教案有助于教師理清教學(xué)思路,明確教學(xué)目標(biāo)和步驟。教案的編寫(xiě)過(guò)程中需要考慮學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)能力,以提高學(xué)習(xí)效果。以下是一些經(jīng)過(guò)精心設(shè)計(jì)的教學(xué)方案,希望對(duì)你有所幫助。
人教版高中數(shù)學(xué)必修五教案篇一
集合這部分的主要內(nèi)容是集合的概念、表示方法和集合之間的關(guān)系和運(yùn)算??v觀近幾年高考題,集合的考查以選擇題、填空題為主要題型。集合的概念和基本運(yùn)算是本章的重點(diǎn)內(nèi)容,也是高考的必考內(nèi)容。復(fù)習(xí)中首先要把握基礎(chǔ)知識(shí),深刻理解本章的基礎(chǔ)知識(shí)點(diǎn),重點(diǎn)掌握集合的概念和運(yùn)算。
本章常用的數(shù)學(xué)思想方法主要有:數(shù)形結(jié)合的思想,如常借助于維恩圖、數(shù)軸解決問(wèn)題;分類討論的思想,如一元二次方程根的討論、集合的包含關(guān)系等。復(fù)習(xí)時(shí)要重視對(duì)基本思想方法的滲透,逐步培養(yǎng)用數(shù)學(xué)思想方法來(lái)分析問(wèn)題、解決問(wèn)題的能力。
函數(shù)。
函數(shù)是高中數(shù)學(xué)的核心內(nèi)容,函數(shù)的思想方法貫穿了高中數(shù)學(xué)的始終。近幾年高考試題函數(shù)熱點(diǎn)之一是考查函數(shù)的定義域、值域、單調(diào)性、奇偶性以及函數(shù)的圖象。函數(shù)、方程、不等式關(guān)系密切,要學(xué)會(huì)對(duì)具體問(wèn)題抽象概括、分析探索、透徹理解,從而構(gòu)造函數(shù),借助方程、不等式的知識(shí),最終解決問(wèn)題。實(shí)現(xiàn)函數(shù)、方程、不等式的溝通與轉(zhuǎn)化,是高考的又一熱點(diǎn)??疾楹瘮?shù)內(nèi)容的同時(shí),用函數(shù)的思想觀點(diǎn)研究問(wèn)題,以及數(shù)形結(jié)合思想、分類討論思想的靈活熟練應(yīng)用,也是高考的一個(gè)重點(diǎn)。
規(guī)律方法總結(jié)。
求函數(shù)解析式時(shí),針對(duì)條件的特點(diǎn)可選用換元法、待定系數(shù)法、湊項(xiàng)法、列方程組法等進(jìn)行求解。其中換元法是常用的方法,但要特別注意正確確定中間變量的取值范圍,否則就不能正確確定函數(shù)的定義域。判斷函數(shù)單調(diào)性主要的方法有定義法、導(dǎo)數(shù)法、圖象法。
人教版高中數(shù)學(xué)必修五教案篇二
要學(xué)好數(shù)學(xué),最關(guān)鍵的是要有一個(gè)好的基礎(chǔ)。只有打牢數(shù)學(xué)基礎(chǔ),才能夠把高中數(shù)學(xué)好,同樣只有打好基礎(chǔ),才能夠數(shù)學(xué)取得高分。打好基礎(chǔ)是最關(guān)鍵的!比如:建一棟大樓,如果地基不穩(wěn),不管大樓有多么豪華,都只是華而不實(shí)。
想學(xué)好數(shù)學(xué),對(duì)數(shù)學(xué)感興趣。
其實(shí)學(xué)好數(shù)學(xué)最好的辦法就是發(fā)自內(nèi)心由衷的想要學(xué)習(xí),渴望學(xué)習(xí),才能體會(huì)到從學(xué)習(xí)中所收獲的樂(lè)趣。自己的成就感提升,對(duì)于學(xué)習(xí)數(shù)學(xué)的積極性也就提高了,覺(jué)得數(shù)學(xué)并沒(méi)有那么難,就愿意去多接觸了。
多做題反復(fù)做,有題感。
其實(shí)學(xué)好數(shù)學(xué)辦法就是要大量做題,反復(fù)去做,題做多了就知道哪些方面需要自己去加強(qiáng)學(xué)習(xí),還有就是同樣做數(shù)學(xué)題做多了就會(huì)有題感。有些題,它的類型都是一樣的,題做多了之后,即使你不會(huì)做,你也會(huì)找到一些解題的思路和技巧。
人教版高中數(shù)學(xué)必修五教案篇三
對(duì)重點(diǎn)內(nèi)容應(yīng)重點(diǎn)復(fù)習(xí).首先擬出主要內(nèi)容,然后有目的有針對(duì)性地做相關(guān)內(nèi)容的題目,著重收集主要題型和技巧解法,像小論文式地重組知識(shí),不要盲目地做題,要有針對(duì)性地選題,回味練習(xí).
高考數(shù)學(xué)命題除了著重考查基礎(chǔ)知識(shí)外,還十分重視對(duì)數(shù)學(xué)方法的考查,如配方法、換元法、分離常數(shù)法等操作性較強(qiáng)的數(shù)學(xué)方法.同學(xué)們?cè)趶?fù)習(xí)時(shí)應(yīng)對(duì)每一種方法的實(shí)質(zhì),它所適應(yīng)的題型,包括解題步驟都熟練掌握.其次應(yīng)重視對(duì)數(shù)學(xué)思想的理解及運(yùn)用,如函數(shù)思想、數(shù)形結(jié)合思想.
應(yīng)注意實(shí)際問(wèn)題的解決和探索性試題的研究。
現(xiàn)在各地風(fēng)行素質(zhì)教育,呼吁改革考試命題.增強(qiáng)運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的試題,在其他省市的高考命題中已經(jīng)體現(xiàn),而且難度較大,這一部分尤其是探索性命題在平時(shí)學(xué)習(xí)中較少涉及,希望同學(xué)們把近幾年其他省、市高考試題中有關(guān)此內(nèi)容的題目集中研究一下,有備無(wú)患.這一階段,重點(diǎn)是提高學(xué)生的綜合解題能力,訓(xùn)練學(xué)生的解題策略,加強(qiáng)解題指導(dǎo),提高應(yīng)試能力.
人教版高中數(shù)學(xué)必修五教案篇四
數(shù)學(xué)教學(xué)的宗旨是讓學(xué)生在主動(dòng)參與中學(xué)會(huì)學(xué)習(xí)。中學(xué)生的身體、心理發(fā)展正趨于成熟期,對(duì)事物充滿著好奇,又有自己的想法,有時(shí)想表達(dá)自己的想法但又不愿在公開(kāi)場(chǎng)合表達(dá)。根據(jù)這些特點(diǎn),教師應(yīng)設(shè)置有效的三維目標(biāo)激發(fā)提升,設(shè)置貼近學(xué)生的情境激發(fā)興趣,設(shè)置有懸念的問(wèn)題激發(fā)參與,設(shè)置開(kāi)放的問(wèn)題激發(fā)討論,設(shè)置有挑戰(zhàn)的問(wèn)題激發(fā)獨(dú)立思考,設(shè)置抽象的問(wèn)題激發(fā)理解。
進(jìn)行這些設(shè)置,教師必須了解學(xué)生的現(xiàn)有水平和可能的發(fā)展水平,準(zhǔn)確定位有效的教學(xué)目標(biāo);精心設(shè)置導(dǎo)入,在盡量短的時(shí)間內(nèi)吸引學(xué)生的注意力;正確把握問(wèn)題的難度、坡度和密度,讓學(xué)生努力后能接近或達(dá)成目標(biāo);以適當(dāng)?shù)恼{(diào)控營(yíng)造和諧的課堂氣氛,提高學(xué)生參與的積極性。
利用信息技術(shù)拓寬學(xué)習(xí)資源。
并善于獨(dú)立思考,學(xué)會(huì)分析問(wèn)題和創(chuàng)造性地解決問(wèn)題”。例如,筆者在講解解析幾何內(nèi)容時(shí),就通過(guò)課件“奇妙的坐標(biāo)系”向?qū)W生展示了坐標(biāo)系的誕生、完善及應(yīng)用過(guò)程,使數(shù)學(xué)教學(xué)成為了再創(chuàng)造、再發(fā)現(xiàn)的教學(xué)。
人教版高中數(shù)學(xué)必修五教案篇五
初中新課程中數(shù)學(xué)知識(shí)點(diǎn)刪了很多要求,如“立方和、立方差”公式,“韋達(dá)定理”,“十字相乘法分解因式”等。雖然初中新課程對(duì)這些知識(shí)點(diǎn)不作要求,但是從高中數(shù)學(xué)教學(xué)的實(shí)踐來(lái)看,學(xué)生掌握了這些知識(shí)點(diǎn)對(duì)學(xué)習(xí)新的知識(shí)有一定的促進(jìn)作用,因此,建議教師可根據(jù)學(xué)生和教學(xué)的實(shí)際情況,做適當(dāng)?shù)难a(bǔ)充,同時(shí),初中學(xué)習(xí)的有理數(shù)乘方及運(yùn)算性質(zhì)和二次函數(shù),這些知識(shí)也要進(jìn)行必要的復(fù)習(xí)等,這樣有利于后期的教學(xué)。
2、思維能力和運(yùn)算能力的進(jìn)一步強(qiáng)化。
初中新課程的內(nèi)容傾向于基礎(chǔ)性、普及性、應(yīng)用性和直觀性,學(xué)生的實(shí)踐能力很強(qiáng),但學(xué)生的數(shù)學(xué)思維能力有所欠缺,尤其是抽象思維能力較弱,這對(duì)高中數(shù)學(xué)學(xué)習(xí)的影響很大。因此,教師要逐漸培養(yǎng)學(xué)生的抽象思維能力。同時(shí),由于初中大量使用計(jì)算器,學(xué)生的計(jì)算能力很弱,這與高中數(shù)學(xué)要求學(xué)生要有較強(qiáng)的化簡(jiǎn)、變形、推理及運(yùn)算能力有一定的差距,從教學(xué)的實(shí)踐來(lái)看,學(xué)生作業(yè)中出現(xiàn)的大量錯(cuò)誤與計(jì)算能力較弱有很大關(guān)系。因此,建議教師可根據(jù)學(xué)生的實(shí)際情況,從高一開(kāi)始就要切實(shí)提高學(xué)生的運(yùn)算能力。
3、抓住學(xué)科特點(diǎn),做好順利過(guò)渡。
高中數(shù)學(xué)知識(shí)量大,理論性、綜合性強(qiáng),同時(shí)高中課時(shí)少,學(xué)生基礎(chǔ)差等,知識(shí)的難度和對(duì)學(xué)生能力的要求和初中相比都有較大的提高(如“集合”、“映射”、“函數(shù)”等都比較抽象,難度大,“函數(shù)”等知識(shí)綜合性較強(qiáng))。學(xué)好高中數(shù)學(xué)需要學(xué)生具有較強(qiáng)的閱讀能力、運(yùn)算能力、邏輯推理能力、抽象思維能力及分析問(wèn)題、解決問(wèn)題的綜合能力,這與初中數(shù)學(xué)知識(shí)點(diǎn)較少,難度較低,形成較大的差距。因此,教師要能夠根據(jù)實(shí)際情況及時(shí)調(diào)整教學(xué)方法和教學(xué)過(guò)程,使學(xué)生能順利進(jìn)入高中并能盡快適應(yīng)高中的數(shù)學(xué)學(xué)習(xí)。
人教版高中數(shù)學(xué)必修五教案篇六
根據(jù)德國(guó)心理學(xué)家艾賓浩斯繪制的遺忘曲線,學(xué)生對(duì)知識(shí)的遺忘遵從先快后慢的規(guī)律,有效的回憶可以加深對(duì)知識(shí)的理解,掌握知識(shí)的內(nèi)在聯(lián)系,延緩知識(shí)的遺忘。教師要采用不同的形式,整理階段的基礎(chǔ)知識(shí),使內(nèi)容條理化、清晰化地呈現(xiàn)在同學(xué)的面前,從而完成由厚到薄的過(guò)程,對(duì)重難點(diǎn)和關(guān)鍵點(diǎn),進(jìn)行重點(diǎn)的、有針對(duì)性的講解。配以適當(dāng)?shù)木毩?xí),提高學(xué)生對(duì)基本知識(shí)和基本方法的深刻性和準(zhǔn)確性的理解掌握。促進(jìn)學(xué)生科學(xué)合理的知識(shí)結(jié)構(gòu)的形成,使知識(shí)系統(tǒng)化和網(wǎng)絡(luò)化。
舊知檢測(cè)。
要想有效的提高課堂的復(fù)習(xí)效率,就須克服“眼高手低”的毛病。很多同學(xué)上課時(shí)處于一種混沌的狀態(tài),一聽(tīng)就懂,一做就錯(cuò);一聽(tīng)就會(huì),一到自己做就不會(huì)了。為避免這樣的情況,就必須讓學(xué)生更好地了解自己知識(shí)的掌握情況??梢栽O(shè)置幾個(gè)基礎(chǔ)的填空和一個(gè)左右的解答題,通過(guò)解答的過(guò)程讓學(xué)生“自知自明”。激發(fā)起興趣,有效地提高復(fù)習(xí)的效率。
精選精講。
精心的選擇適量的典型例題,分析解決這些問(wèn)題應(yīng)該是一堂復(fù)習(xí)課的核心內(nèi)容。解題的目的絕不是僅僅解決這個(gè)問(wèn)題本身,而是要給出通性通法,揭示解決問(wèn)題的一般規(guī)律,熟練掌握數(shù)學(xué)思想方法,提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力。
人教版高中數(shù)學(xué)必修五教案篇七
函數(shù)思想在解題中的應(yīng)用主要表現(xiàn)在兩個(gè)方面:一是借助有關(guān)初等函數(shù)的性質(zhì),解有關(guān)求值、解(證)不等式、解方程以及討論參數(shù)的取值范圍等問(wèn)題:二是在問(wèn)題的研究中,通過(guò)建立函數(shù)關(guān)系式或構(gòu)造中間函數(shù),把所研究的問(wèn)題轉(zhuǎn)化為討論函數(shù)的有關(guān)性質(zhì),達(dá)到化難為易,化繁為簡(jiǎn)的目的。函數(shù)與方程的思想是中學(xué)數(shù)學(xué)的基本思想,也是歷年高考的重點(diǎn)。
1.函數(shù)的思想,是用運(yùn)動(dòng)和變化的觀點(diǎn),分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù),運(yùn)用函數(shù)的圖像和性質(zhì)去分析問(wèn)題、轉(zhuǎn)化問(wèn)題,從而使問(wèn)題獲得解決。
3.函數(shù)方程思想的幾種重要形式。
(1)函數(shù)和方程是密切相關(guān)的,對(duì)于函數(shù)y=f(x),當(dāng)y=0時(shí),就轉(zhuǎn)化為方程f(x)=0,也可以把函數(shù)式y(tǒng)=f(x)看做二元方程y-f(x)=0。
(6)立體幾何中有關(guān)線段、角、面積、體積的計(jì)算,經(jīng)常需要運(yùn)用布列方程或建立函數(shù)表達(dá)式的方法加以解決。
人教版高中數(shù)學(xué)必修五教案篇八
在復(fù)習(xí)時(shí),由于解題的量很大,就更要求我們將解題活動(dòng)組織得生動(dòng)活潑、情趣盎然。讓學(xué)生領(lǐng)略到數(shù)學(xué)的優(yōu)美、奇異和魅力,這樣才能變苦役為享受,有效地防止智力疲勞,保持解題的“好胃口”。一道好的數(shù)學(xué)題,即便具有相當(dāng)?shù)碾y度,它卻像一段引人入勝的故事,又像一部情節(jié)曲折的電視劇,那迭起的懸念、叢生的疑竇正是它的誘人之處。
“山重水復(fù)”的困惑被“柳暗花明”的喜悅?cè)〈螅瑢W(xué)生又怎能不贊嘆自己智能的威力?我們要使學(xué)生由“要我學(xué)”轉(zhuǎn)化為“我要學(xué)”,課堂上要想方設(shè)法調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,創(chuàng)設(shè)情境,激發(fā)熱情,有這樣一些比較成功的做法:一是運(yùn)用情感原理,喚起學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情;二是運(yùn)用成功原理,變苦學(xué)為樂(lè)學(xué);三是在學(xué)法上教給學(xué)生“點(diǎn)金術(shù)”,等等。
在課堂教學(xué)結(jié)構(gòu)上,更新教育觀念,始終堅(jiān)持以學(xué)生為主體,以教師為主導(dǎo)的教學(xué)原則。
教育家蘇霍姆林斯基曾經(jīng)告誡我們:“希望你們要警惕,在課堂上不要總是教師在講,這種做法不好……讓學(xué)生通過(guò)自己的努力去理解的東西,才能成為自己的東西,才是他真正掌握的東西。”按我們的說(shuō)法就是:師傅的任務(wù)在于度,徒弟的任務(wù)在于悟。數(shù)學(xué)課堂教學(xué)必須廢除“注入式”“滿堂灌”的教法。復(fù)習(xí)課也不能由教師包講,更不能成為教師展示自己解題“高難動(dòng)作”的“絕活表演”,而要讓學(xué)生成為學(xué)習(xí)的主人,讓他們?cè)谥鲃?dòng)積極的探索活動(dòng)中實(shí)現(xiàn)創(chuàng)新、突破,展示自己的才華智慧,提高數(shù)學(xué)素養(yǎng)和悟性。
作為教學(xué)活動(dòng)的組織者,教師的任務(wù)是點(diǎn)撥、啟發(fā)、誘導(dǎo)、調(diào)控,而這些都應(yīng)以學(xué)生為中心。復(fù)習(xí)課上有一個(gè)突出的矛盾,就是時(shí)間太緊,既要處理足量的題目,又要充分展示學(xué)生的思維過(guò)程,二者似乎是很難兼顧。我們可采用“焦點(diǎn)訪談”法較好地解決這個(gè)問(wèn)題,因大多數(shù)題目是“入口寬,上手易”,但在連續(xù)探究的過(guò)程中,常在某一點(diǎn)或某幾點(diǎn)上擱淺受阻,這些點(diǎn)被稱為“焦點(diǎn)”,其余的則被稱為“外圍”。我們大可不必在外圍處花精力去進(jìn)行淺表性的啟發(fā)誘導(dǎo),好鋼要用在刀刃上,而只要在焦點(diǎn)處發(fā)動(dòng)學(xué)生探尋突破口,通過(guò)訪談,集中學(xué)生的智慧,讓學(xué)生的思維在關(guān)鍵處閃光,能力在要害處增長(zhǎng),弱點(diǎn)在隱蔽處暴露,意志在細(xì)微處磨礪。通過(guò)訪談實(shí)現(xiàn)學(xué)生間、師生間智慧和能力的互補(bǔ),促進(jìn)相互的心靈和感情的溝通。
人教版高中數(shù)學(xué)必修五教案篇九
曾經(jīng)有同學(xué)問(wèn)我,你是怎么學(xué)數(shù)學(xué)的,也沒(méi)見(jiàn)你做多少的練習(xí)題,可數(shù)學(xué)的成績(jī)不錯(cuò)。我覺(jué)得課堂的學(xué)習(xí)是關(guān)鍵,要緊緊抓住課堂的45分鐘的時(shí)間。在這有限的時(shí)間內(nèi),是教師與學(xué)生的交流,這時(shí)候,作為學(xué)生你的思維要跟得上老師的變化,這個(gè)知識(shí)點(diǎn)的關(guān)鍵點(diǎn)在那兒,前后的聯(lián)系是什么,在聽(tīng)課的過(guò)程中不能分心、走神,提高聽(tīng)課的效率。為此,在每一堂課前,我都要做好以下幾項(xiàng)工作。
1、課前預(yù)習(xí)是關(guān)鍵。
相信我們學(xué)生都聽(tīng)到過(guò)老師對(duì)我們的要求,要進(jìn)行課前預(yù)習(xí),不論什么課,這是所有的老師都會(huì)提的一個(gè)要求,可真正進(jìn)行課前預(yù)習(xí)的學(xué)生有多少呢,班里面我們也沒(méi)有統(tǒng)計(jì)過(guò),不過(guò)我覺(jué)得有一半的學(xué)生預(yù)習(xí)了,就是不錯(cuò)的了,另外,既使有的學(xué)生也預(yù)習(xí)了,只是走馬觀花的看一下書(shū),那效果可想而知。
預(yù)習(xí)也要講究方法,在預(yù)習(xí)中發(fā)現(xiàn)了難點(diǎn),出現(xiàn)了自己解決不了的問(wèn)題,這個(gè)就是聽(tīng)課中的重點(diǎn),要做好標(biāo)記;通過(guò)預(yù)習(xí)還能發(fā)現(xiàn)自己沒(méi)有掌握住的舊知識(shí),起到溫故而知新的作用,可以對(duì)知識(shí)起到查漏補(bǔ)缺的效果;另外,預(yù)習(xí)的過(guò)程也是一個(gè)自學(xué)的過(guò)程,有助于提高自己分析問(wèn)題、解決問(wèn)題的能力,將自己在預(yù)習(xí)中的理解和老師講解的進(jìn)行對(duì)照,不斷進(jìn)行改進(jìn),可以起到提高自己思維水平的作用。
2、科學(xué)聽(tīng)課是保障。
所謂科學(xué)聽(tīng)課也就是說(shuō)在教師授課的過(guò)程中學(xué)生的表現(xiàn),是不是為這節(jié)課做好了準(zhǔn)備工作。在聽(tīng)課的過(guò)程中要調(diào)動(dòng)眼、耳、心、口、手等各個(gè)器官,全身心的投入到課堂學(xué)習(xí)中去,在聽(tīng)課的過(guò)程中遇到重要的知識(shí)點(diǎn)同時(shí)又要做好筆記,但是不能因?yàn)楣P記的原因而影響到聽(tīng)課,所以,這里面有一個(gè)科學(xué)合理安排聽(tīng)課時(shí)間的問(wèn)題。聽(tīng)課的過(guò)程中是一個(gè)高度集中注意力的過(guò)程,但同時(shí)也是有張有弛;聽(tīng)課的過(guò)程中也的聽(tīng)的技巧,聽(tīng)教師如何分析?如何歸納總結(jié)?如何突破難點(diǎn),結(jié)合自己在預(yù)習(xí)時(shí)又是如何理解的,相互比較,同時(shí)要用心思考,跟上教師的教學(xué)思路,能在教師的啟發(fā)和點(diǎn)撥下有所得,這是這一堂課最根本的關(guān)節(jié)所在。
3、做一定量的習(xí)題。
在數(shù)學(xué)的學(xué)習(xí)過(guò)程中,對(duì)于做多少習(xí)題并沒(méi)有確切的數(shù)據(jù),但有兩種傾向:一種是做大量的習(xí)題;另一種是做適當(dāng)?shù)牧?xí)題。做大量的習(xí)題的做法來(lái)源于題海戰(zhàn)術(shù),曾經(jīng)有一種說(shuō)法,做題吧,在做題的過(guò)程中你就掌握了知識(shí)點(diǎn),誠(chéng)然,多做題對(duì)于掌握知識(shí)是有好處的,但并不是題做的越多越好。在高中的學(xué)習(xí)過(guò)程中,時(shí)間非常緊,在有限的時(shí)間內(nèi)要學(xué)習(xí)好幾門(mén)知識(shí),你數(shù)學(xué)題做的多了,難免會(huì)在其他科目上用時(shí)不夠,會(huì)對(duì)其他科目的學(xué)習(xí)造成影響。因此,大量的做題是不可取的。
在學(xué)習(xí)的過(guò)程中,我崇尚做適當(dāng)?shù)牧?xí)題,而且在實(shí)際的學(xué)習(xí)過(guò)程中我也是這樣做的。做題的過(guò)程中是一個(gè)舉一反三的過(guò)程,做會(huì)這一道題就掌握了這一類題目的做法,關(guān)鍵的問(wèn)題是在做完這道題后的分析總結(jié),數(shù)學(xué)的題目太多了,你是不可能做完所有的題的,因此,我們?cè)谡莆罩R(shí)點(diǎn)的時(shí)候是一類一類的掌握,所謂的舉一反三,觸類旁通。每當(dāng)做完一道題后尤其是難度大的題目,我會(huì)靜下心來(lái)再?gòu)念^看一遍,把其中的關(guān)鍵點(diǎn)再熟悉一遍,雖然當(dāng)時(shí)看起來(lái)是費(fèi)了一點(diǎn)時(shí)間,但那收獲是很大的。以后再遇到這類題目的時(shí)候,解決起來(lái)就相對(duì)容易的多。
人教版高中數(shù)學(xué)必修五教案篇十
函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個(gè)初等數(shù)學(xué)體系之中。函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對(duì)初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個(gè)簡(jiǎn)單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說(shuō)”到“對(duì)應(yīng)說(shuō)”,這是對(duì)函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識(shí),也是學(xué)生認(rèn)識(shí)上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無(wú)疑對(duì)學(xué)生今后的學(xué)習(xí)起著深刻的影響。
本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對(duì)概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對(duì)應(yīng)來(lái)描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
二、重難點(diǎn)分析。
根據(jù)對(duì)上述對(duì)教材的分析及新課程標(biāo)準(zhǔn)的要求,確定函數(shù)的概念既是本節(jié)課的重點(diǎn),也應(yīng)該是本章的難點(diǎn)。
三、學(xué)情分析。
1、有利因素:一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點(diǎn)下的函數(shù)定義,并具體研究了幾類最簡(jiǎn)單的函數(shù),對(duì)函數(shù)已經(jīng)有了一定的感性認(rèn)識(shí);另一方面在本書(shū)第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
2、不利因素:函數(shù)在初中雖已講過(guò),不過(guò)較為膚淺,本課主要是從兩個(gè)集合間對(duì)應(yīng)來(lái)描繪函數(shù)概念,是一個(gè)抽象過(guò)程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來(lái)有一定的難度。
四、目標(biāo)分析。
1、理解函數(shù)的概念,會(huì)用函數(shù)的定義判斷函數(shù),會(huì)求一些最基本的函數(shù)的定義域、值域。
2、通過(guò)對(duì)實(shí)際問(wèn)題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識(shí)以及邏輯思維、建模等方面的能力。
3、通過(guò)對(duì)函數(shù)概念形成的探究過(guò)程,培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題,探索問(wèn)題,不斷超越的創(chuàng)新品質(zhì)。
五、教法學(xué)法。
本節(jié)課的教學(xué)以學(xué)生為主體、教師是數(shù)學(xué)課堂活動(dòng)的組織者、引導(dǎo)者和參與者,我一方面精心設(shè)計(jì)問(wèn)題情景,引導(dǎo)學(xué)生主動(dòng)探索。另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點(diǎn),以問(wèn)題的提出、問(wèn)題的解決為主線,始終在學(xué)生知識(shí)的“最近發(fā)展區(qū)”設(shè)置問(wèn)題,倡導(dǎo)學(xué)生主動(dòng)參與,通過(guò)不斷探究、發(fā)現(xiàn),在師生互動(dòng)、生生互動(dòng)中,讓學(xué)習(xí)過(guò)程成為學(xué)生心靈愉悅的主動(dòng)認(rèn)知過(guò)程。
學(xué)法方面,學(xué)生通過(guò)對(duì)新舊兩種函數(shù)定義的對(duì)比,在集合論的觀點(diǎn)下初步建構(gòu)出函數(shù)的概念。在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。
2、設(shè)計(jì)理念。
3、教學(xué)目標(biāo)。
情感態(tài)度與價(jià)值觀目標(biāo):引導(dǎo)學(xué)生學(xué)會(huì)閱讀數(shù)學(xué)教材,學(xué)會(huì)發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美、
4、重點(diǎn)難點(diǎn)。
重點(diǎn):任意角三角函數(shù)的定義、
難點(diǎn):任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、
5、學(xué)情分析。
6、教法分析。
7、學(xué)法分析。
本課時(shí)先通過(guò)“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認(rèn)知結(jié)構(gòu),再通過(guò)類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運(yùn)用類比學(xué)習(xí)法,來(lái)研究三角函數(shù)一些基本性質(zhì)和符號(hào)問(wèn)題,從而使學(xué)生形成新的認(rèn)識(shí)結(jié)構(gòu),達(dá)成教學(xué)目標(biāo)。
人教版高中數(shù)學(xué)必修五教案篇十一
集合這部分的主要內(nèi)容是集合的概念、表示方法和集合之間的關(guān)系和運(yùn)算??v觀近幾年高考題,集合的考查以選擇題、填空題為主要題型。集合的概念和基本運(yùn)算是本章的重點(diǎn)內(nèi)容,也是高考的必考內(nèi)容。復(fù)習(xí)中首先要把握基礎(chǔ)知識(shí),深刻理解本章的基礎(chǔ)知識(shí)點(diǎn),重點(diǎn)掌握集合的概念和運(yùn)算。本章常用的數(shù)學(xué)思想方法主要有:數(shù)形結(jié)合的思想,如常借助于維恩圖、數(shù)軸解決問(wèn)題;分類討論的思想,如一元二次方程根的討論、集合的包含關(guān)系等。復(fù)習(xí)時(shí)要重視對(duì)基本思想方法的滲透,逐步培養(yǎng)用數(shù)學(xué)思想方法來(lái)分析問(wèn)題、解決問(wèn)題的能力。
(二)規(guī)律方法總結(jié)。
1、集合中元素的互異性是集合概念的重點(diǎn)考查內(nèi)容。一般給出兩個(gè)集合,并告知兩個(gè)集合之間的關(guān)系,求集合中某個(gè)參數(shù)的范圍或值的時(shí)候,要特別驗(yàn)證是否符合元素之間互異性。2、考查集合的運(yùn)算和包含關(guān)系,解題中常用到分類討論思想,分類時(shí)注意不重不漏,尤其注意討論集合為空集的情況。3、新定義的集合運(yùn)算問(wèn)題是以已知的集合或運(yùn)算為背景,引出新的集合概念或運(yùn)算,仔細(xì)審題,弄清新定義的意義才是關(guān)鍵。
基本初等函數(shù)。
基本初等函數(shù)的內(nèi)容是函數(shù)的基礎(chǔ),也是研究其他較復(fù)雜函數(shù)的轉(zhuǎn)化目標(biāo),掌握基本初等函數(shù)的圖象和性質(zhì)是學(xué)習(xí)函數(shù)知識(shí)的必要的一步。與指數(shù)函數(shù)、對(duì)數(shù)函數(shù)有關(guān)的試題,大多以考查基本初等函數(shù)的性質(zhì)為依托,結(jié)合運(yùn)算推理來(lái)解題。所以這部分內(nèi)容更注重通過(guò)函數(shù)圖象讀取各種信息,從而研究函數(shù)的性質(zhì),熟練掌握函數(shù)圖象的各種變換方式,培養(yǎng)運(yùn)用數(shù)形結(jié)合思想來(lái)解題的能力。
(二)規(guī)律方法總結(jié)。
1、指數(shù)函數(shù)多與一次函數(shù)、二次函數(shù)、反比例函數(shù)等知識(shí)結(jié)合考查綜合應(yīng)用知識(shí)解決函數(shù)問(wèn)題的能力。指數(shù)方程的求解常利用換元法轉(zhuǎn)化為一元二次方程求解。由指數(shù)函數(shù)和二次函數(shù)、反比例函數(shù)結(jié)合成的函數(shù)的單調(diào)性的判定注意底數(shù)與1的關(guān)系的判定。
2、解對(duì)數(shù)方程(或不等式)就是將對(duì)數(shù)方程(或不等式)化為有理方程(或不等式)。要注意轉(zhuǎn)化必須是等價(jià)的,特別要考慮到對(duì)數(shù)函數(shù)定義域。
人教版高中數(shù)學(xué)必修五教案篇十二
了解現(xiàn)實(shí)世界和日常生活中的不等關(guān)系,了解不等式(組)的實(shí)際背景.
(2)一元二次不等式。
會(huì)從實(shí)際情境中抽象出一元二次不等式模型.
通過(guò)函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.
會(huì)解一元二次不等式,對(duì)給定的一元二次不等式,會(huì)設(shè)計(jì)求解的程序框圖.
(3)二元一次不等式組與簡(jiǎn)單線性規(guī)劃問(wèn)題。
會(huì)從實(shí)際情境中抽象出二元一次不等式組.
了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.
會(huì)從實(shí)際情境中抽象出一些簡(jiǎn)單的二元線性規(guī)劃問(wèn)題,并能加以解決.
(4)基本不等式:
了解基本不等式的證明過(guò)程.
人教版高中數(shù)學(xué)必修五教案篇十三
(二)倍角公式。
2cos2α=1+cos2α2sin2α=1-cos2α。
注意:倍角公式揭示了具有倍數(shù)關(guān)系的兩個(gè)角的三角函數(shù)的運(yùn)算規(guī)律,可實(shí)現(xiàn)函數(shù)式的降冪的變化。
注:(1)兩角和與差的三角函數(shù)公式能夠解答的三類基本題型:求值題,化簡(jiǎn)題,證明題。
(2)對(duì)公式會(huì)“正用”,“逆用”,“變形使用”;。
(3)掌握“角的演變”規(guī)律,
(4)將公式和其它知識(shí)銜接起來(lái)使用。
重點(diǎn)難點(diǎn)。
重點(diǎn):幾組三角恒等式的應(yīng)用。
難點(diǎn):靈活應(yīng)用和、差、倍角等公式進(jìn)行三角式化簡(jiǎn)、求值、證明恒等式。
人教版高中數(shù)學(xué)必修五教案篇十四
一、教學(xué)目標(biāo):1.了解普查的意義.2.結(jié)合具體的實(shí)際問(wèn)題情境,理解隨機(jī)抽樣的必要性和重要性.
二、重難點(diǎn):結(jié)合具體的實(shí)際問(wèn)題情境,理解隨機(jī)抽樣的必要性和重要性.
三、教學(xué)方法:閱讀材料、思考與交流。
四、教學(xué)過(guò)程。
(一)、普查。
1、【問(wèn)題提出】p7。
通過(guò)我國(guó)第五次人口普查的有關(guān)數(shù)據(jù),讓學(xué)生體會(huì)到統(tǒng)計(jì)對(duì)政府決策的重要作用――統(tǒng)計(jì)數(shù)據(jù)可以提供大量的信息,為國(guó)家的宏觀決策提供有關(guān)的支持.教科書(shū)通過(guò)對(duì)人口普查的有關(guān)新聞報(bào)道,讓學(xué)生體會(huì)人口普查的規(guī)模是何等的宏大與艱辛.
教科書(shū)提出了三個(gè)有代表性的問(wèn)題.第一個(gè)問(wèn)題主要是針對(duì)人口普查的作用,人口普查可以了解一個(gè)國(guó)家人口全面情況,比如,人口總數(shù)、男女性別比、受教育狀況、增長(zhǎng)趨勢(shì)等.人口普查是對(duì)國(guó)家的政府決策實(shí)行情況的一個(gè)檢驗(yàn),比如,國(guó)家計(jì)劃生育政策,經(jīng)濟(jì)發(fā)展戰(zhàn)略,國(guó)家“普及九年義務(wù)教育”政策,人民群眾的生活水平等.第二個(gè)問(wèn)題是針對(duì)普查本身存在的問(wèn)題提出的,以加深學(xué)生對(duì)于普查的理解.學(xué)生可能有一個(gè)誤解,普查就是100%的準(zhǔn)確,其實(shí)不然,即使是最周全的調(diào)查方案,在實(shí)際執(zhí)行時(shí)都會(huì)產(chǎn)生一個(gè)誤差.教科書(shū)通過(guò)這個(gè)問(wèn)題,目的是讓學(xué)生理解在人口普查中出現(xiàn)漏登是正常情況,調(diào)查方案的設(shè)計(jì)是盡可能讓這個(gè)誤差降低到最小.同時(shí),也要讓學(xué)生理解人口普查的工作,即使出現(xiàn)漏登現(xiàn)象,人口普查的數(shù)據(jù)對(duì)國(guó)家的宏觀決策依然具有重要的作用.第三個(gè)問(wèn)題是針對(duì)人口普查工作的艱辛而提出的,讓學(xué)生體會(huì)人口普查數(shù)據(jù)得來(lái)不易,要尊重人口普查人員的勞動(dòng),對(duì)人口普查工作要大力支持.
2、【閱讀材料】p4。
“閱讀材料”是課堂閱讀,目的是讓學(xué)生了解普查工作的特點(diǎn)和重要性,以及我國(guó)目前主要的一些普查工作.進(jìn)而,總結(jié)出普查的主要不足之處,這是從一個(gè)方面說(shuō)明了抽樣調(diào)查的必要性.
普查是指一個(gè)國(guó)家或一個(gè)地區(qū)專門(mén)組織的一次性大規(guī)模的全面調(diào)查,目的是為了詳細(xì)地了解某項(xiàng)重要的國(guó)情、國(guó)力.
普查主要有兩個(gè)特點(diǎn):(1)所取得的資料更加全面、系統(tǒng);(2)主要調(diào)查在特定時(shí)段的社會(huì)經(jīng)濟(jì)現(xiàn)象總體的數(shù)量.
普查是一項(xiàng)非常艱巨的工作,它要對(duì)所有的對(duì)象進(jìn)行調(diào)查.當(dāng)普查的對(duì)象很少時(shí),普查無(wú)疑是一項(xiàng)非常好的調(diào)查方式.
(二)、抽樣調(diào)查。
【例1和其后的“思考交流”】p8~9。
緊接著,教科書(shū)通過(guò)例1和“思考交流”的兩個(gè)問(wèn)題,讓學(xué)生了解普查有時(shí)候難以實(shí)現(xiàn).這主要有兩個(gè)方面的原因,其一,被調(diào)查對(duì)象的量大;其二,普查對(duì)被調(diào)查對(duì)象本身具有一定的破壞性.這從另一個(gè)方面說(shuō)明了抽樣調(diào)查的必要性.然后,教科書(shū)通過(guò)抽象概括總結(jié)出抽樣調(diào)查的兩個(gè)主要優(yōu)點(diǎn).
【例2和其后的“思考交流”】p9~10。
主要是討論在抽樣調(diào)查時(shí),什么樣的樣本才具有代表性.在抽樣時(shí),如果抽樣不當(dāng),那么調(diào)查的結(jié)果可能會(huì)出現(xiàn)與實(shí)際情況不符,甚至是錯(cuò)誤的結(jié)果,導(dǎo)致對(duì)決策的誤導(dǎo).在抽樣調(diào)查時(shí),一定要保證隨機(jī)性原則,盡可能地避免人為因素的干擾;并且要保證每個(gè)個(gè)體以一定的概率被抽取到;同時(shí),還要注意到要盡可能地控制抽樣調(diào)查中的.誤差.
由于檢驗(yàn)對(duì)象的量很大,或檢驗(yàn)對(duì)檢驗(yàn)對(duì)象具有破壞性時(shí),通常情況下,所以采用普查的方法有時(shí)是行不通的.通常情況下,從調(diào)查對(duì)象中按照一定的方法抽取一部分,進(jìn)行調(diào)查或觀測(cè),獲取數(shù)據(jù),并以此調(diào)查對(duì)象的某項(xiàng)指標(biāo)做出推斷,這就是抽樣調(diào)查.其中,調(diào)查對(duì)象的全體稱為總體,被抽取的一部分稱為樣本.
抽樣調(diào)查的優(yōu)點(diǎn):抽樣調(diào)查與普查相比,有很多優(yōu)點(diǎn),最突出的有兩點(diǎn):(1)迅速、及時(shí);(2)節(jié)約人力、物力和財(cái)力.
解:統(tǒng)計(jì)的總體是指該地10000名學(xué)生的體重;個(gè)體是指這10000名學(xué)生中每一名學(xué)生的體重;樣本指這10000名學(xué)生中抽出的200名學(xué)生的體重;總體容量為10000;樣本容量為200.若對(duì)每一個(gè)個(gè)體逐一進(jìn)行“調(diào)查”,有時(shí)費(fèi)時(shí)、費(fèi)力,有時(shí)根本無(wú)法實(shí)現(xiàn),一個(gè)行之有效的辦法就是在每一個(gè)個(gè)體被抽取的機(jī)會(huì)均等的前提下從總體中抽取部分個(gè)體,進(jìn)行抽樣調(diào)查.
例2為了制定某市高一、高二、高三三個(gè)年級(jí)學(xué)生校服的生產(chǎn)計(jì)劃,有關(guān)部門(mén)準(zhǔn)備對(duì)180名初中男生的身高作調(diào)查,現(xiàn)有三種調(diào)查方案:
a.測(cè)量少年體校中180名男子籃球、排球隊(duì)員的身高;。
b.查閱有關(guān)外地180名男生身高的統(tǒng)計(jì)資料;。
c.在本市的市區(qū)和郊縣各任選一所完全中學(xué),兩所初級(jí)中學(xué),在這六所學(xué)校有關(guān)年級(jí)的小班中,用抽簽的方法分別選出10名男生,然后測(cè)量他們的身高.
解:選c方案.理由:方案c采取了隨機(jī)抽樣的方法,隨機(jī)樣本比較具有代表性、普遍性,可以被用來(lái)估計(jì)總體.
例3中央電視臺(tái)希望在春節(jié)聯(lián)歡晚會(huì)播出后一周內(nèi)獲得當(dāng)年春節(jié)聯(lián)歡晚會(huì)的收視率.下面三名同學(xué)為電視臺(tái)設(shè)計(jì)的調(diào)查方案.
甲同學(xué):我把這張《春節(jié)聯(lián)歡晚會(huì)收視率調(diào)查表》放在互聯(lián)網(wǎng)上,只要上網(wǎng)登錄該網(wǎng)址的人就可以看到這張表,他們填表的信息可以很快地反饋到我的電腦中.這樣,我就可以很快統(tǒng)計(jì)收視率了.
乙同學(xué):我給我們居民小區(qū)的每一份住戶發(fā)一個(gè)是否在除夕那天晚上看過(guò)中央電視臺(tái)春節(jié)聯(lián)歡晚會(huì)的調(diào)查表,只要一兩天就可以統(tǒng)計(jì)出收視率.
丙同學(xué):我在電話號(hào)碼本上隨機(jī)地選出一定數(shù)量的電話號(hào)碼,然后逐個(gè)給他們打電話,問(wèn)一下他們是否收看了中央電視臺(tái)春節(jié)聯(lián)歡晚會(huì),我不出家門(mén)就可以統(tǒng)計(jì)出中央電視臺(tái)春節(jié)聯(lián)歡晚會(huì)的收視率.
請(qǐng)問(wèn):上述三名同學(xué)設(shè)計(jì)的調(diào)查方案能夠獲得比較準(zhǔn)確的收視率嗎?為什么?
解:綜上所述,這三種調(diào)查方案都有一定的片面性,不能得到比較準(zhǔn)確的收視率.
(三)、課堂小結(jié):1、普查是一項(xiàng)非常艱巨的工作,它要對(duì)所有的對(duì)象進(jìn)行調(diào)查.當(dāng)普查的對(duì)象很少時(shí),普查無(wú)疑是一項(xiàng)非常好的調(diào)查方式.普查主要有兩個(gè)特點(diǎn):(1)所取得的資料更加全面、系統(tǒng);(2)主要調(diào)查在特定時(shí)段的社會(huì)經(jīng)濟(jì)現(xiàn)象總體的數(shù)量.2、通常情況下,從調(diào)查對(duì)象中按照一定的方法抽取一部分,進(jìn)行調(diào)查或觀測(cè),獲取數(shù)據(jù),并以此調(diào)查對(duì)象的某項(xiàng)指標(biāo)做出推斷,這就是抽樣調(diào)查.其中,調(diào)查對(duì)象的全體稱為總體,被抽取的一部分稱為樣本.抽樣調(diào)查的優(yōu)點(diǎn):抽樣調(diào)查與普查相比,有很多優(yōu)點(diǎn),最突出的有兩點(diǎn):(1)迅速、及時(shí);(2)節(jié)約人力、物力和財(cái)力.
(四)、作業(yè):p10練習(xí)題;p10【習(xí)題1―2】。
五、教后反思:
人教版高中數(shù)學(xué)必修五教案篇十五
各位老師大家好!
我說(shuō)課的內(nèi)容是人教版a版必修2第三章第一節(jié)直線的傾斜角與斜率第一課時(shí)。
(一)教材分析。
本節(jié)課選自必修2第三章(解析幾何的第一章)第一節(jié)直線的傾斜角與斜率第一課時(shí),直線的傾斜角和斜率解析幾何的重要概念;是刻畫(huà)直線傾斜程度的幾何要素與代數(shù)表示;學(xué)生在原有的對(duì)直線的有關(guān)性質(zhì)及平面向量的相關(guān)知識(shí)理解的基礎(chǔ)上,重新以解析法的方式來(lái)研究直線相關(guān)性質(zhì),而本節(jié)課直線的傾斜角與斜率,是直線的重要的幾何性質(zhì),是研究直線的方程形式,直線的位置關(guān)系等的思維的起點(diǎn);另外,本節(jié)課也初步向?qū)W生滲透解析幾何的基本思想和基本方法。因此,本課有著開(kāi)啟全章、滲透方法,承前啟后的作用。
(二)學(xué)情分析。
本節(jié)課的教學(xué)對(duì)象是高二學(xué)生,這個(gè)年齡段的學(xué)生天性活潑,求知欲強(qiáng),并且學(xué)習(xí)主動(dòng),在知識(shí)儲(chǔ)備上知道兩點(diǎn)確定一條直線,知道點(diǎn)與坐標(biāo)的關(guān)系,實(shí)現(xiàn)了最簡(jiǎn)單的形與數(shù)的轉(zhuǎn)化;了解刻畫(huà)傾斜程度可用角和正切值;具備了一定的數(shù)形結(jié)合的能力和分類討論的思想。但根據(jù)學(xué)生的認(rèn)知規(guī)律,還沒(méi)有形成自覺(jué)地把數(shù)學(xué)問(wèn)題抽象化的能力。所以在教學(xué)設(shè)計(jì)時(shí)需從學(xué)生的最近發(fā)展區(qū)進(jìn)行探究學(xué)習(xí),盡量讓不同層次的學(xué)生都經(jīng)歷概念的形成、鞏固和應(yīng)用過(guò)程。
(三)教學(xué)目標(biāo)。
1.理解直線的傾斜角和斜率的概念,理解直線的傾斜角的唯一性和斜率的存在性;。
2.掌握過(guò)兩點(diǎn)的直線斜率的計(jì)算公式;。
3.通過(guò)經(jīng)歷從具體實(shí)例抽象出數(shù)學(xué)概念的過(guò)程,培養(yǎng)學(xué)生觀察、分析和概括能力;。
生嚴(yán)謹(jǐn)求簡(jiǎn)的數(shù)學(xué)精神。
重點(diǎn):斜率的概念,用代數(shù)方法刻畫(huà)直線斜率的過(guò)程,過(guò)兩點(diǎn)的直線斜率的計(jì)算公式。
難點(diǎn):直線的傾斜角與斜率的概念的形成,斜率公式的構(gòu)建。
(四)教法和學(xué)法。
課堂教學(xué)應(yīng)有利于學(xué)生的數(shù)學(xué)素質(zhì)的形成與發(fā)展,即在課堂教學(xué)過(guò)程中,創(chuàng)設(shè)問(wèn)題的情景,激發(fā)學(xué)生主動(dòng)的發(fā)現(xiàn)問(wèn)題解決問(wèn)題,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的主動(dòng)性、積極性;有效的滲透數(shù)學(xué)思想方法,發(fā)展學(xué)生個(gè)性思維品質(zhì),這是本節(jié)課的教學(xué)原則。根據(jù)這樣的教學(xué)原則,考慮到學(xué)生首次接觸解析幾何的內(nèi)容及研究方法,所以我采用設(shè)置問(wèn)題串的形式,啟發(fā)引導(dǎo)學(xué)生類比、聯(lián)想,產(chǎn)生知識(shí)遷移;通過(guò)幾何畫(huà)板演示實(shí)驗(yàn)、探索交流相結(jié)合的教學(xué)方法激發(fā)學(xué)生觀察、實(shí)驗(yàn),體驗(yàn)知識(shí)的形成過(guò)程;由此循序漸進(jìn),使學(xué)生很自然達(dá)到本節(jié)課的學(xué)習(xí)目標(biāo)。
(五)教學(xué)過(guò)程。
環(huán)節(jié)1.指明研究方向(3min)。
簡(jiǎn)介17世紀(jì)法國(guó)數(shù)學(xué)家笛卡爾和費(fèi)馬的數(shù)學(xué)史。
人教版高中數(shù)學(xué)必修五教案篇十六
本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實(shí)在解三角形的應(yīng)用上。通過(guò)本章學(xué)習(xí),學(xué)生應(yīng)當(dāng)達(dá)到以下學(xué)習(xí)目標(biāo):
(1)通過(guò)對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡(jiǎn)單的三角形度量問(wèn)題。
(2)能夠熟練運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測(cè)量和幾何計(jì)算有關(guān)的生活實(shí)際問(wèn)題。
數(shù)學(xué)思想方法的教學(xué)是中學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,有利于學(xué)生加深數(shù)學(xué)知識(shí)的理解和掌握。
本章重視與內(nèi)容密切相關(guān)的數(shù)學(xué)思想方法的教學(xué),并且在提出問(wèn)題、思考解決問(wèn)題的策略等方面對(duì)學(xué)生進(jìn)行具體示范、引導(dǎo)。本章的兩個(gè)主要數(shù)學(xué)結(jié)論是正弦定理和余弦定理,它們都是關(guān)于三角形的邊角關(guān)系的結(jié)論。在初中,學(xué)生已經(jīng)學(xué)習(xí)了相關(guān)邊角關(guān)系的定性的知識(shí),就是“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角”,“如果已知兩個(gè)三角形的兩條對(duì)應(yīng)邊及其所夾的角相等,那么這兩個(gè)三角形全”等。
教科書(shū)在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識(shí)出發(fā),提出探究性問(wèn)題:“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系.我們是否能得到這個(gè)邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時(shí),提出探究性問(wèn)題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋?lái)研究這個(gè)問(wèn)題,也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問(wèn)題?!痹O(shè)置這些問(wèn)題,都是為了加強(qiáng)數(shù)學(xué)思想方法的教學(xué)。
加強(qiáng)與前后各章教學(xué)內(nèi)容的聯(lián)系,注意復(fù)習(xí)和應(yīng)用已學(xué)內(nèi)容,并為后續(xù)章節(jié)教學(xué)內(nèi)容做好準(zhǔn)備,能使整套教科書(shū)成為一個(gè)有機(jī)整體,提高教學(xué)效益,并有利于學(xué)生對(duì)于數(shù)學(xué)知識(shí)的學(xué)習(xí)和鞏固。
本章內(nèi)容處理三角形中的邊角關(guān)系,與初中學(xué)習(xí)的三角形的邊與角的基本關(guān)系,已知三角形的邊和角相等判定三角形全等的知識(shí)有著密切聯(lián)系。教科書(shū)在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識(shí)出發(fā),提出探究性問(wèn)題“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系.我們是否能得到這個(gè)邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時(shí),提出探究性問(wèn)題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋?lái)研究這個(gè)問(wèn)題,也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問(wèn)題?!边@樣,從聯(lián)系的觀點(diǎn),從新的角度看過(guò)去的問(wèn)題,使學(xué)生對(duì)于過(guò)去的知識(shí)有了新的認(rèn)識(shí),同時(shí)使新知識(shí)建立在已有知識(shí)的堅(jiān)實(shí)基礎(chǔ)上,形成良好的知識(shí)結(jié)構(gòu)。
《課程標(biāo)準(zhǔn)》和教科書(shū)把“解三角形”這部分內(nèi)容安排在數(shù)學(xué)五的第一部分內(nèi)容,
位置相對(duì)靠后,在此內(nèi)容之前學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、平面向量、直線和圓的方程等與本章知識(shí)聯(lián)系密切的內(nèi)容,這使這部分內(nèi)容的處理有了比較多的工具,某些內(nèi)容可以處理得更加簡(jiǎn)潔。比如對(duì)于余弦定理的證明,常用的方法是借助于三角的方法,需要對(duì)于三角形進(jìn)行討論,方法不夠簡(jiǎn)潔,教科書(shū)則用了向量的方法,發(fā)揮了向量方法在解決問(wèn)題中的威力。
在證明了余弦定理及其推論以后,教科書(shū)從余弦定理與勾股定理的比較中,提出了一個(gè)思考問(wèn)題“勾股定理指出了直角三角形中三邊平方之間的關(guān)系,余弦定理則指出了一般三角形中三邊平方之間的關(guān)系,如何看這兩個(gè)定理之間的'關(guān)系?”,并進(jìn)而指出,“從余弦定理以及余弦函數(shù)的性質(zhì)可知,如果一個(gè)三角形兩邊的平方和等于第三邊的平方,那么第三邊所對(duì)的角是直角;如果小于第三邊的平方,那么第三邊所對(duì)的角是鈍角;如果大于第三邊的平方,那么第三邊所對(duì)的角是銳角.從上可知,余弦定理是勾股定理的推廣.”
學(xué)數(shù)學(xué)的最終目的是應(yīng)用數(shù)學(xué),而如今比較突出的兩個(gè)問(wèn)題是,學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)不強(qiáng),創(chuàng)造能力較弱。學(xué)生往往不能把實(shí)際問(wèn)題抽象成數(shù)學(xué)問(wèn)題,不能把所學(xué)的數(shù)學(xué)知識(shí)應(yīng)用到實(shí)際問(wèn)題中去,對(duì)所學(xué)數(shù)學(xué)知識(shí)的實(shí)際背景了解不多,雖然學(xué)生機(jī)械地模仿一些常見(jiàn)數(shù)學(xué)問(wèn)題解法的能力較強(qiáng),但當(dāng)面臨一種新的問(wèn)題時(shí)卻辦法不多,對(duì)于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發(fā)現(xiàn)問(wèn)題、解決問(wèn)題的科學(xué)思維方法了解不夠。針對(duì)這些實(shí)際情況,本章重視從實(shí)際問(wèn)題出發(fā),引入數(shù)學(xué)課題,最后把數(shù)學(xué)知識(shí)應(yīng)用于實(shí)際問(wèn)題。
1.1正弦定理和余弦定理(約3課時(shí))
1.2應(yīng)用舉例(約4課時(shí))
1.3實(shí)習(xí)作業(yè)(約1課時(shí))
1.要在本章的教學(xué)中,應(yīng)該根據(jù)教學(xué)實(shí)際,啟發(fā)學(xué)生不斷提出問(wèn)題,研究問(wèn)題。在對(duì)于正弦定理和余弦定理的證明的探究過(guò)程中,應(yīng)該因勢(shì)利導(dǎo),根據(jù)具體教學(xué)過(guò)程中學(xué)生思考問(wèn)題的方向來(lái)啟發(fā)學(xué)生得到自己對(duì)于定理的證明。如對(duì)于正弦定理,可以啟發(fā)得到有應(yīng)用向量方法的證明,對(duì)于余弦定理則可以啟發(fā)得到三角方法和解析的方法。在應(yīng)用兩個(gè)定理解決有關(guān)的解三角形和測(cè)量問(wèn)題的過(guò)程中,一個(gè)問(wèn)題也常常有多種不同的解決方案,應(yīng)該鼓勵(lì)學(xué)生提出自己的解決辦法,并對(duì)于不同的方法進(jìn)行必要的分析和比較。對(duì)于一些常見(jiàn)的測(cè)量問(wèn)題甚至可以鼓勵(lì)學(xué)生設(shè)計(jì)應(yīng)用的程序,得到在實(shí)際中可以直接應(yīng)用的算法。
2.適當(dāng)安排一些實(shí)習(xí)作業(yè),目的是讓學(xué)生進(jìn)一步鞏固所學(xué)的知識(shí),提高學(xué)生分析問(wèn)題的解決實(shí)際問(wèn)題的能力、動(dòng)手操作的能力以及用數(shù)學(xué)語(yǔ)言表達(dá)實(shí)習(xí)過(guò)程和實(shí)習(xí)結(jié)果能力,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)和數(shù)學(xué)實(shí)踐能力。教師要注意對(duì)于學(xué)生實(shí)習(xí)作業(yè)的指導(dǎo),包括對(duì)于實(shí)際測(cè)量問(wèn)題的選擇,及時(shí)糾正實(shí)際操作中的錯(cuò)誤,解決測(cè)量中出現(xiàn)的一些問(wèn)題。
人教版高中數(shù)學(xué)必修五教案篇十七
立體幾何的證明是數(shù)學(xué)學(xué)科中任一分之也替代不了的。因此,歷年高考中都有立體幾何論證的考察。論證時(shí),首先要保持嚴(yán)密性,對(duì)任何一個(gè)定義、定理及推論的理解要做到準(zhǔn)確無(wú)誤。符號(hào)表示與定理完全一致,定理的所有條件都具備了,才能推出相關(guān)結(jié)論。切忌條件不全就下結(jié)論。其次,在論證問(wèn)題時(shí),思考應(yīng)多用分析法,即逐步地找到結(jié)論成立的充分條件,向已知靠攏,然后用綜合法(“推出法”)形式寫(xiě)出。
二、立足課本,夯實(shí)基礎(chǔ)。
學(xué)習(xí)立體幾何的一個(gè)捷徑就是認(rèn)真學(xué)習(xí)課本中定理的證明,尤其是一些很關(guān)鍵的定理的證明。定理的內(nèi)容都很簡(jiǎn)單,就是線與線,線與面,面與面之間的聯(lián)系的闡述。但定理的證明在初學(xué)的時(shí)候一般都很復(fù)雜,甚至很抽象。深刻掌握定理的內(nèi)容,明確定理的作用是什么,多用在那些地方,怎么用。
三、培養(yǎng)空間想象力。
為了培養(yǎng)空間想象力,可以在剛開(kāi)始學(xué)習(xí)時(shí),動(dòng)手制作一些簡(jiǎn)單的模型用以幫助想象。例如:正方體或長(zhǎng)方體。在正方體中尋找線與線、線與面、面與面之間的關(guān)系。通過(guò)模型中的點(diǎn)、線、面之間的位置關(guān)系的觀察,逐步培養(yǎng)自己對(duì)空間圖形的想象能力和識(shí)別能力。其次,要培養(yǎng)自己的畫(huà)圖能力??梢詮暮?jiǎn)單的圖形(如:直線和平面)、簡(jiǎn)單的幾何體(如:正方體)開(kāi)始畫(huà)起。最后要做的就是樹(shù)立起立體觀念,做到能想象出空間圖形并把它畫(huà)在一個(gè)平面(如:紙、黑板)上,還要能根據(jù)畫(huà)在平面上的“立體”圖形,想象出原來(lái)空間圖形的真實(shí)形狀??臻g想象力并不是漫無(wú)邊際的胡思亂想,而是以提設(shè)為根據(jù),以幾何體為依托,這樣就會(huì)給空間想象力插上翱翔的翅膀。
四、“轉(zhuǎn)化”思想的應(yīng)用。
解立體幾何的問(wèn)題,主要是充分運(yùn)用“轉(zhuǎn)化”這種數(shù)學(xué)思想,要明確在轉(zhuǎn)化過(guò)程中什么變了,什么沒(méi)變,有什么聯(lián)系,這是非常關(guān)鍵的。例如:
(1)兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線的夾角即過(guò)空間任意一點(diǎn)引兩條異面直線的平行線。斜線與平面所成的角轉(zhuǎn)化為直線與直線所成的角即斜線與斜線在該平面內(nèi)的射影所成的角。
(2)異面直線的距離可以轉(zhuǎn)化為直線和與它平行的平面間的距離,也可以轉(zhuǎn)化為兩平行平面的距離,即異面直線的距離與線面距離、面面距離三者可以相互轉(zhuǎn)化。而面面距離可以轉(zhuǎn)化為線面距離,再轉(zhuǎn)化為點(diǎn)面距離,點(diǎn)面距離又可轉(zhuǎn)化為點(diǎn)線距離。
(3)面和面平行可以轉(zhuǎn)化為線面平行,線面平行又可轉(zhuǎn)化為線線平行。而線線平行又可以由線面平行或面面平行得到,它們之間可以相互轉(zhuǎn)化。同樣面面垂直可以轉(zhuǎn)化為線面垂直,進(jìn)而轉(zhuǎn)化為線線垂直。
五、建立數(shù)學(xué)模型。
新課程標(biāo)準(zhǔn)中多次提到“數(shù)學(xué)模型”一詞,目的是進(jìn)一步加強(qiáng)數(shù)學(xué)與現(xiàn)實(shí)世界的聯(lián)系。數(shù)學(xué)模型是把實(shí)際問(wèn)題用數(shù)學(xué)語(yǔ)言抽象概括,再?gòu)臄?shù)學(xué)角度來(lái)反映或近似地反映實(shí)際問(wèn)題時(shí),所得出的關(guān)于實(shí)際問(wèn)題的描述。數(shù)學(xué)模型的形式是多樣的,它們可以是幾何圖形,也可以是方程式,函數(shù)解析式等等。實(shí)際問(wèn)題越復(fù)雜,相應(yīng)的數(shù)學(xué)模型也越復(fù)雜。
從形狀的角度反映現(xiàn)實(shí)世界的物體時(shí),經(jīng)過(guò)抽象得到的空間幾何體就是現(xiàn)實(shí)世界物體的幾何模型。由于立體幾何學(xué)習(xí)的知識(shí)內(nèi)容與學(xué)生的聯(lián)系非常密切,空間幾何體是很多物體的幾何模型,這些模型可以描述現(xiàn)實(shí)世界中的許多物體。他們直觀、具體、對(duì)培養(yǎng)大家的幾何直觀能力有很大的幫助??臻g幾何體,特別是長(zhǎng)方體,其中的棱與棱、棱與面、面與面之間的位置關(guān)系,是研究直線與直線、直線與平面、平面與平面位置關(guān)系的直觀載體。學(xué)習(xí)時(shí),一方面要注意從實(shí)際出發(fā),把學(xué)習(xí)的知識(shí)與周圍的實(shí)物聯(lián)系起來(lái),另一方面,也要注意經(jīng)歷從現(xiàn)實(shí)的生活抽象空間圖形的過(guò)程,注重探索空間圖形的位置關(guān)系,歸納、概括它們的判定定理和性質(zhì)定理。
人教版高中數(shù)學(xué)必修五教案篇十八
1. 掌握數(shù)軸的三要素,能正確畫(huà)出數(shù)軸。
2、會(huì)用數(shù)軸上的點(diǎn)表示有理數(shù);;會(huì)求一個(gè)有理數(shù)的相反數(shù);能利用數(shù)軸比較有理數(shù)的大小。
【過(guò)程與方法】 經(jīng)歷從現(xiàn)實(shí)情景抽象出數(shù)軸的過(guò)程,體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系
【情感態(tài)度與價(jià)值觀】 感受數(shù)形結(jié)合的思想方法;
【教學(xué)重點(diǎn)】會(huì)說(shuō)出數(shù)軸上已知點(diǎn)所表示的數(shù),能將已知數(shù)在數(shù)軸上表示出來(lái)。
【教學(xué)難點(diǎn)】利用數(shù)軸比較有理數(shù)的大小。
(一)創(chuàng)設(shè)情境,引入課題
(1)(出示投影1)問(wèn)題:三個(gè)溫度計(jì)所表示的溫度是多少?
學(xué)生回答.
(2)在一條東西向的馬路上,有一個(gè)汽車站,汽車站東3m和7.5m處分別有一棵柳樹(shù)和一棵楊樹(shù),汽車站西3m和4.8m處分別有一棵槐樹(shù)和一根電線桿,試畫(huà)圖表示這一情境.
這種表示數(shù)的圖形就是今天我們要學(xué)的內(nèi)容―數(shù)軸(板書(shū)課題)
(二)得出定義,揭示內(nèi)涵
與溫度計(jì)類似,我們也可以在一條直線上畫(huà)出刻度,標(biāo)上讀數(shù),用直線上的點(diǎn)表示正數(shù)、負(fù)數(shù)和零.具體方法如下(教師示范畫(huà)數(shù)軸,邊說(shuō)邊畫(huà)):
(1)畫(huà)直線,取原點(diǎn)
(2)標(biāo)正方向
(3)選取單位長(zhǎng)度,標(biāo)數(shù)(強(qiáng)調(diào):負(fù)數(shù)從0向左寫(xiě)起)。
概念:規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線叫做數(shù)軸。
(三)強(qiáng)化概念,深入理解
1、下列圖形哪些是數(shù)軸,哪些不是,為什么?
學(xué)生回答,相互糾正,理解數(shù)軸三要素,鞏固數(shù)軸概念。
2、學(xué)生自己在練習(xí)本上畫(huà)一個(gè)數(shù)軸。教師在黑板上畫(huà)
(四)動(dòng)手練習(xí),歸納總結(jié)
1、在數(shù)軸上的點(diǎn)表示有理數(shù)。
一個(gè)學(xué)生在黑板上完成,其他同學(xué)在自己所畫(huà)數(shù)軸上完成。
明確“任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示”
2.指出數(shù)軸上a,b,c,d各點(diǎn)分別表示什么數(shù)。@師愿教育
3、通過(guò)數(shù)軸比較有理數(shù)的大小。觀察類比溫度計(jì)回答問(wèn)題
(1)在數(shù)軸上表示的兩個(gè)數(shù),(右 ) 邊的數(shù)總比 ( 左)邊的數(shù)大;
(2)正數(shù)都(大于 )0,負(fù)數(shù)都(小于)0;正數(shù)(大于)一切負(fù)數(shù)。
例1、比較下列各數(shù)的.大小: -1.5 , 0.6, -3, -2
鞏固所學(xué)知識(shí)
(五)、歸納小結(jié),強(qiáng)化思想
師生總結(jié)本課內(nèi)容。
1、數(shù)軸的概念,數(shù)軸的三要素
2、數(shù)軸上兩個(gè)不同的點(diǎn)所表示的兩個(gè)有理數(shù)大小關(guān)系
3、所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)來(lái)表示
師:你感到自己今天的表現(xiàn)怎樣?
習(xí)題2.2 1、2、3
選作第4題
人教版高中數(shù)學(xué)必修五教案篇十九
1.掌握數(shù)軸的三要素,能正確畫(huà)出數(shù)軸。
2、會(huì)用數(shù)軸上的點(diǎn)表示有理數(shù);;會(huì)求一個(gè)有理數(shù)的相反數(shù);能利用數(shù)軸比較有理數(shù)的大小。
【過(guò)程與方法】經(jīng)歷從現(xiàn)實(shí)情景抽象出數(shù)軸的過(guò)程,體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系。
【情感態(tài)度與價(jià)值觀】感受數(shù)形結(jié)合的.思想方法;
【教學(xué)重點(diǎn)】會(huì)說(shuō)出數(shù)軸上已知點(diǎn)所表示的數(shù),能將已知數(shù)在數(shù)軸上表示出來(lái)。
【教學(xué)難點(diǎn)】利用數(shù)軸比較有理數(shù)的大小。
(一)創(chuàng)設(shè)情境,引入課題。
(1)(出示投影1)問(wèn)題:三個(gè)溫度計(jì)所表示的溫度是多少?
學(xué)生回答.。
(2)在一條東西向的馬路上,有一個(gè)汽車站,汽車站東3m和7.5m處分別有一棵柳樹(shù)和一棵楊樹(shù),汽車站西3m和4.8m處分別有一棵槐樹(shù)和一根電線桿,試畫(huà)圖表示這一情境.
這種表示數(shù)的圖形就是今天我們要學(xué)的內(nèi)容—數(shù)軸(板書(shū)課題)。
(二)得出定義,揭示內(nèi)涵。
與溫度計(jì)類似,我們也可以在一條直線上畫(huà)出刻度,標(biāo)上讀數(shù),用直線上的點(diǎn)表示正數(shù)、負(fù)數(shù)和零.具體方法如下(教師示范畫(huà)數(shù)軸,邊說(shuō)邊畫(huà)):
(1)畫(huà)直線,取原點(diǎn)。
(2)標(biāo)正方向。
(3)選取單位長(zhǎng)度,標(biāo)數(shù)(強(qiáng)調(diào):負(fù)數(shù)從0向左寫(xiě)起)。
概念:規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線叫做數(shù)軸。
(三)強(qiáng)化概念,深入理解。
1、下列圖形哪些是數(shù)軸,哪些不是,為什么?
學(xué)生回答,相互糾正,理解數(shù)軸三要素,鞏固數(shù)軸概念。
2、學(xué)生自己在練習(xí)本上畫(huà)一個(gè)數(shù)軸。教師在黑板上畫(huà)。
(四)動(dòng)手練習(xí),歸納總結(jié)。
1、在數(shù)軸上的點(diǎn)表示有理數(shù)。
一個(gè)學(xué)生在黑板上完成,其他同學(xué)在自己所畫(huà)數(shù)軸上完成。
明確“任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示”
2.指出數(shù)軸上a,b,c,d各點(diǎn)分別表示什么數(shù)。@師愿教育。
3、通過(guò)數(shù)軸比較有理數(shù)的大小。觀察類比溫度計(jì)回答問(wèn)題。
(1)在數(shù)軸上表示的兩個(gè)數(shù),(右)邊的數(shù)總比(左)邊的數(shù)大;
(2)正數(shù)都(大于)0,負(fù)數(shù)都(小于)0;正數(shù)(大于)一切負(fù)數(shù)。
例1、比較下列各數(shù)的大小:-1.5,0.6,-3,-2。
鞏固所學(xué)知識(shí)。
(五)、歸納小結(jié),強(qiáng)化思想。
師生總結(jié)本課內(nèi)容。
1、數(shù)軸的概念,數(shù)軸的三要素。
2、數(shù)軸上兩個(gè)不同的點(diǎn)所表示的兩個(gè)有理數(shù)大小關(guān)系。
3、所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)來(lái)表示。
師:你感到自己今天的表現(xiàn)怎樣?
習(xí)題2.21、2、3。
選作第4題。
【本文地址:http://m.aiweibaby.com/zuowen/11054082.html】