖象求方程3x-4=0的解.
師生行為:教師展示預習作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當總結(jié)和評價。
教師重點關注:學生回答問題結(jié)論準確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。
設計意圖:這兩道預習題目是對舊知識的回顧,為本課的教學起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學生回顧二次方程的相關知識;2題是一次函數(shù)與一元一次方程的關系的問題,這題的設計是讓學生用學過的熟悉的知識類比探究本課新知識。
[活動2]創(chuàng)設情境探究新知。
問題。
1.課本p94問題.
3.結(jié)合預習題1,完成課本p94觀察中的題目。
師生行為:教師提出問題1,給學生獨立思考的時間,教師可適當引導,對學生的解題思路和格式進行梳理和規(guī)范;問題2學生獨立思考指名回答,注重數(shù)形結(jié)合思想的滲透;問題3是由學生分組探究的,這個問題的探究稍有難度,活動中教師要深入到各個小組中進行點撥,引導學生總結(jié)歸納出正確結(jié)論。
教師重點關注:
1.學生能否把實際問題準確地轉(zhuǎn)化為數(shù)學問題;。
2.學生在思考問題時能否注重數(shù)形結(jié)合思想的應用;。
3.學生在探究問題的過程中,能否經(jīng)歷獨立思考、認真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準確。
設計意圖:由現(xiàn)實中的實際問題入手給學生創(chuàng)設熟悉的問題情境,促使學生能積極地參與到數(shù)學活動中去,體會二次函數(shù)與實際問題的關系;學生通過小組合作分析、交流,探求二次函數(shù)與一元二次方程的關系,培養(yǎng)學生的合作精神,積累學習經(jīng)驗。
[活動3]例題學習鞏固提高。
問題。
例利用函數(shù)圖象求方程x2-2x-2=0的實數(shù)根(精確到0.1).
師生行為:教師提出問題,引導學生根據(jù)預習題2獨立完成,師生互相訂正。
教師關注:(1)學生在解題過程中格式是否規(guī)范;(2)學生所畫圖象是否準確,估算方法是否得當。
設計意圖:通過預習題2的鋪墊,同學們已經(jīng)從舊知識中尋找到新知識的生長點,很容易明確例題的解題思路和方法,這樣既降低難點且突出重點。
[活動4]練習反饋鞏固新知。
數(shù)學二次函數(shù)教案及反思篇十
這節(jié)課是人教版九年級數(shù)學下冊的一節(jié)探究課。在教學中我采用了體驗探究的教學方式,在教師的配合引導下,讓學生自己動手作圖,觀察、歸納出二次函數(shù)的性質(zhì),體驗知識的形成過程,力求體現(xiàn)主體參與、自主探索、合作交流、指導引探的教學理念。整個教學過程主要分為三部分:第一部分是前置性作業(yè),前置作業(yè)是前一天發(fā)給學生的,主要涉及如何作圖、一次函數(shù)和反比例函數(shù)的性質(zhì)等問題。我的設計目的是讓學生在復習這些知識的過程中體會從函數(shù)圖像來研究函數(shù)性質(zhì)。應該說這樣設計既讓初三同學復習了舊知又使他們體會到如何研究函數(shù),從哪些方面研究函數(shù),從思維層面鍛煉了學生的探究能力。第二部分是學習探究,探求活動前先讓一名同學讀了學習目標,讓大家?guī)е繕巳ヌ骄?。探究活動一是讓學生在坐標紙上畫出二次函數(shù)y=ax^2的圖象。畫圖的過程包括列表、描點、連線。列表過程是我引導學生取點的,其間我引導大家要明確取點注意的事項,比如代表性、易操作性。這樣學生在下一個環(huán)節(jié)就能游刃有余。學生在我的引導下順利地畫出了函數(shù)的圖象。緊接著我讓學生按照學案的要求自主探討當a0時函數(shù)y=ax^2的性質(zhì)。探究活動二是獨立畫出函數(shù)y=-2x^2的圖象,然后是自主探討當a0時函數(shù)y=ax^2的性質(zhì)。探討函數(shù)的性質(zhì)主要從開口方向、對稱軸、增減性、頂點坐標和最值方面入手,讓學生從特殊函數(shù)來歸納總結(jié)一般函數(shù)的性質(zhì)。應該說探究活動二在活動一的基礎上讓學生鍛煉了自我學習的能力,學生們完成的很好。探索活動三是小組合作活動。觀察自己畫出的兩個圖象,它們代表函數(shù)y=ax^2的兩種情況,找出a的符號不同時他們的相同點、不同點和聯(lián)系點。這個環(huán)節(jié)能充分發(fā)揮小組合作的優(yōu)勢,讓學生在談論中體會分類思想。小組討論完畢后我讓學生展示他們的成果,大部分學生躍躍欲試,他們討論的很全面,出乎我的預料。這里面還有個知識點我是用幾何畫板演示的,就是通過改變a的值讓學生們觀察圖象的開口方向和開口寬度。幾何畫板在此起到了突破難點的作用,讓我真正體會到了掌握幾何畫板對自己的教學是多么的有利。第三部分是課堂檢測。最后五分鐘時我讓學生們獨立完成課堂檢測部分題目。課堂檢測共出了四個小題(基礎題)一個應用題(選做題),下課鈴聲響了,大部分的同學還沒有完成選做題,所以我就讓同桌交換試卷,公布前四個基礎題的答案。從當堂的反饋來看,絕大多數(shù)同學能掌握本節(jié)課的知識,達到了學習目標中的要求。
我的優(yōu)點主要包括:
1、教態(tài)自然,能注重身體語言的作用,聲音洪亮,提問具有啟發(fā)性。
2、教學目標明確、思路清晰,注重學生的自我學習培養(yǎng)和小組合作學習的落實。
3、能運用現(xiàn)代化的教學手段教學,尤其是能用幾何畫板等軟件突破重難點。
我的不足之處表現(xiàn)在:
1、知識的生成過程體現(xiàn)的不夠具體。在活動一中,雖然引導學生選點和列表,但是沒有在黑板上演示作圖的過程,雖然說明白了選點的注意事項但是學生還是被動的接受,他們不一定能理解為什么要選那個點。
3、課堂上講的太多。有些過程,讓學生自主觀察總結(jié)是完全能收到好的效果的,但是我都替學生總結(jié)了,學生還是被動的接受。其實這還是思想的問題,說明我沒有真的放開手。真正讓學生有了空間,他們也會給我們很大的驚喜。
4、學生在回答問題的過程中我老是打斷學生。提問一個問題,學生說了一半,我就迫不及待地引導他說出下一半,有的時候是我替學生說了,這樣學生的思路就被我打斷了。破壞學生的思路是我們教師最大的毛病,此頑疾不除,教學質(zhì)量難以保證。
5、合作學習的有效性不夠。其實在演示幾何畫板的過程中,學生在a0的情況下能得到a越大開口越小,a0的情況下a越小開口越大。但是綜合起來學生就困難的多了。這個時候不妨讓大家小組討論完成知識的總結(jié)。有這樣一種說法:你我各一個蘋果,交換之后,你我還是一個蘋果;你我各有一種思想,交換之后,你我卻有了兩種思想。這很形象地說出了合作學習的好處。教師把學習的主動權(quán)交給學生,把思維的過程還給學生,問題在分組討論中得以共同解決。正所謂:水本無波,相蕩乃成漣漪;石本無火,相擊而生靈光。只有真正把自主、探究、合作的學習方式落到實處,才能培養(yǎng)學生成為既有創(chuàng)新能力,又能適應現(xiàn)代社會發(fā)展的公民。
數(shù)學二次函數(shù)教案及反思篇十一
在二次函數(shù)教學中,根據(jù)它在初中數(shù)學函數(shù)在教學中的地位,細心地準備《二次函數(shù)》的教學,教學重點為二次函數(shù)的圖象性質(zhì)及應用,教學難點為與二次函數(shù)的圖象的關系。根據(jù)反思備課過程和講課效果,感受頗深,有收獲,也有不足。
本章的教學是我對選題有了進一步認識,要體現(xiàn)教學目標,要有實際意義。要體現(xiàn)學生的“最近發(fā)展區(qū)”,有利于學生分析。如為了幫助學生建立二次函數(shù)的概念,從學生非常熟悉的正方形的面積的研究出發(fā),通過建立函數(shù)解析式,歸納解析式特點,給出二次函數(shù)的定義.建立了二次函數(shù)概念后,再通過三個例題的分析和解決,促進學生理解和建構(gòu)二次函數(shù)的概念,在建構(gòu)概念的過程中,讓學生體驗從問題出發(fā)到列二次函數(shù)解析式的過程.體驗用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.教學主要從“拋物線的開口方向、對稱軸、頂點坐標、增減性”循序漸進,由特殊到一般的學習二次函數(shù)的性質(zhì),并幫助學生總結(jié)性的去記憶。在學習過程中加強利用配方法將二次函數(shù)一般式化頂點式、判斷拋物線對稱軸、借圖象分析函數(shù)增減性等的訓練。這部分內(nèi)容就是中等偏下的學生容易混淆,還需掌握方法,加強記憶,強調(diào)必須利用圖形去分析。通過教學,讓學生對建模思想、圖形結(jié)合思想及分類討論思想都有了較清晰的認識,學會了分析問題的初步方法。
本章中二次函數(shù)上下左右的平移是我覺得上的'比較成功的一部分,主要是借助多媒體,動態(tài)的展示了二次函數(shù)的平移過程,讓學生自己總結(jié)規(guī)律,很形象,便于記憶。
在學習了二次函數(shù)的知識后,我們嘗試運用于解決三個實際問題.問題是根據(jù)實際問題建立函數(shù)解析式并學習如何確定函數(shù)的定義域;問題二是根據(jù)二次函數(shù)的解析式,分析二次函數(shù)的性質(zhì),并通過畫函數(shù)圖像檢驗作出的分析和判斷是否;問題三是綜合應用一次函數(shù)、二次函數(shù)的知識確定函數(shù)的解析式和定義域,并嘗試解決銷售問題中最大利潤的問題;通過這三個問題的分析和解決,讓學生初步體會二次函數(shù)在實際生活中的運用,再次感悟數(shù)學源于生活又服務于生活。
教學中,我自認為熱情不夠,沒有積極調(diào)動學生學習熱情的語言,感染力不足。今后備課時要重視創(chuàng)設豐富而風趣的語言,來調(diào)動學生的積極性。
數(shù)學二次函數(shù)教案及反思篇十二
1、上課一開始,我就注重對所學過的平面直角坐標系的有關知識、平面內(nèi)如何確定點的坐標、以及各象限內(nèi)點的坐標特征和關于y軸對稱點的坐標特征的復習。使學生在畫二次函數(shù)圖象時描點找得很快、很準確。在講解拋物線的概念時,出示了同學們很感興趣的姚明投籃的照片,激發(fā)了學生的學習興趣。為了得出a不同對拋物線圖象和性質(zhì)的影響,在學生畫完三個圖象后,教師采用“問題導學”式教學方法,設置問題情境,引導學生自主進行觀察、發(fā)現(xiàn)、歸納、反思等數(shù)學活動,得出二次函數(shù)y=ax2的圖象和性質(zhì),在教學中,由學生自己動手,通過列表、描點、連線繪制出二次函數(shù)的圖象,培養(yǎng)了學生動手動腦的習慣和綜合分析歸納的能力。
2、小組合作學習,發(fā)現(xiàn)其中的規(guī)律。鼓勵學生相互交流自己的想法,并說明理由。如在畫出圖象后,提問學生“我們可以從圖中觀察到什么”。滲透了數(shù)形結(jié)合的思想,培養(yǎng)了學生觀察、綜合分析的能力,增加了學習的自信心和學習的能力。在合作學習中,也培養(yǎng)了他們善于與人交流,合作,肯于負責任的良好個性品質(zhì)。
3、教師適時地總結(jié)、深化,提高認識水平。教師在不斷地總結(jié)中滲透數(shù)學思想方法,抓住時機培養(yǎng)學生思維的深刻性。如這幾個基本函數(shù)的學習上一節(jié)課經(jīng)歷了從實例抽象概括出函數(shù)概念,本節(jié)課由函數(shù)的解析式畫出函數(shù)的圖象,總結(jié)出函數(shù)的性質(zhì),再利用所學知識解決有關問題。在師生的共同討論中,深化所學知識,培養(yǎng)學生具備反省思維的能力。
4、課堂教學中充分體現(xiàn)了教師和學生的“雙主作用”,其中“問題導學”的教學模式起了重要作用。只有教師創(chuàng)造性的教,學生才能創(chuàng)造性地學,一旦學生的學習活動充滿創(chuàng)造性的時候,學習過程便充滿美的魅力,成為學生積極進取、自我完善的過程。
不足:對y=-x2的讀法,教師讀的不規(guī)范,沒有注意小的細節(jié)。在總結(jié)二次函數(shù)性質(zhì)時,對于開口寬度,我在備課時用a的絕對值來表示的,a為負數(shù)時與a為正數(shù)時正好相反,一個學生說對了,但不是老師要的答案,我當時沒有多想,就說他說的不對。忽略了不同的說法。另外老師提出問題后,給學生去分析、歸納、總結(jié)的時間還不夠,因此本節(jié)課中教師有包辦現(xiàn)象。
將本文的word文檔下載到電腦,方便收藏和打印。
【本文地址:http://m.aiweibaby.com/zuowen/10368606.html】