不斷學習和提升是追求成功的必經(jīng)之路。在寫總結時,我們可以采用歸納法、演繹法等寫作方法,使文章更具邏輯性。通過閱讀這些總結范文,我們可以了解到不同人的成長經(jīng)歷和思考方式。
高中數(shù)學教學設計案例篇一
一年級學生是一個特殊的群體,他們剛剛從受保護的幼兒園環(huán)境中脫離,正走向自我管理的小學生活中。他們面對全新的環(huán)境,老師,同學,心里總有局促不安。熟悉環(huán)境,心理調(diào)適顯的尤為重要。因此老師要向?qū)W生介紹小學生活的基本習慣,減少學生對小學生活的陌生感。教學環(huán)節(jié):
1.教師自我介紹,建立良好的師生關系。
首先,我在黑板上寫一個“銀”字,我讓他們數(shù)出“銀”有幾畫,我順勢告訴他們數(shù)數(shù)是數(shù)學常用的一種數(shù)學方法,數(shù)數(shù)要有順序的數(shù)。每位學生從姓名,年齡,學前班所在地3個方面做自我介紹。目的是讓大家大膽介紹自己,使大家盡快的熟悉。
2.向?qū)W生介紹聽說讀寫走坐的基本學習習慣。
聽:引導學生學會傾聽。
說:清楚,完整的表達自己的想法。
坐:頭正,身直,足平。走:上下樓梯和在走廊要靠右走。在引導學生在靠右走時,學生不知道該怎么走。在舉起右手提示他們時,有的同學說:“個位手”,有的同學說:“十位手”。最后同學說出了右手。我對他們說:“個位和十位、認識左右就是我們要學習的內(nèi)容。
3.介紹排隊的基本要求。
讓學生自覺從矮到高的順序排隊。我問幾個同學你為什么站在他的后面,學生都回答我比他高。我順勢說出比較也是一種數(shù)學思想。
高中數(shù)學教學設計案例篇二
進一步掌握直線方程的各種形式,會根據(jù)條件求直線的方程。
【過程與方法】。
在分析問題、動手解題的過程中,提升邏輯思維、計算能力以及分析問題、解決問題的能力。
【情感、態(tài)度與價值觀】。
在學習活動中獲得成功的體驗,增強學習數(shù)學的興趣與信心。
二、教學重難點。
【重點】根據(jù)條件求直線的方程。
【難點】根據(jù)條件求直線的方程。
(一)課堂導入。
直接點明最近學習了直線方程的多種形式,這節(jié)課將練習求直線的方程。
(二)回顧舊知。
帶領學生復習回顧直線斜率的求法,以及直線方程的點斜式、兩點式和一般式。
為了加深學生的運用和理解,繼續(xù)引導學生思考,是否有其他解題思路。預設大部分學生能夠想到用點斜式進行計算。教師肯定學生想法并組織學生動手計算,之后請學生上黑板板演。
預設學生有多種解題方法,如ab、ac所在直線方程用兩點式求解,bc所在直線方程用點斜式求解。
學生板演后教師講解,點明不足,提示學生,計算結束后要記得將所求得方程整理為直線方程的一般式。
師生總結解題思路:求直線所在方程時,若給出兩點坐標,在符合條件的情況下,可直接套用公式,也可利用點斜式進行求解,注意一題多解的情況。
(四)小結作業(yè)。
小結:學生暢談收獲。
作業(yè):完成課后相應練習題,根據(jù)已知條件求直線的方程。
高中數(shù)學教學設計案例篇三
1.把握菱形的判定。
2.通過運用菱形知識解決具體問題,提高分析能力和觀察能力。
3.通過教具的演示培養(yǎng)學生的學習愛好。
4.根據(jù)平行四邊形與矩形、菱形的從屬關系,通過畫圖向?qū)W生滲透集合思想。
二、教法設計。
觀察分析討論相結合的方法。
三、重點·難點·疑點及解決辦法。
1.教學重點:菱形的判定方法。
2.教學難點:菱形判定方法的綜合應用。
四、課時安排。
1課時。
五、教具學具預備。
教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具。
六、師生互動活動設計。
教師演示教具、創(chuàng)設情境,引入新課,學生觀察討論;學生分析論證方法,教師適時點撥。
七、教學步驟。
復習提問。
1.敘述菱形的定義與性質(zhì)。
2.菱形兩鄰角的比為1:2,較長對角線為,則對角線交點到一邊距離為________.
引入新課。
師問:要判定一個四邊形是不是菱形最基本的判定方法是什么方法?
生答:定義法。
此外還有別的兩種判定方法,下面就來學習這兩種方法。
講解新課。
菱形判定定理1:四邊都相等的四邊形是菱形。
菱形判定定理2:對角錢互相垂直的平行四邊形是菱形。圖1。
分析判定1:首先證它是平行四邊形,再證一組鄰邊相等,依定義即知為菱形。
分析判定2:。
師問:本定理有幾個條件?
生答:兩個。
師問:哪兩個?
生答:(1)是平行四邊形(2)兩條對角線互相垂直。
師問:再需要什么條件可證該平行四邊形是菱形?
生答:再證兩鄰邊相等。
(由學生口述證實)。
證實時讓學生注重線段垂直平分線在這里的應用,
師問:對角線互相垂直的四邊形是菱形嗎?為什么?
可畫出圖,顯然對角線,但都不是菱形。
菱形常用的判定方法歸納為(學生討論歸納后,由教師板書):。
注重:(2)與(4)的題設也是從四邊形出發(fā),和矩形一樣它們的題沒條件都包含有平行四邊形的判定條件。
例4已知:的對角錢的垂直平分線與邊、分別交于、,如圖。
求證:四邊形是菱形(按教材講解).
總結、擴展。
1.小結:
(1)歸納判定菱形的四種常用方法。
(2)說明矩形、菱形之間的區(qū)別與聯(lián)系。
2.思考題:已知:如圖4△中,平分,交于。
求證:四邊形為菱形。
八、布置作業(yè)。
教材p159中9、10、11、13。
高中數(shù)學教學設計案例篇四
設計意圖:
在我園年俗表演中,我們邀請了皮影藝人為孩子們來進行表演,在表演的藝術中,孩子。
們對皮影戲這門中國傳統(tǒng)的藝術形式產(chǎn)生了濃厚的興趣,我園也為孩子們開設了有關皮影戲。
的活動,希望孩子們通過這樣的活動,了解皮影戲,學習制作皮影并嘗試表演。
活動目標:
1、初步了解皮影戲的有關知識,知道表演皮影戲需要用到的`一些道具。
2、了解制作皮影的材料和制作過程。
3、激發(fā)幼兒合作表演的興趣。
活動準備:
活動過程:
一、了解欣賞皮影戲。
天我也給你們帶來了一個我特別特別喜歡的故事《小小的早餐》,請你們欣賞一下。
2、幼兒觀看,教師表演。
引導幼兒說出皮影戲,知道表演皮影戲還有另外一個名字叫做“燈影戲”,就是通過我們這。
個戲臺幕布后面的燈光投射出我們這個活動皮影的影像,這種表演形式我們叫他“皮影戲”
也叫做“燈影戲”
讓幼兒探索,嘗試說出皮影的制作過程。
為了做工方便保存方便,我們現(xiàn)在都是用塑料板紙來制作皮影的。
師:孩子們,我們制作皮影一共分為幾步呀?
幼:三步。
師:第一步是繪制皮影,第二步是剪切,第三步是將材料把皮影卡連接在一起。
教師示范制作過程。
二、幼兒制作皮影,教師巡回指導。
三、表演皮影戲。
每組幼兒表演不同的主題。
四、活動延伸。
孩子們,你們想不想分享給班級里的其他小朋友,那我們帶著這些皮影給其他小朋友進行表。
演吧!
將本文的word文檔下載到電腦,方便收藏和打印。
高中數(shù)學教學設計案例篇五
一、概述。
九年制義務教育九年級數(shù)學(北師大版)下冊第三章第五節(jié)“直線和圓的位置關系”。本節(jié)是探索直線與圓的位置關系,課本通過操作、觀察直線與圓的相對運動,提示直線與圓的三種位置關系,探索直線與的位置關系,和圓心到直線的距離與半徑之間的大小關系的聯(lián)系,并突出研究了圓的切線的性質(zhì)和判定。在本節(jié)的設計中,充分體現(xiàn)了學生已有經(jīng)驗的作用,用運動的觀點研究直線與圓的位置關系,使學生明確圖形在運動變化中的特點和規(guī)律。
二、設計理念。
鼓勵學生從事觀察、測量、折疊、平移、旋轉(zhuǎn)、推理證明等活動,幫助學生有意識地積累活動經(jīng)驗,獲得成功的體驗。教學中應鼓勵學生動手、動口、動腦和交流,充分展示“觀察、操作——猜想、探索——說理(有條理地表達)”的過程,使學生能在直觀的基礎上學習說理,體現(xiàn)合情推理和演繹推理的融合,促進學生形成科學地、能動地認識世界的良好品質(zhì)。
(1)激發(fā)學生親自探索直線和圓的位置關系。
(2)通過實踐讓學生理解直線與圓的三種位置關系——相交、相切、相離的含義。
(3)探索圓心到直線的距離與半徑之間的數(shù)量關系和直線與圓的位置關系之間的內(nèi)在聯(lián)系。
四、教學重點。
直線與圓的三種位置關系——相交、相切、相離。
從設置情景提出問題,到動手操作、交流,直至歸納得出結論,整個過程學生不僅得到了直線與圓的位置關系,更重要的是經(jīng)歷了知識過程,體會了一種分析問題的方法,積累了數(shù)學活動經(jīng)驗,這將有利于學生更好的理解數(shù)學、應用數(shù)學。
五、教學難點。
探索圓心到直線的距離與半徑之間的數(shù)量關系和直線與圓的位置關系之間的內(nèi)在聯(lián)系。
高中數(shù)學教學設計案例篇六
本節(jié)課是北師大版高中數(shù)學必修5中第三章第4節(jié)的內(nèi)容。主要是二元均值不等式。它是在系統(tǒng)地學習了不等關系和不等式性質(zhì),掌握了不等式性質(zhì)的基礎上展開的,作為重要的基本不等式之一,為后續(xù)的學習奠定基礎。要進一步了解不等式的性質(zhì)及運用,研究最值問題,此時基本不等式是必不可缺的?;静坏仁皆谥R體系中起了承上啟下的作用,同時在生活及生產(chǎn)實際中有著廣泛的應用,因此它也是對學生進行情感價值觀教育的優(yōu)良素材,所以基本不等式應重點研究。
教學中注意用新課程理念處理教材,學生的數(shù)學學習活動不僅要接受、記憶、模仿和練習,而且要自主探究、動手實踐、合作交流、閱讀自學,師生互動,教師發(fā)揮組織者、引導者、合作者的作用,引導學生主體參與、揭示本質(zhì)、經(jīng)歷過程。
就知識的應用價值上來看,基本不等式是從大量數(shù)學問題和現(xiàn)實問題中抽象出來的一個模型,在公式推導中所蘊涵的`數(shù)學思想方法如數(shù)形結合、抽象歸納、演繹推理、分析法證明等在各種不等式的研究中均有著廣泛的應用;另外,在解決函數(shù)最值問題中,基本不等式也起著重要的作用。
就內(nèi)容的人文價值上來看,基本不等式的探究與推導需要學生觀察、分析、歸納,有助于培養(yǎng)學生創(chuàng)新思維和探索精神,是培養(yǎng)學生數(shù)形結合意識和提高數(shù)學能力的良好載體。
二、教學目標和目標解析。
教學目標:了解基本不等式的幾何背景,能在教師的引導下探究基本不等式的證明過程,理解基本不等式的幾何解釋,并能解決簡單的最值問題;借助于信息技術強化數(shù)形結合的思想方法。
在教師的逐步引導下,能從較為熟悉的幾何圖形中抽象出基本不等式,實現(xiàn)對基本不等式幾何背景的初步了解。
學生已經(jīng)學習了不等式的基本性質(zhì),可以運用作差法給出基本不等式的證明,同時,介紹并滲透分析法證明的思想方法,從而完成基本不等式的代數(shù)證明。
進一步通過探究幾何圖形,給出基本不等式的幾何解釋,加強學生數(shù)形結合的意識。
通過應用問題的解決,明確解決應用題的一般過程。這是一個過程性目標。借助例1,引導學生嘗試用基本不等式解決簡單的最值問題,體會和與積的相互轉(zhuǎn)化,進一步通過例2,引導學生領會運用基本不等式的三個限制條件(一正二定三相等)在解決最值問題中的作用,并用幾何畫板展示函數(shù)圖形,進一步深化數(shù)形結合的思想。結合變式訓練完善對基本不等式結構的理解,提升解決問題的能力,體會方法與策略。
在認知上,學生已經(jīng)掌握了不等式的基本性質(zhì),并能夠根據(jù)不等式的性質(zhì)進行數(shù)、式的大小比較,也具備了一定的平面幾何的基本知識。但是,倘若教師不加以引導,學生并不能自覺地通過已有的知識、記憶去發(fā)展和構建幾何圖形中的相等或不等關系,這就需要教師逐步地引導,并選用合理的手段去激活學生的思維,增強數(shù)形結合的思想意識。
另外,盡可能引領學生充分理解兩個基本不等式等號成立的條件,為利用基本不等式解決簡單的最值問題做好鋪墊。在用基本不等式解決最值時,學生往往容易忽視基本不等式,使用的前提條件a,b0同時又要注意區(qū)別基本不等式的使用條件為,因此,在教學過程中,借助例題落實學生領會基本不等式成立的三個限制條件(一正二定三相等)在解決最值問題中的作用。而對于“一正二定三相等”的進一步強化和應用,將放于下一個課時的內(nèi)容。
四、教學支持條件分析。
為了能很好地展示幾何圖形,體會基本不等式的幾何背景,教學中需要有具體的圖形來幫助學生理解基本不等式的生成,感受數(shù)形結合的數(shù)學思想,所以,借助于幾何畫板軟件來加強幾何直觀十分必要,同時演示動畫幫助學生驗證基本不等式等號取到的情況,并用電腦3d技術展示基本不等式的又一幾何背景,加深對基本不等式的理解,增強教學效果。
教學過程的設計從實際的問題情境出發(fā),以基本不等式的幾何背景為著手點,以探究活動為主線,探求基本不等式的結構形式,并進一步給出幾何解釋,深化對基本不等式的理解。通過典型例題的講解,明確利用基本不等式解決簡單最值問題的應用價值。數(shù)形結合的思想貫穿于整個教學過程,并時刻體現(xiàn)在教學活動之中。
六、教法和預期效果分析。
本節(jié)課通過6個教學環(huán)節(jié),強調(diào)過程教學,在教師的引導下,啟動觀察、分析、感知、歸納、探究等思維活動,從各個層面認識基本不等式,并理解其幾何背景。課堂教學以學生為主體,基本不等式為主線,在學生原有的認知基本上,充分展示基本不等式這一知識的發(fā)生、發(fā)展及再創(chuàng)造的過程。
同時,以多媒體課件作為教學輔助手段,賦予學生直觀感受,便于觀察,從而把一個生疏的、內(nèi)在的知識,變成一個可認知的、可交流的對象,提高了課堂效率。
會用基本不等式解決簡單的最大(小)值問題并注意等號取到的條件。在教學過程中始終圍繞教學目標進行評價,師生互動,在教學過程的不同環(huán)節(jié)中及時獲取教學反饋信息,以學生為主體,及時調(diào)節(jié)教學措施,完成教學目標,從而達到較為理想的教學效果。
高中數(shù)學教學設計案例篇七
教學目標:
結合已學過的數(shù)學實例和生活中的實例,體會演繹推理的重要性,掌握演繹推理的基本模式,并能運用它們進行一些簡單推理。
教學重點:
掌握演繹推理的基本模式,并能運用它們進行一些簡單推理。
教學過程。
一、復習。
二、引入新課。
1.假言推理。
假言推理是以假言判斷為前提的演繹推理。假言推理分為充分條件假言推理和必要條件假言推理兩種。
(1)充分條件假言推理的基本原則是:小前提肯定大前提的前件,結論就肯定大前提的后件;小前提否定大前提的后件,結論就否定大前提的前件。
(2)必要條件假言推理的基本原則是:小前提肯定大前提的后件,結論就要肯定大前提的前件;小前提否定大前提的前件,結論就要否定大前提的后件。
2.三段論。
三段論是指由兩個簡單判斷作前提和一個簡單判斷作結論組成的演繹推理。三段論中三個簡單判斷只包含三個不同的概念,每個概念都重復出現(xiàn)一次。這三個概念都有專門名稱:結論中的賓詞叫“大詞”,結論中的主詞叫“小詞”,結論不出現(xiàn)的那個概念叫“中詞”,在兩個前提中,包含大詞的叫“大前提”,包含小詞的叫“小前提”。
3.關系推理指前提中至少有一個是關系判斷的推理,它是根據(jù)關系的邏輯性質(zhì)進行推演的。可分為純關系推理和混合關系推理。純關系推理就是前提和結論都是關系判斷的推理,包括對稱性關系推理、反對稱性關系推理、傳遞性關系推理和反傳遞性關系推理。
(1)對稱性關系推理是根據(jù)關系的對稱性進行的推理。
(2)反對稱性關系推理是根據(jù)關系的反對稱性進行的推理。
(3)傳遞性關系推理是根據(jù)關系的傳遞性進行的推理。
(4)反傳遞性關系推理是根據(jù)關系的反傳遞性進行的推理。
4.完全歸納推理是這樣一種歸納推理:根據(jù)對某類事物的全部個別對象的考察,已知它們都具有某種性質(zhì),由此得出結論說:該類事物都具有某種性質(zhì)。
完全歸納推理的基本特點在于:前提中所考察的個別對象,必須是該類事物的全部個別對象。否則,只要其中有一個個別對象沒有考察,這樣的歸納推理就不能稱做完全歸納推理。完全歸納推理的結論所斷定的范圍,并未超出前提所斷定的范圍。所以,結論是由前提必然得出的。應用完全歸納推理,只要遵循以下兩點,那末結論就必然是真實的:(1)對于個別對象的斷定都是真實的;(2)被斷定的個別對象是該類的全部個別對象。
高中數(shù)學教學設計案例篇八
解三角形及應用舉例。
解三角形及應用舉例。
一.基礎知識精講。
掌握三角形有關的定理。
利用正弦定理,可以解決以下兩類問題:
(1)已知兩角和任一邊,求其他兩邊和一角;。
(2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進一步求出其他的邊和角);利用余弦定理,可以解決以下兩類問題:
(1)已知三邊,求三角;。
(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關三角形中的三角函數(shù)問題.
二.問題討論。
思維點撥:已知兩邊和其中一邊的對角解三角形問題,用正弦定理解,但需注意解的情況的討論.
思維點撥::三角形中的三角變換,應靈活運用正、余弦定理.在求值時,要利用三角函數(shù)的有關性質(zhì).
例6:在某海濱城市附近海面有一臺風,據(jù)檢測,當前臺風中心位于城市o(如圖)的東偏南方向300km的海面p處,并以20km/h的速度向西偏北的方向移動,臺風侵襲的范圍為圓形區(qū)域,當前半徑為60km,并以10km/h的速度不斷增加,問幾小時后該城市開始受到臺風的侵襲。
一.小結:
1.利用正弦定理,可以解決以下兩類問題:
(1)已知兩角和任一邊,求其他兩邊和一角;。
(2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進一步求出其他的邊和角);。
2.利用余弦定理,可以解決以下兩類問題:
(1)已知三邊,求三角;。
(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
3.邊角互化是解三角形問題常用的手段.
三.作業(yè):p80闖關訓練。
高中數(shù)學教學設計案例篇九
教學重點:理解等比數(shù)列的概念,認識等比數(shù)列是反映自然規(guī)律的重要數(shù)列模型之一,探索并掌握等比數(shù)列的通項公式。
教學難點:遇到具體問題時,抽象出數(shù)列的模型和數(shù)列的等比關系,并能用有關知識解決相應問題。
教學過程:
一.復習準備。
1.等差數(shù)列的通項公式。
2.等差數(shù)列的前n項和公式。
3.等差數(shù)列的性質(zhì)。
二.講授新課。
引入:1“一尺之棰,日取其半,萬世不竭。”
2細胞分裂模型。
3計算機病毒的傳播。
由學生通過類比,歸納,猜想,發(fā)現(xiàn)等比數(shù)列的特點。
進而讓學生通過用遞推公式描述等比數(shù)列。
讓學生回憶用不完全歸納法得到等差數(shù)列的通項公式的過程然后類比等比數(shù)列的通項公式。
注意:1公比q是任意一個常數(shù),不僅可以是正數(shù)也可以是負數(shù)。
2當首項等于0時,數(shù)列都是0。當公比為0時,數(shù)列也都是0。
所以首項和公比都不可以是0。
3當公比q=1時,數(shù)列是怎么樣的,當公比q大于1,公比q小于1時數(shù)列是怎么樣的?
4以及等比數(shù)列和指數(shù)函數(shù)的關系。
5是后一項比前一項。
列:1,2,(略)。
小結:等比數(shù)列的通項公式。
三.鞏固練習:
1.教材p59練習1,2,3,題。
2.作業(yè):p60習題1,4。
第二課時5.2.4等比數(shù)列(二)。
教學重點:等比數(shù)列的性質(zhì)。
教學難點:等比數(shù)列的通項公式的應用。
一.復習準備:
提問:等差數(shù)列的通項公式。
等比數(shù)列的通項公式。
等差數(shù)列的性質(zhì)。
二.講授新課:
1.討論:如果是等差列的三項滿足。
那么如果是等比數(shù)列又會有什么性質(zhì)呢?
由學生給出如果是等比數(shù)列滿足。
2練習:如果等比數(shù)列=4,=16,=?(學生口答)。
如果等比數(shù)列=4,=16,=?(學生口答)。
3等比中項:如果等比數(shù)列.那么,
則叫做等比數(shù)列的等比中項(教師給出)。
4思考:是否成立呢?成立嗎?
成立嗎?
又學生找到其間的規(guī)律,并對比記憶如果等差列,
5思考:如果是兩個等比數(shù)列,那么是等比數(shù)列嗎?
如果是為什么?是等比數(shù)列嗎?引導學生證明。
6思考:在等比數(shù)列里,如果成立嗎?
如果是為什么?由學生給出證明過程。
三.鞏固練習:
列3:一個等比數(shù)列的第3項和第4項分別是12和18,求它的第1項和第2項。
解(略)。
列4:略:
練習:1在等比數(shù)列,已知那么。
2p61a組8。
高中數(shù)學教學設計案例篇十
科目。
數(shù)學。
年級。
五年級。
教學時間。
執(zhí)教者。
王冬梅。
一、教材內(nèi)容分析。
《組合圖形的面積》是義務教育課程標準實驗教科書(北師大版)五年級上冊數(shù)學第五單元中的一節(jié)內(nèi)容(北師大版義務教育課程標準實驗教科書五年級上冊75——76頁的內(nèi)容,這一內(nèi)容是在學生已經(jīng)學習了長方形與正方形,平行四邊形、三角形與梯形的面積計算的基礎上,進一步探討研究圖形的面積,也是日常生活中經(jīng)常需要解決的問題。設計理念:
數(shù)學課的教學應當以注重引導學生親歷數(shù)學知識探究過程、突出思維訓練為主要目標。主要設計理念是:一是以學生為課堂學習的主體,關注學生已有的學習基礎和學習經(jīng)驗,選擇適合學生的學習素材、設計適合學生的教學活動,讓學生自主的投入學習,教師是學生課堂學習的引導者、合作者。二是以活動為課堂教學的載體,注重學習情境創(chuàng)設,引導學生主動進行觀察、實驗、猜測、驗證、推理與交流等數(shù)學活動,去探究數(shù)學知識,親歷數(shù)學知識探索過程,感受成功的快樂。三是以問題為思維訓練的源泉,教學中注重引導學生發(fā)現(xiàn)問題、提出問題和解決問題,在解決問題中激活思維。四是以生活為學習數(shù)學的基礎,數(shù)學生活化,讓學生在生活中感知數(shù)學知識,從生活中發(fā)現(xiàn)數(shù)學問題,在生活經(jīng)驗的基礎上解決數(shù)學問題,并用所學知識解決生活中實際問題。
二、教學目標分析。
1、知識與技能:使學生理解組合圖形的含義,理解并掌握組合圖形的計算方法,并能正確地計算組合圖形的面積,并能運用所學的知識,解決生活中有關組合圖形面積的實際問題。
2、過程與方法:自主探究、合作交流。讓學生在自主探索的基礎上進行合作交流,培養(yǎng)學生的觀察能力、動手操作能力和邏輯思維能力。
3、情感態(tài)度與價值觀:結合具體的題例,使學生感受到計算組合圖形面積的必要性,產(chǎn)生積極的數(shù)學學習情感。
三、
教學重、難點。
重點。
教學重點:學生能夠通過自己的動手操作,掌握用割、補法求組合圖形面積的計算方法。
難點。
教學難點:割補后找出相應的計算數(shù)據(jù)解決問題。
四、學習者特征分析。
(1)多媒體教學法。
動手實踐、自主探索、合作交流是學生學習數(shù)學的重要方式,轉(zhuǎn)變教師角色,給學生較大的空間,開展探究性學習,讓他們在具體的操作活動中進行獨立思考,并與同伴交流,親身經(jīng)歷問題提出、問題解決的過程,體驗學習成功的樂趣。
六、教學環(huán)境及資源準備。
實驗(演示)教具。
圖畫,圖片,教科書,粉筆,教學支持資源。
課件,投影,幻燈片。
網(wǎng)絡資源。
多媒體教室。
七、教學過程。
教師活動。
學生活動。
設計意圖及資源準備。
創(chuàng)設情境、復習導入。
讓學生猜一猜(學習過的平面圖形),說一說(面積公式),看一看(給出的圖案像什么)。
學生獨立與小組合作交流解決組合圖形面積計算問題。小組匯報學習情況。
匯報時用多媒體將學生的學習成果演示出來,會出現(xiàn)下面幾種情況:。
3、師生。
總結。
分割法填補法。
學生合作交流,探討解決組合圖形面積計算的方法。板書并計算面積總結方法,學以致用。
這一環(huán)節(jié)中我真正的轉(zhuǎn)變們了教師的角色,給學生足夠的時間和空間,積極主動地參與到學習中,獲取更多的解題方法。讓他們都有成功的掌握“分割法”和”添補法”這兩種計算方法.讓學生明確分割圖形越簡潔,解題方法越簡單。與此同時,教師要適時提醒學生們要考慮到分割的圖形與所給條件的關系,有些圖形分割后找不到相關的條件就是失敗的。這樣做有利于突破本節(jié)課的教學重點和難點。
綜合實踐、學以致用。
1,為了鞏固新知,我設計了不同層次的練習,使不同層次的學生都有提高。前面情景導入時幾個生活中的數(shù)學問題解決了一個,剩下的我放在練習里。2設計一個組合圖形的草坪,面積大約45平方米。
學生在畫圖程序中,自己設計出組合圖形的圖畫,并涂上漂亮的顏色。讓學生把掌握的知識拓展到實際生活中去。
總結收獲、小結全課。
學習這節(jié)數(shù)學課,你有什么收獲,或者有什么心得?
學生自由說,暢所欲言。
學生可以說知識上的收獲,也可以說情感上的收獲,既發(fā)揮了學生的主動性,又將本堂課的內(nèi)容進行了總結.也可以評價他人的學習表現(xiàn),生生互動評價,學生既認識自我,建立信心,又共同體驗了成功,促進了發(fā)展。
教學過程流程圖。
形成性檢測與評價。
1、是否能夠通過自學、掌握平面圖形的面積公式。
2、是否能正確計算簡單的基本圖形的面積。
3、是否能夠積極參與課堂上的學習活動。
4、是否能夠與老師同學交流。
心得體會。
5、是否能夠傾聽他人發(fā)言。
6、是否能夠理解,掌握組合圖形的面積計算。
九、教學總結與反思。
“組合圖形的面積”是北師大教材五年級上冊第五單元第一課時,是在學生積累了一定的學習經(jīng)驗,認識了一些平面圖形的基礎上安排學習的。本節(jié)課是以學生已經(jīng)學習過的長方形、正方形、平行四邊形、三角形和梯形等基本圖形面積計算為基礎,結合實際情境和具體的圖形來探索組合圖形面積的計算方法,不僅能夠鞏固已學的基本圖形面積的計算方法,培養(yǎng)學生的分析問題和解決問題的能力,而且也有利于發(fā)展學生的空間觀念,提高學生的綜合能力。在本節(jié)課的教學過程中,我注重了以下幾個方面:
1、創(chuàng)設情景,激發(fā)學習情感。
好的開始等于成功的一半。本課一開始我就從談論生活中的各種組合入手,進而出示七巧板拼圖讓學生觀察得出這些圖形都是一些組合圖形,使學生充分感受到數(shù)學與生活的密切聯(lián)系。為下一步探究組合圖形做好鋪墊。
2、注重方法的指導與總結。
3、問題來源于學生,回歸于學生。學生在探索的過程中,放手讓他們拼圖,畫圖,分割圖,并自行解決提出的問題。讓學生在拼一拼、畫一畫,分一分的活動中,初步形成“組合”的概念,從而對“組合圖形”的意義有了更深一層的理解。
新課程理念強調(diào):人人在數(shù)學學習中有成功的體驗,人人都能得到發(fā)展。數(shù)學知識、數(shù)學思想和方法必須由學生在現(xiàn)實的數(shù)學實踐活動中理解和發(fā)展。本節(jié)課的教學始終貫穿著學生的自主參與,我只是輔助學生參與到整個過程中,學生由探究到發(fā)現(xiàn)到總結,思維活躍,興致勃勃。課堂成為師生、生生的互動過程,培養(yǎng)了學生自主探究、合作學習的能力,在數(shù)學知識技能的形成、情感態(tài)度的發(fā)展、思維能力的培養(yǎng)等方面均取得了較好的效果。
當然也還有很多細節(jié)的地方需要改進,比如教師語言的精練度,課堂教學時間的掌控、學生操作的方式,以及匯報的形式等等,這都有待于在今后的教學中進一步加以完善。
高中數(shù)學教學設計案例篇十一
1.教師要解放思想,與時俱進。在傳統(tǒng)的高中數(shù)學教學中,大多數(shù)教師教學觀念陳舊,把教科書當成學生學習的惟一對象,照本宣科,不加分析的滿堂灌,學生則聽得很乏味,感覺有點看電影。改變教與學的方式,是高中新課程標準的基本理念,在高中數(shù)學教學中,教師應把學生當成學習的主人,充分挖掘?qū)W生的潛能,處處激發(fā)學生學習數(shù)學的興趣。教師不要大包大攬,把結論或推理直接展現(xiàn)給學生,要讓學生獨立思考,在此基礎上,讓師生、生生進行充分的合作與交流,努力實現(xiàn)多邊互動。積極倡導“自主、合作、探究”的教學模式。同時由于學生認知方式、水平、思維策略和學習能力的不同,一定會有個體差異,所以教師要實施“差異教學”使人人參與,人人獲得必需的數(shù)學,這樣也體現(xiàn)了教學中的民主、平等關系,采用這樣的教學方式,學生的學習熱情自然高漲,個性思維積極活躍,人格發(fā)展自然和諧。
2.學生要轉(zhuǎn)變學法,主動出擊。鑒于目前的教學實際,必須創(chuàng)造條件讓學生能夠探究他們自己感興趣的問題并自主解決問題。新的課堂教學模式的特點關注學生的情感體驗,激發(fā)學生的愛國熱情,創(chuàng)設良好的教學情景。滲透了民主平等、自然和諧的教學思想,注重自主合作與探究生成,重視對學生的評價,把課堂還給學生,學生參與的時間明顯增多,老師們能注重以學生為主體,師生互動形式多樣。讓學生主動站起回答教師提出的問題,讓學生主動上臺演排,讓學生間相互交流,分組討論,把課堂還給學生,讓學生在參與中實現(xiàn)知識的生成。
3.課堂要形式多樣,追求高效。新的數(shù)學課程理念倡導數(shù)學教學應該根據(jù)不同教學內(nèi)容的要求,采用不同教學方式。數(shù)學課程要講推理,更要講道理。通過典型例子的分析和學生自主探索活動,使學生理解數(shù)學概念、結論的形成過程,體會蘊涵在其中的思想方法,追尋數(shù)學發(fā)展的歷史足跡。在內(nèi)容上,新課程注意把算法的內(nèi)容和思想融入到數(shù)學課程的各個相關部分。
將本文的word文檔下載到電腦,方便收藏和打印。
高中數(shù)學教學設計案例篇十二
掌握三角函數(shù)模型應用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實際問題抽象為與三角函數(shù)有關的簡單函數(shù)模型。
利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。
(精確到0.001)。
米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。
練習:教材p65面3題。
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實際問題抽象為與三角函數(shù)有關的簡單函數(shù)模型。
2、利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。
高中數(shù)學教學設計案例篇十三
《普通高中課程標準實驗教科書·數(shù)學(1)》(人教a版)第44頁?!秾嵙曌鳂I(yè)》。本節(jié)課程體現(xiàn)數(shù)學文化的特色,學生通過了解函數(shù)的發(fā)展歷史進一步感受數(shù)學的魅力。學生在自己動手收集、整理資料信息的過程中,對函數(shù)的概念有更深刻的理解;感受新的學習方式帶給他們的學習數(shù)學的樂趣。
二、學生學習情況分析。
該內(nèi)容在《普通高中課程標準實驗教科書·數(shù)學(1)》(人教a版)第44頁。學生第一次完成《實習作業(yè)》,積極性高,有熱情和新鮮感,但缺乏經(jīng)驗,所以需要教師精心設計,做好準備工作,充分體現(xiàn)教師的“導演”角色。特別在分組時注意學生的合理搭配(成績的好壞、家庭有無電腦、男女生比例、口頭表達能力等),選題時,各組之間盡量不要重復,盡量多地選不同的題目,可以讓所有的學生在學習共享的過程中受到更多的數(shù)學文化的熏陶。
三、設計思想。
《標準》強調(diào)數(shù)學文化的重要作用,體現(xiàn)數(shù)學的文化的價值。數(shù)學教育不僅應該幫助學生學習和掌握數(shù)學知識和技能,還應該有助于學生了解數(shù)學的價值。讓學生逐步了解數(shù)學的思想方法、理性精神,體會數(shù)學家的創(chuàng)新精神,以及數(shù)學文明的深刻內(nèi)涵。
四、教學目標。
1、了解函數(shù)概念的形成、發(fā)展的歷史以及在這個過程中起重大作用的歷史事件和人物;。
2、體驗合作學習的方式,通過合作學習品嘗分享獲得知識的快樂;。
3、在合作形式的小組學習活動中培養(yǎng)學生的領導意識、社會實踐技能和民主價值觀。
五、教學重點和難點。
重點:了解函數(shù)在數(shù)學中的核心地位,以及在生活里的廣泛應用;。
難點:培養(yǎng)學生合作交流的能力以及收集和處理信息的能力。
【課堂準備】。
1、分組:4~6人為一個實習小組,確定一人為組長。教師需要做好協(xié)調(diào)工作,確保每位學生都參加。
2、選題:根據(jù)個人興趣初步確定實習作業(yè)的題目。教師應該到各組中去了解選題情況,盡量多地選擇不同的題目。
高中數(shù)學教學設計案例篇十四
1、在初中學過原命題、逆命題知識的基礎上,初步理解四種命題。
2、給一個比較簡單的命題(原命題),可以寫出它的逆命題、否命題和逆否命題。
3、通過對四種命題之間關系的學習,培養(yǎng)學生邏輯推理能力。
4、初步培養(yǎng)學生反證法的數(shù)學思維。
二、教學分析。
重點:四種命題;難點:四種命題的關系。
1、本小節(jié)首先從初中數(shù)學的命題知識,給出四種命題的概念,接著,講述四種命題的關系,最后,在初中的基礎上,結合四種命題的知識,進一步講解反證法。
3、“若p則q”形式的命題,也是一種復合命題,并且,其中的p與q,可以是命題也可以是開語句,例如,命題“若,則x,y全為0”,其中的p與q,就是開語句。對學生,只要求能分清命題“若p則q”中的條件與結論就可以了,不必考慮p與q是命題,還是開語句。
三、教學手段和方法(演示教學法和循序漸進導入法)。
1、以故事形式入題。
2、多媒體演示。
四、教學過程。
(一)引入:一個生活中有趣的與命題有關的笑話:某人要請甲乙丙丁吃飯,時間到了,只有甲乙丙三人按時赴約。丁卻打電話說“有事不能參加”主人聽了隨口說了句“該來的沒來”甲聽了臉色一沉,一聲不吭的走了,主人愣了一下又說了一句“哎,不該走的走了”乙聽了大怒,拂袖即去。主人這時還沒意識到又順口說了一句:“俺說的又不是你”。這時丙怒火中燒不辭而別。四個客人沒來的沒來,來的又走了。主人請客不成還得罪了三家。大家肯定都覺得這個人不會說話,但是你想過這里面所蘊涵的數(shù)學思想嗎?通過這節(jié)課的學習我們就能揭開它的廬山真面,學生的興奮點被緊緊抓住,躍躍欲試!
設計意圖:創(chuàng)設情景,激發(fā)學生學習興趣。
(二)復習提問:
1.命題“同位角相等,兩直線平行”的條件與結論各是什么?
2.把“同位角相等,兩直線平行”看作原命題,它的逆命題是什么?
3.原命題真,逆命題一定真嗎?
學生活動:
設計意圖:通過復習舊知識,打下學習否命題、逆否命題的基礎.。
(三)新課講解:
1.命題“同位角相等,兩直線平行”的條件是“同位角相等”,結論是“兩直線平行”;如果把“同位角相等,兩直線平行”看作原命題,它的逆命題就是“兩直線平行,同位角相等”。也就是說,把原命題的結論作為條件,條件作為結論,得到的命題就叫做原命題的逆命題。
2.把命題“同位角相等,兩直線平行”的條件與結論同時否定,就得到新命題“同位角不相等,兩直線不平行”,這個新命題就叫做原命題的否命題。
3.把命題“同位角相等,兩直線平行”的條件與結論互相交換并同時否定,就得到新命題“兩直線不平行,同位角不相等”,這個新命題就叫做原命題的逆否命題。
(四)組織討論:
讓學生歸納什么是否命題,什么是逆否命題。
例1及例2。
學生活動:
討論后回答。
這兩個逆否命題都真.。
原命題真,逆否命題也真。
引導學生討論原命題的真假與其他三種命題的真。
假有什么關系?舉例加以說明,同學們踴躍發(fā)言。
(六)課堂小結:
1、一般地,用p和q分別表示原命題的條件和結論,用vp和vq分別表示p和q否定時,四種命題的形式就是:
原命題若p則q;
逆命題若q則p;(交換原命題的條件和結論)。
否命題,若vp則vq;(同時否定原命題的條件和結論)。
逆否命題若vq則vp。(交換原命題的條件和結論,并且同時否定)。
2、四種命題的關系。
(1).原命題為真,它的逆命題不一定為真.。
(2).原命題為真,它的否命題不一定為真.。
(3).原命題為真,它的逆否命題一定為真。
(七)回扣引入。
分析引入中的笑話,先討論,后總結:現(xiàn)在我們來分析一下主人說的四句話:
第一句:“該來的沒來”
其逆否命題是“不該來的來了”,甲認為自己是不該來的,所以甲走了。
第二句:“不該走的走了”,其逆否命題為“該走的沒走”,乙認為自己該走,所以乙也走了。
第三句:“俺說的不是你(指乙)”其值為真其非命題:“俺說的是你”為假,則說的是他(指丙)為真。所以,丙認為說的是自己,所以丙也走了。
同學們,生活中處處是數(shù)學,期待我們善于發(fā)現(xiàn)的眼睛。
五、作業(yè)。
1.設原命題是“若。
斷它們的真假.,則”,寫出它的逆命題、否命題與逆否命題,并分別判。
高中數(shù)學教學設計案例篇十五
教學目標:
(1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化。
(2)理解直線與二元一次方程的關系及其證明。
教學用具:計算機。
教學方法:啟發(fā)引導法,討論法。
教學過程:
前邊學習了如何根據(jù)所給條件求出直線方程的方法,看下面問題:
問:說出過點(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是,屬于二元一次方程,因為未知數(shù)有兩個,它們的最高次數(shù)為一次。
肯定學生回答,并糾正學生中不規(guī)范的表述。再看一個問題:
問:求出過點,的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是(或其它形式),也屬于二元一次方程,因為未知數(shù)有兩個,它們的最高次數(shù)為一次。
肯定學生回答后強調(diào)“也是二元一次方程,都是因為未知數(shù)有兩個,它們的最高次數(shù)為一次”。
啟發(fā):你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論。
學生紛紛談出自己的想法,教師邊評價邊啟發(fā)引導,使學生的認識統(tǒng)一到如下問題:
【問題1】“任意直線的方程都是二元一次方程嗎?”
這是本節(jié)課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路。
學生或獨立研究,或合作研究,教師巡視指導。
經(jīng)過一定時間的研究,教師組織開展集體討論。首先讓學生陳述解決思路或解決方案:
思路一:…。
思路二:…。
教師組織評價,確定最優(yōu)方案(其它待課下研究)如下:
按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在。
當存在時,直線的截距也一定存在,直線的方程可表示為,它是二元一次方程。
當不存在時,直線的方程可表示為形式的方程,它是二元一次方程嗎?
學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:
平面直角坐標系中直線上點的坐標形式,與其它直線上點的坐標形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。
綜合兩種情況,我們得出如下結論:
在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的關于、的二元一次方程。
至此,我們的問題1就解決了。簡單點說就是:直線方程都是二元一次方程。而且這個方程一定可以表示成或的形式,準確地說應該是“要么形如這樣,要么形如這樣的方程”。
同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?
學生們不難得出:二者可以概括為統(tǒng)一的形式。
這樣上邊的結論可以表述如下:
在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的形如(其中、不同時為0)的二元一次方程。
啟發(fā):任何一條直線都有這種形式的方程。你是否覺得還有什么與之相關的問題呢?
【問題2】任何形如(其中、不同時為0)的二元一次方程都表示一條直線嗎?
師生共同討論,評價不同思路,達成共識:
(1)當時,方程可化為。
這是表示斜率為、在軸上的截距為的直線。
(2)當時,由于、不同時為0,必有,方程可化為。
這表示一條與軸垂直的直線。
因此,得到結論:
在平面直角坐標系中,任何形如(其中不同時為0)的二元一次方程都表示一條直線。
為方便,我們把(其中不同時為0)稱作直線方程的一般式是合理。
【動畫演示】。
演示“直線各參數(shù)”文件,體會任何二元一次方程都表示一條直線。
至此,我們的第二個問題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應關系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉(zhuǎn)化關系。
(三)練習鞏固、總結提高、板書和作業(yè)等環(huán)節(jié)的設計。
高中數(shù)學教學設計案例篇十六
首先,可以聯(lián)系實際生活。數(shù)學知識在生活中有著廣泛的應用,與實際生活有著廣泛的聯(lián)系,在進行課堂導入設計時,教師可以聯(lián)系學生的實際生活,激發(fā)學生的好奇心。例如在學習拋物線的知識時,可以這樣導入:讓學生回想一下打籃球的情景,由于場地限制,在課堂上可以用乒乓球代替籃球,做投籃動作,讓學生仔細觀察籃球(乒乓球)落地時的軌跡,在學生積極參討論時,引入拋物線的知識。在導入中聯(lián)系實際生活,不僅能夠激發(fā)學生的興趣,并且能夠拉近學生與數(shù)學之間的距離。
其次,教師可以利用數(shù)學史進行導入。數(shù)學教材中很多知識都與數(shù)學史相關,學生對這部分知識充滿興趣,因此在教學過程中,教師設計課堂導入時可以從這一點入手,先通過提問或者介紹的方式,讓學生了解數(shù)學史上的重大事件和重要人物等,引起學生的敬佩和仰慕之情,然后引入相關的數(shù)學知識。興趣是最好的老師,在學生的期待下展開數(shù)學教學,無疑會提高課堂教學效率。課堂導入的方式有很多種,在具體的操作環(huán)節(jié),教師要注意導入方式的多樣性,才能更好地激發(fā)學生的興趣,在高中數(shù)學教學中教師要根據(jù)實際情況進行合理選擇使用。
做好課堂提問設計。
首先,教師要精心設計問題。提問的目的是為了激發(fā)學生的興趣和思維,因此,教師提問的問題不能是單調(diào)、重復的,而應該是具有啟發(fā)性和針對性,能夠激發(fā)學生的思考,引導學生進行步步深入。最重要的是,教師提出的問題要符合學生的知識水平和認知能力,教師不僅應該了解教材,并且要全面了解學生,這樣才能使提出的問題符合學生的需要。學生的數(shù)學水平是不同的,接受能力也有差異,因此教師要注意提出問題的層次性,并針對不同水平的學生設計不同難度的問題,促進每個學生獲得進步和發(fā)展。
其次,課堂提問的方式要多樣化。如同教學方式需要多樣化一樣,提問的方式也要具有多樣化的特點,這樣才能更好地激發(fā)學生興趣,達到教學目的,否則,無論教師設計的問題多么巧妙,學生也會感到厭煩。根據(jù)問題的內(nèi)容和學生實際情況,提問可以是直接問答;可以是導思式;可以教師提問、學生回答;也可以是學生提問、教師回答。在教學過程中教師要注意培養(yǎng)學生的問題意識,鼓勵學生自己提出問題,問題是思考的開端,對于學生來說提出問題比解決問題更重要,因此,教師要為學生創(chuàng)造機會,讓學生在認真閱讀教材的基礎上,根據(jù)自己的理解提出不懂的問題。提出的問題教師可以進行點撥,讓學生思考,也可以組織學生進行討論,培養(yǎng)學生分析問題和解決問題的能力。
【本文地址:http://m.aiweibaby.com/zuowen/10744090.html】