高一數(shù)學必修二教案(專業(yè)19篇)

格式:DOC 上傳日期:2023-11-21 18:55:14
高一數(shù)學必修二教案(專業(yè)19篇)
時間:2023-11-21 18:55:14     小編:曼珠

編寫教案可以讓教師更好地掌握課程進度,合理安排時間。編寫教案時,首先需要明確教學目標和教學重點。教師可以通過參考以下教案,對學科知識的教學進行更好的組織和安排。

高一數(shù)學必修二教案篇一

(1)函數(shù)單調性的概念。包括增函數(shù)、減函數(shù)的定義,單調區(qū)間的概念函數(shù)的單調性的判定方法,函數(shù)單調性與函數(shù)圖像的關系。

(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像。

二、重點難點分析。

(1)本節(jié)教學的重點是函數(shù)的單調性,奇偶性概念的形成與熟悉。教學的難點是領悟函數(shù)單調性,奇偶性的本質,把握單調性的證實。

(2)函數(shù)的單調性這一性質學生在初中所學函數(shù)中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準確的數(shù)學語言去刻畫它。這種由形到數(shù)的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫。單調性的證實是學生在函數(shù)內容中首次接觸到的代數(shù)論證內容,學生在代數(shù)論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數(shù)證實,也沒有意識到它的重要性,所以單調性的證實自然就是教學中的難點。

三、教法建議。

(1)函數(shù)單調性概念引入時,可以先從學生熟悉的一次函數(shù),,二次函數(shù)。反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點感性熟悉出發(fā),通過問題逐步向抽象的定義靠攏。如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數(shù)值的關系的角度來解釋,引導學生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學語言表示出來。在這個過程中對一些關鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結合起來。

(2)函數(shù)單調性證實的步驟是嚴格規(guī)定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規(guī)律。

函數(shù)的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學生把看到的用數(shù)學表達式寫出來。經歷了這樣的過程,再得到等式時,就比較輕易體會它代表的是無數(shù)多個等式,是個恒等式。關于定義域關于原點對稱的問題,也可借助課件將函數(shù)圖象進行多次改動,幫助學生發(fā)現(xiàn)定義域的對稱性,同時還可以借助圖象(如)說明定義域關于原點對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件。

高一數(shù)學必修二教案篇二

1.要讀好課本。

有些“自我感覺良好”的學生,常輕視課本中基礎知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠,重“量”輕“質”,陷入題海,到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。因此,同學們應從高一開始,增強自己從課本入手進行研究的意識。

2.要記好筆記。

首先,在課堂教學中培養(yǎng)好的聽課習慣是很重要的。當然聽是主要的,聽能使注意力集中,要把老師講的關鍵性部分聽懂、聽會。聽的時候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應適當?shù)赜心康男缘挠浐霉P記,領會課上老師的主要精神與意圖??茖W的記筆記可以提高45分鐘課堂效益。

3.要做好作業(yè)。

在課堂、課外練習中培養(yǎng)良好的作業(yè)習慣也很有必要.在作業(yè)中不但做得整齊、清潔,培養(yǎng)一種美感,還要有條理,這是培養(yǎng)邏輯能力的一條有效途徑,必須獨立完成。同時可以培養(yǎng)一種獨立思考和解題正確的責任感。在作業(yè)時要提倡效率,應該十分鐘完成的作業(yè),不拖到半小時完成,疲疲憊憊的作業(yè)習慣使思維松散、精力不集中,這對培養(yǎng)數(shù)學能力是有害而無益的。

4.要寫好總結。

一個人不斷接受新知識,不斷遭遇挫折產生疑問,不斷地總結,才有不斷地提高。“不會總結的同學,他的能力就不會提高,挫折經驗是成功的基石?!弊匀唤邕m者生存的生物進化過程便是最好的例證。學習要經??偨Y規(guī)律,目的就是為了更一步的發(fā)展。

通過與老師、同學平時的接觸交流,逐步總結出一般性的學習步驟,它包括:制定計劃、課前自學、專心上課、及時復習、獨立作業(yè)、解決疑難、系統(tǒng)小結和課外學習幾個方面,簡單概括為四個環(huán)節(jié)(預習、上課、整理、作業(yè))和一個步驟(復習總結)。每一個環(huán)節(jié)都有較深刻的內容,帶有較強的目的性、針對性,要落實到位。堅持“兩先兩后一小結”(先預習后聽課,先復習后做作業(yè),寫好每個單元的總結)的學習習慣。

1.課前預習教材。課前可以把教材上第二天老師要講的內容看一下,看看哪些能看懂,哪些不懂。這樣老師在講課的時候我們就能帶著問題去聽,把自己沒看懂的問題聽懂。

2.上課專心聽講。這是很重要的,很多同學以為自己什么都弄懂了,就自己做自己的題目。其實即使是自己看懂了的,也可以看看老師也沒有另外的理解方法,老師的方法是不是比自己好。聽老師有時候講比自己看更好。

小編推薦:高一數(shù)學怎么學才能學好。

3.課后認真復習。剛學的知識,還沒完全被消化吸收成為自己的知識,如果不及時復習,就很容易忘記。所以,課后一定要抽出一些時間,及時對所學進行鞏固。

4.通過習題鞏固。數(shù)學是理科,需要通過一定量的習題來鞏固,量變積累到了一定量才能質變嘛。這個并非要各位打題海戰(zhàn)術,只要求各位做到熟練為止。

5.錯題反復研究。自己準備一個錯題本,把考試時候做錯的題目記錄下來,寫上做錯的原因,反復研究,避免再次出錯。

高一數(shù)學必修二教案篇三

掌握用向量方法建立兩角差的余弦公式。通過簡單運用,使學生初步理解公式的結構及其功能,為建立其它和(差)公式打好基礎。

1.教學重點:通過探索得到兩角差的余弦公式;

2.教學難點:探索過程的組織和適當引導,這里不僅有學習積極性的問題,還有探索過程必用的基礎知識是否已經具備的問題,運用已學知識和方法的能力問題,等等。

1.學法:啟發(fā)式教學。

2.教學用具:多媒體。

(一)導入:我們在初中時就知道?,,由此我們能否得到大家可以猜想,是不是等于呢?

(二)探討過程:

在第一章三角函數(shù)的學習當中我們知道,在設角的終邊與單位圓的交點為,等于角與單位圓交點的橫坐標,也可以用角的余弦線來表示,大家思考:怎樣構造角和角?(注意:要與它們的正弦線、余弦線聯(lián)系起來。)。

展示多媒體動畫課件,通過正、余弦線及它們之間的幾何關系探索與xx之間的關系,由此得到,認識兩角差余弦公式的結構。

提示:

1、結合圖形,明確應該選擇哪幾個向量,它們是怎樣表示的?

2、怎樣利用向量的數(shù)量積的概念的計算公式得到探索結果?

展示多媒體課件。

比較用幾何知識和向量知識解決問題的不同之處,體會向量方法的作用與便利之處。

思考:再利用兩角差的余弦公式得出。

(三)例題講解。

例1、利用和、差角余弦公式求、的值。

解:分析:把、構造成兩個特殊角的和、差。

點評:把一個具體角構造成兩個角的和、差形式,有很多種構造方法,例如:,要學會靈活運用。

例2、已知,是第三象限角,求的值。

解:因為,由此得。

又因為是第三象限角,所以。

所以。

點評:注意角、的象限,也就是符號問題。

(四)小結:本節(jié)我們學習了兩角差的余弦公式,首先要認識公式結構的特征,了解公式的推導過程,熟知由此衍變的兩角和的余弦公式。在解題過程中注意角、的象限,也就是符號問題,學會靈活運用。

高一數(shù)學必修二教案篇四

>教學目標

落實情況.

解?絕對值不等式注意不要丟掉?這部分解集.。

五、作業(yè)。

1.閱讀課本?含絕對值不等式解法.。

2.習題?2、3、4。

課堂教學設計說明。

1.抓住解型絕對值不等式的關鍵是絕對值的意義,為此首先通過復習讓學生掌握好絕對值的意義,為解絕對值不等式打下牢固的基礎.

2.在解與絕對值不等式中的關鍵處設問、質疑、點撥,讓學生融會貫通的掌握它們解法之間的內在聯(lián)系,以達到提高學生解題能力的目的.

3.針對學生解()絕對值不等式容易出現(xiàn)丟掉這部分解集的錯誤,在教學中應根據絕對值的意義從數(shù)軸進行突破,并在練習中糾正這個錯誤,以提高學生的運算能力.

高一數(shù)學必修二教案篇五

教學目標。

熟悉兩角和與差的正、余公式的推導過程,提高邏輯推理能力。

掌握兩角和與差的正、余弦公式,能用公式解決相關問題。

教學重難點。

熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。

教學過程。

復習。

兩角差的余弦公式。

用-b代替b看看有什么結果?

高一數(shù)學必修二教案篇六

教學目標。

3.讓學生深刻理解向量在處理平面幾何問題中的優(yōu)越性.

教學重難點。

教學重點:用向量方法解決實際問題的基本方法:向量法解決幾何問題的“三步曲”.

教學難點:如何將幾何等實際問題化歸為向量問題.

教學過程。

由于向量的線性運算和數(shù)量積運算具有鮮明的幾何背景,平面幾何圖形的許多性質,如平移、全等、相似、長度、夾角等都可以由向量的線性運算及數(shù)量積表示出來,因此,可用向量方法解決平面幾何中的一些問題,下面我們通過幾個具體實例,說明向量方法在平面幾何中的運用。

思考:

運用向量方法解決平面幾何問題可以分哪幾個步驟?

運用向量方法解決平面幾何問題可以分哪幾個步驟?

“三步曲”:

(2)通過向量運算,研究幾何元素之間的關系,如距離、夾角等問題;。

(3)把運算結果“翻譯”成幾何關系.

高一數(shù)學必修二教案篇七

3.通過參與編題解題,激發(fā)學生學習的愛好.

教學重點是通項公式的熟悉;教學難點是對公式的靈活運用.

實物投影儀,多媒體軟件,電腦.

研探式.

一.復習提問

等差數(shù)列的概念是從相鄰兩項的關系加以定義的,這個關系用遞推公式來表示比較簡單,但我們要圍繞通項公式作進一步的理解與應用.

二.主體設計

通項公式反映了項與項數(shù)之間的函數(shù)關系,當?shù)炔顢?shù)列的首項與公差確定后,數(shù)列的每一項便確定了,可以求指定的項(即已知求).找學生試舉一例如:“已知等差數(shù)列中,首項,公差,求.”這是通項公式的簡單應用,由學生解答后,要求每個學生出一些運用等差數(shù)列通項公式的題目,包括正用、反用與變用,簡單、復雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上.

1.方程思想的運用

(1)已知等差數(shù)列中,首項,公差,則-397是該數(shù)列的第x項.

(2)已知等差數(shù)列中,首項,則公差

(3)已知等差數(shù)列中,公差,則首項

這一類問題先由學生解決,之后教師點評,四個量,在一個等式中,運用方程的思想方法,已知其中三個量的值,可以求得第四個量.

2.基本量方法的使用

(1)已知等差數(shù)列中,求的值.

(2)已知等差數(shù)列中,求.

若學生的題目只有這兩種類型,教師可以小結(請出題者、解題者概括):因為已知條件可以化為關于和的二元方程組,所以這些等差數(shù)列是確定的,由和寫出通項公式,便可歸結為前一類問題.解決這類問題只需把兩個條件(等式)化為關于和的二元方程組,以求得和,和稱作基本量.

教師提出新的問題,已知等差數(shù)列的一個條件(等式),能否確定一個等差數(shù)列?學生回答后,教師再啟發(fā),由這一個條件可得到關于和的二元方程,這是一個和的`制約關系,從這個關系可以得到什么結論?舉例說明(例題可由學生或教師給出,視具體情況而定).

如:已知等差數(shù)列中,…

由條件可得即,可知,這是比較顯然的,與之相關的還能有什么結論?若學生答不出可提示,一定得某一項的值么?能否與兩項有關?多項有關?由學生發(fā)現(xiàn)規(guī)律,完善問題(3)已知等差數(shù)列中,求;;;;….

類似的還有

(4)已知等差數(shù)列中,求的值.

以上屬于對數(shù)列的項進行定量的研究,有無定性的判定?引出

3.研究等差數(shù)列的單調性

4.研究項的符號

這是為研究等差數(shù)列前項和的最值所做的預備工作.可配備的題目如

(1)已知數(shù)列的通項公式為,問數(shù)列從第幾項開始小于0?

(2)等差數(shù)列從第x項起以后每項均為負數(shù).

三.小結

1.用方程思想熟悉等差數(shù)列通項公式;

2.用函數(shù)思想解決等差數(shù)列問題.

四.板書設計

等差數(shù)列通項公式1.方程思想的運用

2.基本量方法的使用

3.研究等差數(shù)列的單調性

4.研究項的符號

高一數(shù)學必修二教案篇八

掌握三角函數(shù)模型應用基本步驟:

(1)根據圖象建立解析式;

(2)根據解析式作出圖象;

(3)將實際問題抽象為與三角函數(shù)有關的簡單函數(shù)模型·。

·利用收集到的數(shù)據作出散點圖,并根據散點圖進行函數(shù)擬合,從而得到函數(shù)模型·。

一、練習講解:《習案》作業(yè)十三的第3、4題。

(精確到0·001)·。

米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?

本題的解答中,給出貨船的`進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。

練習:教材p65面3題。

三、小結:1、三角函數(shù)模型應用基本步驟:

(1)根據圖象建立解析式;

(2)根據解析式作出圖象;

(3)將實際問題抽象為與三角函數(shù)有關的簡單函數(shù)模型·。

2、利用收集到的數(shù)據作出散點圖,并根據散點圖進行函數(shù)擬合,從而得到函數(shù)模型·。

四、作業(yè)《習案》作業(yè)十四及十五。

高一數(shù)學必修二教案篇九

一、課前準備。

問題3:因為三角形的內角和是,四邊形的內角和是,五邊形的內角和是。

……所以n邊形的內角和是。

新知1:從以上事例可一發(fā)現(xiàn):

叫做合情推理。歸納推理和類比推理是數(shù)學中常用的合情推理。

新知2:類比推理就是根據兩類不同事物之間具有。

推測其中一類事物具有與另一類事物的性質的推理、

簡言之,類比推理是由的推理、

新知3歸納推理就是根據一些事物的',推出該類事物的。

的推理、歸納是的過程。

例子:哥德巴赫猜想:

觀察6=3+3,8=5+3,10=5+5,12=5+7,14=7+7,。

16=13+3,18=11+7,20=13+7,……,

50=13+37,……,100=3+97,

猜想:

歸納推理的一般步驟。

1通過觀察個別情況發(fā)現(xiàn)某些相同的性質。

2從已知的相同性質中推出一個明確表達的一般性命題(猜想)。

※典型例題。

例1用推理的形式表示等差數(shù)列1,3,5,7……2n-1,……的前n項和sn的歸納過程。

變式1觀察下列等式:1+3=4=,

1+3+5=9=,

1+3+5+7=16=,

1+3+5+7+9=25=,

……。

你能猜想到一個怎樣的結論?

變式2觀察下列等式:1=1。

1+8=9,

1+8+27=36,

1+8+27+64=100,

……。

你能猜想到一個怎樣的結論?

例2設計算的值,同時作出歸納推理,并用n=40驗證猜想是否正確。

變式:(1)已知數(shù)列的第一項,且,試歸納出這個數(shù)列的通項公式。

例3:找出圓與球的相似之處,并用圓的性質類比球的有關性質、

圓的概念和性質球的類似概念和性質。

圓的周長。

圓的面積。

圓心與弦(非直徑)中點的連線垂直于弦。

與圓心距離相等的弦長相等,

※動手試試。

2如果一條直線和兩條平行線中的一條相交,則必和另一條相交。

3如果兩條直線同時垂直于第三條直線,則這兩條直線互相平行。

三、總結提升。

※學習小結。

1、歸納推理的定義、

高一數(shù)學必修二教案篇十

教學目標。

1、理解平面向量的坐標的概念;。

2、掌握平面向量的坐標運算;。

3、會根據向量的坐標,判斷向量是否共線.

教學重難點。

教學重點:平面向量的坐標運算。

教學難點:向量的坐標表示的理解及運算的準確性.

教學過程。

平面向量基本定理:。

什么叫平面的一組基底?

平面的基底有多少組?

引入:。

1.平面內建立了直角坐標系,點a可以用什么來。

表示?

2.平面向量是否也有類似的表示呢?

高一數(shù)學必修二教案篇十一

1. 閱讀課本 練習止.

2. 回答問題

(1)課本內容分成幾個層次?每個層次的中心內容是什么?

(2)層次間的聯(lián)系是什么?

(3)對數(shù)函數(shù)的定義是什么?

(4)對數(shù)函數(shù)與指數(shù)函數(shù)有什么關系?

3. 完成 練習

4. 小結.

二、方法指導

1. 在學習對數(shù)函數(shù)時,同學們應從熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質.

一、提問題

1. 對數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?

2.兩個函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關系?

3.是否所有的函數(shù)都有反函數(shù)?試舉例說明.

二、變題目

1. 試求下列函數(shù)的反函數(shù):

(1) ; (2) ;

(3) ; (4) .

2. 求下列函數(shù)的定義域:

(1) ; (2) ; (3) .

3. 已知 則 = ; 的定義域為 .

1.對數(shù)函數(shù)的'有關概念

(1)把函數(shù) 叫做對數(shù)函數(shù), 叫做對數(shù)函數(shù)的底數(shù);

(2)以10為底數(shù)的對數(shù)函數(shù) 為常用對數(shù)函數(shù);

(3)以無理數(shù) 為底數(shù)的對數(shù)函數(shù) 為自然對數(shù)函數(shù).

2. 反函數(shù)的概念

在指數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ;在對數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ,像這樣的兩個函數(shù)叫做互為反函數(shù).

3. 與對數(shù)函數(shù)有關的定義域的求法:

4. 舉例說明如何求反函數(shù).

一、課外作業(yè): 習題3-5 a組 1,2,3, b組1,

二、課外思考:

1. 求定義域: .

2. 求使函數(shù) 的函數(shù)值恒為負值的 的取值范圍.

高一數(shù)學必修二教案篇十二

教學目標。

o了解向量的實際背景,理解平面向量的概念和向量的幾何表示;掌握向量的模、零向量、單位向量、平行向量、相等向量、共線向量等概念;并會區(qū)分平行向量、相等向量和共線向量。

o通過對向量的學習,使學生初步認識現(xiàn)實生活中的向量和數(shù)量的本質區(qū)別。

o通過學生對向量與數(shù)量的識別能力的訓練,培養(yǎng)學生認識客觀事物的數(shù)學本質的能力。

教學重難點。

教學重點:理解并掌握向量、零向量、單位向量、相等向量、共線向量的概念,會表示向量。

教學難點:平行向量、相等向量和共線向量的區(qū)別和聯(lián)系。

教學過程。

(一)向量的概念:我們把既有大小又有方向的量叫向量。

(二)(教材p74面的四個圖制作成幻燈片)請同學閱讀課本后回答:(7個問題一次出現(xiàn))。

1、數(shù)量與向量有何區(qū)別?(數(shù)量沒有方向而向量有方向)。

2、如何表示向量?

3、有向線段和線段有何區(qū)別和聯(lián)系?分別可以表示向量的什么?

4、長度為零的向量叫什么向量?長度為1的向量叫什么向量?

5、滿足什么條件的兩個向量是相等向量?單位向量是相等向量嗎?

6、有一組向量,它們的方向相同或相反,這組向量有什么關系?

7、如果把一組平行向量的起點全部移到一點o,這是它們是不是平行向量?

這時各向量的終點之間有什么關系?

課后小結。

1、描述向量的兩個指標:模和方向。

2、平面向量的概念和向量的幾何表示;

3、向量的模、零向量、單位向量、平行向量等概念。

高一數(shù)學必修二教案篇十三

教學目標。

掌握三角函數(shù)模型應用基本步驟:

(1)根據圖象建立解析式;

(2)根據解析式作出圖象;

(3)將實際問題抽象為與三角函數(shù)有關的簡單函數(shù)模型。

教學重難點。

利用收集到的數(shù)據作出散點圖,并根據散點圖進行函數(shù)擬合,從而得到函數(shù)模型。

教學過程。

一、練習講解:《習案》作業(yè)十三的第3、4題。

(精確到0.001).

米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域。

本題的解答中,給出貨船的進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。

練習:教材p65面3題。

三、小結:1、三角函數(shù)模型應用基本步驟:

(1)根據圖象建立解析式;

(2)根據解析式作出圖象;

(3)將實際問題抽象為與三角函數(shù)有關的簡單函數(shù)模型。

2、利用收集到的數(shù)據作出散點圖,并根據散點圖進行函數(shù)擬合,從而得到函數(shù)模型。

四、作業(yè)《習案》作業(yè)十四及十五。

高一數(shù)學必修二教案篇十四

(2)了解區(qū)間的概念;。

(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;。

【問題診斷分析】在本節(jié)課的教學中,學生可能遇到的問題是函數(shù)的概念及符號的理解,產生這一問題的原因是:函數(shù)本身就是一個抽象的概念,對學生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數(shù)的概念,培養(yǎng)學生的抽象概況能力,其中關鍵是理論聯(lián)系實際,把抽象轉化為具體。

問題1:一枚炮彈發(fā)射后,經過26s落到地面擊中目標.炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規(guī)律是:h=130t-5t2.

1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?

1.2高度變量h與時間變量t之間的對應關系是否為函數(shù)?若是,其自變量是什么?

設計意圖:通過以上問題,讓學生正確理解讓學生體會用解析式或圖象刻畫兩個變量之間的依賴關系,從問題的實際意義可知,在t的變化范圍內任給一個t,按照給定的對應關系,都有的一個高度h與之對應。

問題2:分析教科書中的實例(2),引導學生看圖并啟發(fā):在t的變化t按照給定的`圖象,都有的一個臭氧層空洞面積s與之相對應。

問題3:要求學生仿照實例(1)、(2),描述實例(3)中恩格爾系數(shù)和時間的關系。

設計意圖:通過這些問題,讓學生理解得到函數(shù)的定義,培養(yǎng)學生的歸納、概況的能力。

高一數(shù)學必修二教案篇十五

教學過程:

(20秒以內)。

內容:你好,現(xiàn)在讓我們一起來學習《集合的運算——自己探索也能發(fā)現(xiàn)的'數(shù)學規(guī)律(第二講)》。

第1張ppt。

12秒以內。

(4分20秒左右)。

1·引入:牛頓曾說過:“沒有大膽的猜測,就做不出偉大的發(fā)現(xiàn)?!?/p>

那么,這個規(guī)律是偶然的,還是一個恒等式呢?

第2張ppt。

28秒以內。

2·規(guī)律的驗證:

第3張ppt。

2分10秒以內。

3·抽象概括:通過我們的觀察和驗證,我們發(fā)現(xiàn)這個規(guī)律是一個恒等式。

而這個規(guī)律就是180年前著名的英國數(shù)學家德摩根發(fā)現(xiàn)的。

為了紀念他,我們將它稱為德摩根律。

原來我們通過自己的探索也能發(fā)現(xiàn)這么偉大的數(shù)學規(guī)律。

第4張ppt。

30秒以內。

第5張ppt。

1分20秒以內。

(20秒以內)。

通過這在道題的解答,我們發(fā)現(xiàn)德摩根律為解答集合運算問題提供了更為簡便的方法。

希望你在今后的學習中,勇于探索,發(fā)現(xiàn)更多有趣的規(guī)律。

第6張ppt。

10秒以內。

教學反思(自我評價)。

高一數(shù)學必修二教案篇十六

教學目標。

1、知識與技能。

(1)推廣角的概念、引入大于角和負角;(2)理解并掌握正角、負角、零角的定義;(3)理解任意角以及象限角的概念;(4)掌握所有與角終邊相同的角(包括角)的表示方法;(5)樹立運動變化觀點,深刻理解推廣后的角的概念;(6)揭示知識背景,引發(fā)學生學習興趣。(7)創(chuàng)設問題情景,激發(fā)學生分析、探求的學習態(tài)度,強化學生的參與意識。

2、過程與方法。

通過創(chuàng)設情境:“轉體,逆(順)時針旋轉”,角有大于角、零角和旋轉方向不同所形成的角等,引入正角、負角和零角的概念;角的概念得到推廣以后,將角放入平面直角坐標系,引入象限角、非象限角的概念及象限角的判定方法;列出幾個終邊相同的角,畫出終邊所在的位置,找出它們的關系,探索具有相同終邊的角的表示;講解例題,總結方法,鞏固練習。

3、情態(tài)與價值。

通過本節(jié)的學習,使同學們對角的概念有了一個新的認識,即有正角、負角和零角之分。角的概念推廣以后,知道角之間的關系。理解掌握終邊相同角的表示方法,學會運用運動變化的觀點認識事物。

教學重難點。

重點:理解正角、負角和零角的定義,掌握終邊相同角的表示法。

難點:終邊相同的角的表示。

教學工具。

投影儀等。

教學過程。

【創(chuàng)設情境】。

思考:你的手表慢了5分鐘,你是怎樣將它校準的?假如你的手表快了1.25。

小時,你應當如何將它校準?當時間校準以后,分針轉了多少度?

[取出一個鐘表,實際操作]我們發(fā)現(xiàn),校正過程中分針需要正向或反向旋轉,有時轉不到一周,有時轉一周以上,這就是說角已不僅僅局限于之間,這正是我們這節(jié)課要研究的主要內容——任意角。

【探究新知】。

1.初中時,我們已學習了角的概念,它是如何定義的呢?

[展示投影]角可以看成平面內一條射線繞著端點從一個位置旋轉到另一個位置所成的圖形。如圖1.1-1,一條射線由原來的位置,繞著它的端點o按逆時針方向旋轉到終止位置ob,就形成角a.旋轉開始時的射線叫做角的始邊,ob叫終邊,射線的端點o叫做叫a的頂點。

[展示課件]如自行車車輪、螺絲扳手等按不同方向旋轉時成不同的角,這些都說明了我們研究推廣角概念的必要性。為了區(qū)別起見,我們規(guī)定:按逆時針方向旋轉所形成的角叫正角(positiveangle),按順時針方向旋轉所形成的角叫負角(negativeangle).如果一條射線沒有做任何旋轉,我們稱它形成了一個零角(zeroangle).

8.學習小結。

(1)你知道角是如何推廣的嗎?

(2)象限角是如何定義的呢?

(3)你熟練掌握具有相同終邊角的表示了嗎?會寫終邊落在x軸、y軸、直。

線上的角的集合。

五、評價設計。

1.作業(yè):習題1.1a組第1,2,3題。

2.多舉出一些日常生活中的“大于的角和負角”的例子,熟練掌握他們的表示,

進一步理解具有相同終邊的角的特點。

課后小結。

(1)你知道角是如何推廣的嗎?

(2)象限角是如何定義的呢?

(3)你熟練掌握具有相同終邊角的表示了嗎?會寫終邊落在x軸、y軸、直。

線上的角的集合。

課后習題。

作業(yè):

1、習題1.1a組第1,2,3題。

2.多舉出一些日常生活中的“大于的角和負角”的例子,熟練掌握他們的表示,

進一步理解具有相同終邊的角的特點。

板書。

高一數(shù)學必修二教案篇十七

用坐標法解決幾何問題的步驟:

第二步:通過代數(shù)運算,解決代數(shù)問題;

第三步:將代數(shù)運算結果“翻譯”成幾何結論、

重點與難點:直線與圓的方程的應用、

問 題設計意圖師生活動

生:回顧,說出自己的看法、

2、解決直線與圓的位置關系,你將采用什么方法?

生:回顧、思考、討論、交流,得到解決問題的方法、

問 題設計意圖師生活動

3、閱讀并思考教科書上的例4,你將選擇什么方 法解決例4的'問題

生:自 學例4,并完成練習題1、2、

生:建立適當?shù)闹苯亲鴺讼担?探求解決問題的方法、

8、小結:

(1)利用“坐標法”解決問對知識進行歸納概括,體會利 師:指導 學生完成練習題、

生:閱讀教科書的例3,并完成第

問 題設計意圖師生活動

題的需要準備什么工作?

(2)如何建立直角坐標系,才能易于解決平面幾何問題?

(3)你認為學好“坐標法”解決問題的關鍵是什么?

高一數(shù)學必修二教案篇十八

設計思路:通過一系列的猜想得出德。摩根律,但是這個結論僅僅是猜想,數(shù)學是一門科學,所以需要論證它的正確性,因此本節(jié)通過剖析維恩圖的四部分來驗證猜想的正確性,并對德摩根律進行簡單的應用,因此我們制作了本微課。

教學過程:

一、片頭。

(20秒以內)。

內容:你好,現(xiàn)在讓我們一起來學習《集合的運算——自己探索也能發(fā)現(xiàn)的數(shù)學規(guī)律(第二講)》。

第1張ppt。

12秒以內。

二、正文講解。

(4分20秒左右)。

1、引入:牛頓曾說過:“沒有大膽的猜測,就做不出偉大的發(fā)現(xiàn)?!?/p>

那么,這個規(guī)律是偶然的,還是一個恒等式呢?

第2張ppt。

28秒以內。

2、規(guī)律的驗證:。

第3張ppt。

2分10秒以內。

3、抽象概括:通過我們的觀察和驗證,我們發(fā)現(xiàn)這個規(guī)律是一個恒等式。

而這個規(guī)律就是180年前著名的英國數(shù)學家德摩根發(fā)現(xiàn)的。

為了紀念他,我們將它稱為德摩根律。

原來我們通過自己的探索也能發(fā)現(xiàn)這么偉大的數(shù)學規(guī)律。

第4張ppt。

30秒以內。

第5張ppt。

1分20秒以內。

三、結尾。

(20秒以內)。

通過這在道題的解答,我們發(fā)現(xiàn)德摩根律為解答集合運算問題提供了更為簡便的方法。

希望你在今后的學習中,勇于探索,發(fā)現(xiàn)更多有趣的規(guī)律。

第6張ppt。

10秒以內。

教學反思(自我評價)。

學生在學習集合時會接觸到很多的集合運算,往往學生覺得這是集合中的難點,因此本節(jié)課通過一系列的猜想,以精彩的動畫展示,讓學生在直觀的環(huán)境下輕松的學習,提高學生學習數(shù)學的興趣,并通過層層深入的講解,讓學生進一步加強對集合運算的理解和應用能力,效果非常好。

高一數(shù)學必修二教案篇十九

忙碌的日子總是過得很快,轉眼間期中考試的時間又到了,我們高一數(shù)學必修四的教學也進入了最后的復習沖刺階段?;仡櫚雽W期以來,我對前面的教學感受頗深。

必修四由三角函數(shù)、平面向量、和三角恒等變換三章構成,三角函數(shù)與三角恒等變換是高中數(shù)學課程的傳統(tǒng)內容,平面向量基本上也是,因此,本模塊的內容屬于“傳統(tǒng)內容”。與以往的教科書相比較,本書在內容、要求以及章節(jié)安排、處理方法上都有新的變化。

在內容安排上,第一章三角函數(shù)的學習為第二章平面向量作了必要的準備,同時應用第二章平面向量的知識推導兩角差的余弦公式,使第三章三角恒等變換可以獨立成章。學習完后,心中有幾點體會如下:

【本文地址:http://m.aiweibaby.com/zuowen/14089661.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔