每個人都有自己的目標(biāo)和追求,為了實(shí)現(xiàn)這些目標(biāo),我們需要付出努力??偨Y(jié)要突出問題和挑戰(zhàn),提出對策和解決方案,以便有針對性地改進(jìn)和提高。下面是一些優(yōu)秀的作品范文,希望能給大家提供一些靈感和指導(dǎo)。
圓柱的體積數(shù)學(xué)教學(xué)設(shè)計篇一
一、填空。
1、一個圓柱體,底面積是12平方分米,高6分米,它的體積是立方分米。
2、一個圓柱體積是84立方厘米,底面積21平方厘米,高是()。
3、已知圓柱谷桶里底面半徑是3米,高4米,它的底面積是(),容積是()立方米。
二、求下面圓柱的`體積。
1)底面積0。6平方米,高0。5米2)底面半徑4厘米,高12厘米。
3)底面直徑5分米,高6分米4)底面周長12。56厘米,高12厘米。
圓柱的體積數(shù)學(xué)教學(xué)設(shè)計篇二
1、運(yùn)用遷移規(guī)律,引導(dǎo)學(xué)生借助圓面積計算公式的推導(dǎo)方法來推導(dǎo)圓柱的體積計算公式,并理解其推導(dǎo)過程。
2、會用圓柱的體積計算公式計算圓柱形物體的體積或容積。
3、引導(dǎo)學(xué)生逐步學(xué)會轉(zhuǎn)化的數(shù)學(xué)思想和數(shù)學(xué)方法,培養(yǎng)學(xué)生解決實(shí)際問題的能力。
4、借助遠(yuǎn)程教育的課件資源演示,培養(yǎng)學(xué)生抽象、概括的思維能力。
圓柱體體積計算公式的推導(dǎo)過程。
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“有效的數(shù)學(xué)學(xué)習(xí)活動不能單純地依賴模仿與記憶,動手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式?!奔匆笪覀冊诮虒W(xué)中,要讓學(xué)生通過自主的知識建構(gòu)活動,學(xué)生的潛能得以開發(fā),情感、態(tài)度、價值觀得以培養(yǎng),從而提高學(xué)生的數(shù)學(xué)素養(yǎng)。因此根據(jù)本節(jié)課內(nèi)容的特點(diǎn),這節(jié)課的教學(xué)將通過對圓柱體積知識的探究,重點(diǎn)培養(yǎng)學(xué)生探究數(shù)學(xué)知識的能力和方法。為了把“一切為了學(xué)生的發(fā)展”這一新的教學(xué)理念融入到了課堂教學(xué)之中。在課堂教學(xué)中將以學(xué)生的活動為主,讓學(xué)生通過親身體驗、實(shí)際操作來找出數(shù)學(xué)知識之間的內(nèi)在聯(lián)系。在學(xué)生學(xué)習(xí)過程中,充分運(yùn)用了遠(yuǎn)程教育資源中動畫、聲音、視頻文件,并進(jìn)行了有效地整合。本節(jié)課將使用以下策略:
1、利用遷移規(guī)律引入新課,借助遠(yuǎn)程資源為學(xué)生創(chuàng)設(shè)良好的學(xué)習(xí)情境。
2、以合作探究為主要的學(xué)習(xí)方式,充分發(fā)揮學(xué)生的自主性,體現(xiàn)學(xué)生的主體地位。
3、練習(xí)多樣化,層次化。
4、引導(dǎo)學(xué)生把知識轉(zhuǎn)化成相應(yīng)的技能,從而提高靈活運(yùn)用的能力,培養(yǎng)學(xué)生的綜合素質(zhì)。
一、回憶舊知,實(shí)現(xiàn)遷移。
1、學(xué)習(xí)圓的面積時,我們是怎樣推導(dǎo)出圓的面積計算公式的?利用多媒體課件動態(tài)演示把圓等分切割,拼成一個近似的長方形,找出圓與所拼成的長方形之間的關(guān)系,進(jìn)而推導(dǎo)出圓面積計算公式的過程。
a.半徑5厘米。
b.直徑6分米。
二、指名說說自己想法。
教師引入:這節(jié)課我們就來研究如何將圓柱轉(zhuǎn)化成我們已經(jīng)學(xué)過的圖形來求出它的體積。(板書課題:圓柱的體積)。
2、生討論,交流。
三、驗證。
教師演示:。
(2)將圓柱的`底面、長方體的底面閃爍后移出來。提問:你學(xué)過將圓變成長方形嗎?
(3)再次出示圓柱形物體,動畫演示圓柱拼成近似長方體。讓學(xué)生取出圓柱體學(xué)具拼成近似長方體。
四、探索圓柱與所拼成的近似長方體之間的關(guān)系。
1、學(xué)生動手進(jìn)行實(shí)驗。請每個小組拿出學(xué)具,并研究轉(zhuǎn)化后的長方體和原來圓柱體積、底面積、高之間的關(guān)系。
2、學(xué)生利用學(xué)具獨(dú)立操作(教師巡視、指導(dǎo)操作有困難的學(xué)生),思考并討論。
3、通過剛才的實(shí)驗?zāi)惆l(fā)現(xiàn)了什么?
4、學(xué)生匯報交流。
五、分析關(guān)系,總結(jié)公式引導(dǎo)學(xué)生發(fā)現(xiàn)并說出:
圓柱體轉(zhuǎn)化成長方體后,雖然形狀變了,但是長方體的體積和原來圓柱的體積相等,長方體的底面積等于圓柱的底面積,長方體的高等于圓柱的高??偨Y(jié)公式。
長方體的體積=底面積×高。
v=sh。
六、拓展訓(xùn)練。
七、課堂總結(jié)。
長方體的體積=底面積×高。
v=sh。
[教學(xué)反思]。
1、這節(jié)課是通過觀察、猜想、操作驗證、鞏固、應(yīng)用這幾個環(huán)節(jié)來完成的。學(xué)生在最佳的情景中通過實(shí)踐、探索、發(fā)現(xiàn),得到了“活”的知識,學(xué)到有價值的數(shù)學(xué)。
2、操作驗證是本節(jié)課的關(guān)鍵,為體現(xiàn)活動教學(xué)中學(xué)生“主動探索”的特點(diǎn),我從問題入手,組織學(xué)生圍繞觀察猜想后展開驗證性的操作活動。學(xué)生以活動小組為單位,思維活躍,積極探索,學(xué)習(xí)能力、抽象概括能力和邏輯思維能力得到了提高。
3、充分利用媒體資源,化解難點(diǎn),提高課堂效果;注重習(xí)題多樣化、層次化,拓展學(xué)生思維。
圓柱的體積數(shù)學(xué)教學(xué)設(shè)計篇三
1、知識與技能:理解教材中形體轉(zhuǎn)化的過程,掌握圓柱體積的計算公式,會用公式計算圓柱的體積,解決有關(guān)簡單的實(shí)際問題。拓展教材內(nèi)容,初步了解直柱體的相關(guān)知識。
2、過程與方法:利用教材空間,為學(xué)生搭建思維平臺。讓學(xué)生經(jīng)歷觀察、想象、思考、交流等教學(xué)活動過程,理解圓柱體積計算公式的推導(dǎo)過程,提高學(xué)生思維能力,同時體驗轉(zhuǎn)化和極限的思想。
3、情感與態(tài)度:挖掘教材內(nèi)涵,把圖形的變換過程,轉(zhuǎn)變?yōu)閷W(xué)生思維能力的培養(yǎng)、提高的過程,并進(jìn)一步發(fā)展其空間觀念,領(lǐng)悟?qū)W習(xí)數(shù)學(xué)的方法,激發(fā)學(xué)生學(xué)習(xí)興趣,滲透事物是普遍聯(lián)系的唯物辯證思想。
理解圓柱體積計算公式的推導(dǎo)過程,運(yùn)用圓柱體積計算公式準(zhǔn)確解決實(shí)際問題。
正確理解圓柱體積計算公式的推導(dǎo)過程。
一、情境導(dǎo)入:
老師手拿一個圓柱形橡皮泥(大小適宜)。
1、師:通過前面的學(xué)習(xí),關(guān)于圓柱你已經(jīng)知道什么?還想了解它的哪些知識?
生1:(已學(xué)知識)。
生2:圓柱是一種立體圖形,那么它的體積怎么計算?
2、師:聯(lián)系已經(jīng)掌握的有關(guān)立體圖形的知識,你能想辦法求出這個圓柱體的體積嗎?
生2:將這個圓柱放入一個盛有水的長方體容器中,量出上升了的水的長、寬、高,就可以求出它的體積。
生3:圓柱體在水中必須完全浸沒,而且水還不能溢出。
【學(xué)情分析:學(xué)生在五年級學(xué)習(xí)長方體、正方體有關(guān)知識的基礎(chǔ)上,很容易想到運(yùn)用“排水法”來解決問題,所以這一環(huán)節(jié)也充分給予學(xué)生展示自我的機(jī)會,培養(yǎng)思維中的自信心?!拷處熢趯W(xué)生中找出小助手,幫助測量有關(guān)數(shù)據(jù),全體同學(xué)計算水的體積,并作記載。
師:運(yùn)用轉(zhuǎn)化思想,聯(lián)系已學(xué)知識,解決新生問題,同學(xué)們真了不起!
3、師:如果要求壓路機(jī)前輪的體積或是求樓房中柱子的體積,還能不能用這種方法計算嗎?(不能)那么求圓柱的體積時是否也有一個簡單、易算的體積計算公式呢?今天我們就一起來研究圓柱體積的計算方法。
二、新舊過度:
教師引導(dǎo)學(xué)生觀察圓柱形實(shí)物。
1、師:發(fā)揮你的想象,哪些平面圖形可以演變?yōu)閳A柱體?生1:以長方形的一條長為軸,把長方形旋轉(zhuǎn)一周,就形成一個圓柱體。
(教師演示:大小不同的長方形旋轉(zhuǎn)形成圓柱體。)。
生2:把一個圓形上下平移,移動過的軌跡就是圓柱體。(課件演示:大小不同的圓形上下垂直平移不同高度形成圓柱體。)。
師:通過剛才的演示過程你覺得圓柱的體積大小與什么有關(guān)?(圓柱的底面積和高)。
學(xué)生口述,同時課件演示圓形轉(zhuǎn)化為近似長方形的過程。
三、自主探究。
1、學(xué)生手拿圓柱實(shí)物,仔細(xì)觀察,獨(dú)立思考。
2、組織學(xué)生小組討論,把個人的想法在小組中交流,形成統(tǒng)一意見。
強(qiáng)調(diào):在討論過程中,教師參與其中,傾聽學(xué)生想法,調(diào)整匯報次序,同時提醒學(xué)生觀察手中圓柱實(shí)物。
3、匯報交流,統(tǒng)一意見。
生1:把一個圓剪拼成一個近似的長方形,然后把圓形和近似長方形同時向上平移相同的高度,這時他們的軌跡一個是圓柱體,一個是近似長方體,而且它們的體積相等。
(師:一個圓柱和一個長方體只要底面積和高分別相等,它們的體積就相等嗎?一會兒我們來解決這個問題。)。
生2:把圓柱的底面分成許多相等的扇形,再沿這些分割線把圓柱縱切開來,從而剪拼成一個近似的長方體。
(師:為什么是近似的長方體?———滲透數(shù)學(xué)極限思想)。
4、課件演示:
師:仔細(xì)觀察下面這組課件,和你想象的是否一樣?
演示兩次,第一次把圓柱平均分成16份,再剪拼成一個近似的長方形;第二次把圓柱平均分成32份,再剪拼成一個近似的長方形。
生:長方體的體積相當(dāng)于圓柱的體積,長方體的底面積相當(dāng)于圓柱的底面積,而且它們的高相等。
因為:長方體的體積=底面積×高。
四、實(shí)踐應(yīng)用:
強(qiáng)調(diào)單位:90×20=1800(立方分米)。
2、再次拿出圓柱體橡皮泥,問:如果要用圓柱體積計算公式計算它的體積,你需要測量哪些數(shù)據(jù)?(底面直徑、高)。
生1:可能測量有誤差,并且還要保留。
生2:測量水的長、寬時,容器的厚度忽略不計,也能產(chǎn)生誤差。教師說明:每一個科學(xué)結(jié)論都必須經(jīng)過反復(fù)的實(shí)驗、計算,才能得到正確的結(jié)論,我們在學(xué)習(xí)上就要有這種不怕吃苦、勇于探索的精神。
(教師直接給出玻璃杯的底面直徑和高)。
六、全課小結(jié):
師:通過本節(jié)課的學(xué)習(xí),你有什么收獲?
圓柱的體積數(shù)學(xué)教學(xué)設(shè)計篇四
本節(jié)內(nèi)容包括圓柱的體積計算公式的推導(dǎo),利用公式直接計算圓柱的體積,利用公式求:圓柱形物體的容積。教材充分利用學(xué)生學(xué)過的知識作鋪墊,采用遷移法,引導(dǎo)學(xué)生將圓柱體化成已學(xué)過的立體圖形,再通過觀察、比較找兩個圖形之間的關(guān)系,可推導(dǎo)出圓柱的體積計算公式。例4是圓柱的體計算公式的直接運(yùn)用,是圓柱體積計算的基本,但這題又給學(xué)生設(shè)置了單位不統(tǒng)一的障礙,讓學(xué)生在直接應(yīng)用公式計算的同時注意計量單位的統(tǒng)一。例5是圓柱體積計算公式的擴(kuò)展練習(xí),意在讓學(xué)生加深理解容積的概念,使之明確求水桶的容積就是求水桶內(nèi)部的體積。例5除了在意義上擴(kuò)展外,公式的運(yùn)用中也有加深,水桶的底面積沒有直接給出,因此要先求出水桶的底面積,再求出水桶的體積。
1、運(yùn)用遷移規(guī)律,引導(dǎo)學(xué)生借助因面積計算公式的推導(dǎo)方法來推導(dǎo)圓柱的體積計算公式,并理解這個過程。
2.會用圓柱的體積計算圓柱形物體的體積和容積。
3.引導(dǎo)學(xué)生逐步學(xué)會轉(zhuǎn)化的數(shù)學(xué)思想和數(shù)學(xué)法,培養(yǎng)學(xué)生解決實(shí)際問題的能力。
4.借助實(shí)物演示,培養(yǎng)學(xué)生抽象、概括的思維能力。
圓柱體、長方體彩圖各一張,圓柱的體積公式演示教具。
小刀,用土豆做成的一個圓柱體。
我們能把一個圓采用化曲為直、化圓為方的方法推導(dǎo)出了圓面積的計算公式,現(xiàn)在能否采用類似的方法將圓柱切割拼合成一個學(xué)過的立體圖形來求它的體積呢?今天我們一起來探討這個問題。板書課題:圓柱的體積。
[評析:復(fù)習(xí)抓住教學(xué)重點(diǎn),瞄準(zhǔn)學(xué)習(xí)新知識所必須的舊知識,、舊方法進(jìn)行鋪墊,溝通了知識之間的內(nèi)在聯(lián)系,銜接自然。新課引入教師引出了學(xué)習(xí)新知識的思路,導(dǎo)出了解決問題的方法,從而調(diào)動了學(xué)生學(xué)習(xí)的積極性,激發(fā)了學(xué)生探求新知識的欲望。
1.探究推導(dǎo)圓柱的`體積計算公式。
(2)請學(xué)生演示教具,學(xué)生邊演示邊講解切割拼合過程。
(3)根據(jù)學(xué)生講解,出示圓柱和長方體的彩圖。
(4)學(xué)生觀察兩個立體圖,找出兩圖之間有哪些部分是相等的?
(5)依據(jù)長方體的體積計算公式推導(dǎo)出圓柱的體積計算公式。板書:v=sh。
(6)要用這個公式計算圓柱的體積必須知道什么條件?
2.教學(xué)例4。
(1)出示例4。
(3)請一名同學(xué)板演,其余同學(xué)在作業(yè)本上做。
(5)教師歸納學(xué)生所用的解題方法。強(qiáng)調(diào)在解題的過程中要注意單位統(tǒng)一。
3.教學(xué)例5。
(1)請同學(xué)們想一想,如果已知圓柱底面的半徑rt和高h(yuǎn),怎樣求圓柱的體積?請學(xué)生自學(xué)并填寫第44頁第一自然段的空白部分。
(2)出示例5,指名讀題。請同學(xué)們思考解題方法。
(3)請學(xué)生講解題思路討論、歸納統(tǒng)一的解題方法。
(4)讓學(xué)生按討論的方法做例5。
(5)教師評講、總結(jié)方法。
(6)學(xué)生討論。比較例4、例5有哪些相同和不同點(diǎn)。
1.做第44頁下面做一做的題目。兩人板演,其余在自己作業(yè)本主做,做完后及時反饋練習(xí)中出現(xiàn)的錯誤,并加以評講。
2.剛才同學(xué)們在做例4時,還有下面幾種解法,請大家仔細(xì)思考,這些解法是對還是錯?試說明理由。
(1)v=sh=5o2.1=105。
答:它的體積是105立方厘米。
(2)2.l米=210厘米。
v=sh=50210=10500。
答:它的體積是10500立方厘米。
(3)50立方厘米=0.5立方米。
v=sh=0.52.1=1.05(立方米)。
答:它的體積是l.05立方米。
(4)50平方厘米=0.005平方米。
v=0。00521=0.01051。
答:它的體積是0.01051(立方米)。
問:這節(jié)課里我們學(xué)到了哪些知識?根據(jù)學(xué)生回答教師總結(jié)。
練習(xí)十一的第l、2題。
[總結(jié)實(shí):本節(jié)課的教學(xué)體現(xiàn)了三個主要特點(diǎn):
三、正確處理兩主關(guān)系,充分發(fā)揮學(xué)生的主體作用,注意學(xué)生學(xué)習(xí)的參與過程及知識的獲取過程,學(xué)生積極性高,學(xué)習(xí)效果好??傊?本節(jié)課教師引導(dǎo)得法,學(xué)生學(xué)得靈活,體現(xiàn)了重在思,貴在導(dǎo),導(dǎo)思結(jié)合的原則,體現(xiàn)了教是為了不教,學(xué)會是為了會學(xué)的素質(zhì)教育思想。
圓柱的體積數(shù)學(xué)教學(xué)設(shè)計篇五
1、知識與技能:理解教材中形體轉(zhuǎn)化的過程,掌握圓柱體積的計算公式,會用公式計算圓柱的體積,解決有關(guān)簡單的實(shí)際問題。拓展教材內(nèi)容,初步了解直柱體的相關(guān)知識。
2、過程與方法:利用教材空間,為學(xué)生搭建思維平臺。讓學(xué)生經(jīng)歷觀察、想象、思考、交流等教學(xué)活動過程,理解圓柱體積計算公式的推導(dǎo)過程,提高學(xué)生思維能力,同時體驗轉(zhuǎn)化和極限的思想。
3、情感與態(tài)度:挖掘教材內(nèi)涵,把圖形的變換過程,轉(zhuǎn)變?yōu)閷W(xué)生思維能力的培養(yǎng)、提高的過程,并進(jìn)一步發(fā)展其空間觀念,領(lǐng)悟?qū)W習(xí)數(shù)學(xué)的方法,激發(fā)學(xué)生學(xué)習(xí)興趣,滲透事物是普遍聯(lián)系的唯物辯證思想。
理解圓柱體積計算公式的推導(dǎo)過程,運(yùn)用圓柱體積計算公式準(zhǔn)確解決實(shí)際問題。
正確理解圓柱體積計算公式的推導(dǎo)過程。
一、情境導(dǎo)入:
老師手拿一個圓柱形橡皮泥(大小適宜)。
1、師:通過前面的學(xué)習(xí),關(guān)于圓柱你已經(jīng)知道什么?還想了解它的哪些知識?
生1:(已學(xué)知識)。
生2:圓柱是一種立體圖形,那么它的體積怎么計算?
2、師:聯(lián)系已經(jīng)掌握的有關(guān)立體圖形的知識,你能想辦法求出這個圓柱體的體積嗎?
生2:將這個圓柱放入一個盛有水的長方體容器中,量出上升了的水的長、寬、高,就可以求出它的體積。
生3:圓柱體在水中必須完全浸沒,而且水還不能溢出。
【學(xué)情分析:學(xué)生在五年級學(xué)習(xí)長方體、正方體有關(guān)知識的基礎(chǔ)上,很容易想到運(yùn)用“排水法”來解決問題,所以這一環(huán)節(jié)也充分給予學(xué)生展示自我的機(jī)會,培養(yǎng)思維中的自信心?!拷處熢趯W(xué)生中找出小助手,幫助測量有關(guān)數(shù)據(jù),全體同學(xué)計算水的體積,并作記載。
師:運(yùn)用轉(zhuǎn)化思想,聯(lián)系已學(xué)知識,解決新生問題,同學(xué)們真了不起!
4、師:如果要求壓路機(jī)前輪的體積或是求樓房中柱子的體積,還能不能用這種方法計算嗎?(不能)那么求圓柱的體積時是否也有一個簡單、易算的體積計算公式呢?今天我們就一起來研究圓柱體積的計算方法。
二、新舊過度:
教師引導(dǎo)學(xué)生觀察圓柱形實(shí)物。
1、
師:發(fā)揮你的想象,哪些平面圖形可以演變?yōu)閳A柱體?生1:以長方形的一條長為軸,把長方形旋轉(zhuǎn)一周,就形成一個圓柱體。
(教師演示:大小不同的長方形旋轉(zhuǎn)形成圓柱體。)。
生2:把一個圓形上下平移,移動過的軌跡就是圓柱體。(課件演示:大小不同的圓形上下垂直平移不同高度形成圓柱體。)。
師:通過剛才的演示過程你覺得圓柱的體積大小與什么有關(guān)?(圓柱的底面積和高)。
學(xué)生口述,同時課件演示圓形轉(zhuǎn)化為近似長方形的過程。
三、自主探究。
1、學(xué)生手拿圓柱實(shí)物,仔細(xì)觀察,獨(dú)立思考。
2、組織學(xué)生小組討論,把個人的想法在小組中交流,形成統(tǒng)一意見。
強(qiáng)調(diào):在討論過程中,教師參與其中,傾聽學(xué)生想法,調(diào)整匯報次序,同時提醒學(xué)生觀察手中圓柱實(shí)物。
3、匯報交流,統(tǒng)一意見。
生1:把一個圓剪拼成一個近似的長方形,然后把圓形和近似長方形同時向上平移相同的高度,這時他們的軌跡一個是圓柱體,一個是近似長方體,而且它們的體積相等。
(師:一個圓柱和一個長方體只要底面積和高分別相等,它們的體積就相等嗎?一會兒我們來解決這個問題。)。
生2:把圓柱的底面分成許多相等的扇形,再沿這些分割線把圓柱縱切開來,從而剪拼成一個近似的長方體。
(師:為什么是近似的長方體?———滲透數(shù)學(xué)極限思想)。
4、課件演示:
師:仔細(xì)觀察下面這組課件,和你想象的是否一樣?
演示兩次,第一次把圓柱平均分成16份,再剪拼成一個近似的長方形;第二次把圓柱平均分成32份,再剪拼成一個近似的長方形。
生:長方體的體積相當(dāng)于圓柱的體積,長方體的底面積相當(dāng)于圓柱的底面積,而且它們的高相等。
因為:長方體的體積=底面積×高。
四、實(shí)踐應(yīng)用:
強(qiáng)調(diào)單位:90×20=1800(立方分米)。
2、再次拿出圓柱體橡皮泥,問:如果要用圓柱體積計算公式計算它的體積,你需要測量哪些數(shù)據(jù)?(底面直徑、高)。
生1:可能測量有誤差,并且還要保留。
生2:測量水的長、寬時,容器的厚度忽略不計,也能產(chǎn)生誤差。教師說明:每一個科學(xué)結(jié)論都必須經(jīng)過反復(fù)的實(shí)驗、計算,才能得到正確的結(jié)論,我們在學(xué)習(xí)上就要有這種不怕吃苦、勇于探索的精神。
(教師直接給出玻璃杯的底面直徑和高)。
六、全課小結(jié):
師:通過本節(jié)課的學(xué)習(xí),你有什么收獲?
啟發(fā)。
一、充實(shí)教材,為提高學(xué)生思維能力搭建平臺。
課堂教學(xué)中讓學(xué)生在教師的啟發(fā)指導(dǎo)下,獨(dú)立思考、積極主動的去探究知識是怎樣形成的,才能真正使學(xué)生成為學(xué)習(xí)的主體。在教材中已經(jīng)提供了圖形轉(zhuǎn)化的過程,那么在沒有學(xué)具讓學(xué)生進(jìn)行動手操作、親自感悟的情況下,怎樣讓學(xué)生的思維真正參與到知識的形成過程呢?作為教師,必須充實(shí)教材。課堂中讓學(xué)生動手測量計算所必需的數(shù)據(jù),自己感悟?qū)W習(xí)圓柱體積計算公式的必要性,合作探究圓柱體的轉(zhuǎn)化方法和過程。所有這些環(huán)節(jié)的設(shè)計,都在潛移默化中引導(dǎo)學(xué)生主動思考,主動參與,在思考與參與中提高了學(xué)生的思維能力。
二、借助教材,為提高學(xué)生思維能力尋找支點(diǎn)。
數(shù)學(xué)知識具有一定的結(jié)構(gòu),知識間存在密切的聯(lián)系,教學(xué)時要找出知識間的內(nèi)在聯(lián)系,幫助學(xué)生建立一個較完整的知識系統(tǒng)。教材中設(shè)計了引問“圓可以轉(zhuǎn)化成長方形計算面積,圓柱可以轉(zhuǎn)化成長方形計算體積嗎?”但我認(rèn)為“面體過渡”在幾何領(lǐng)域中本身就是一個難點(diǎn),而“面面互化”遷移到“體體互化”,就難上加難,所以設(shè)計中用較長時間溝通新舊知識間的聯(lián)系:排水法的應(yīng)用,平面圖形演變?yōu)榱Ⅲw圖形的過程,圓面積的推導(dǎo)過程。在復(fù)習(xí)當(dāng)中,學(xué)生的綜合運(yùn)用能力得到提高,更重要的是為下一步學(xué)生的思維活動確立支點(diǎn),進(jìn)而提高學(xué)生的思維能力。
思考。
一、演示、觀察能否代替操作?
教材中提供了教具演示,但在本節(jié)教學(xué)前,始終沒有找到學(xué)生使用的操作學(xué)具,而自己也嘗試用土豆、橡皮泥等制作學(xué)具,都因為難度太大(粘接處)而告失敗,在無奈之余,設(shè)計了“獨(dú)立思考———小組探究———課件演示———教具操作”四個環(huán)節(jié)來突破本節(jié)難點(diǎn)。就學(xué)生理解、接受方面來說效果不錯。但沒有讓學(xué)生親自操作,總感覺影響學(xué)生思維發(fā)展。類似教學(xué)如:圓錐高的認(rèn)識。
二、研究中的失誤會不會造成學(xué)生認(rèn)知的“失誤”?
課堂中為求真實(shí),進(jìn)行了兩次實(shí)際測量(第一次測長方體中水的長寬高;第二次測圓柱形橡皮泥的底面直徑和高)。兩次計算結(jié)果的對比,使學(xué)生思維與課堂結(jié)構(gòu)都體現(xiàn)完整性。但由于種種誤差,計算結(jié)果很可能不會相等,這就可能會讓學(xué)生對結(jié)論產(chǎn)生懷疑(盡管教師已經(jīng)說明),那么是否有必要讓學(xué)生經(jīng)歷一個“失誤”的過程呢?類似教學(xué)如:圓周率的計算。
圓柱的體積數(shù)學(xué)教學(xué)設(shè)計篇六
1、結(jié)合具體情境,讓學(xué)生探索并掌握圓柱體積的計算方法,并能運(yùn)用計算公式解決簡單的實(shí)際問題。
2、讓學(xué)生經(jīng)歷觀察、實(shí)驗、猜想、證明等數(shù)學(xué)活動過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗數(shù)學(xué)研究的方法。
3、通過圓柱體積計算公式的推導(dǎo)、運(yùn)用的過程,體驗數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
掌握和運(yùn)用圓柱體積計算公式。
圓柱體積計算公式的推導(dǎo)過程。
2、提問:“能用一句話說說什么是圓柱的體積嗎?”
(設(shè)計意圖:在這個環(huán)節(jié)設(shè)計觀察活動,意圖是讓學(xué)生通過觀察自主得出圓柱體積的定義,進(jìn)一步加深對體積概念的理解,并為下面的探究活動提供研究方法。)。
1、比較大小、探究圓柱的體積與哪些要素有關(guān)。
(1)先出示了兩個大小不等的圓柱體讓學(xué)生判斷哪個體積大?
(2)提問:“要比較兩個圓柱體的體積你有什么好辦法?”學(xué)生想到將圓柱體放進(jìn)水中,比較哪個水面升得高。
(3)讓學(xué)生運(yùn)用這樣的方法自己比較底等高不等和高等底不等的兩組圓柱的體積。
(4)學(xué)生通過動手操作匯報結(jié)論:當(dāng)?shù)椎葧r,圓柱越高體積越大;當(dāng)高等時,圓柱底面越大體積越大。即圓柱的體積的大小與它的底面積和高有關(guān)。
(設(shè)計意圖:本環(huán)節(jié)教學(xué)讓學(xué)生根據(jù)已有的知識解決簡單的問題,通過探究活動,引導(dǎo)學(xué)生找出決定圓柱體積的兩個因素,為學(xué)習(xí)新知識作鋪墊,同時也發(fā)展了學(xué)生的抽象概括能力。)。
2、大膽猜想,感知體積公式,確定探究目標(biāo)。
(1)再次設(shè)疑:如果要準(zhǔn)確的知道哪個圓柱的體積大,大多少,你有什么好辦法?學(xué)生想如何計算圓柱的體積。
(2)引導(dǎo)學(xué)生回憶圓的面積公式和長方體的體積公式的推導(dǎo)過程。
(3)讓學(xué)生思考:怎樣計算圓柱的體積呢,依據(jù)學(xué)過的知識,你可以做出怎樣的假設(shè)?
(4)學(xué)生小組討論交流并匯報:圓柱平均分成若干小扇形體后應(yīng)該也能夠轉(zhuǎn)化成一個近似長方體;圓柱的體積可能也是用底面積乘高來計算。
(設(shè)計意圖:通過設(shè)疑使學(xué)生認(rèn)識到學(xué)習(xí)圓柱體積公式的必要性,激發(fā)學(xué)生的探究興趣。接著通過設(shè)計猜想的過程,充分運(yùn)用學(xué)生已有的知識經(jīng)驗,讓學(xué)生回憶了學(xué)習(xí)長方體體積時的實(shí)踐方法和將圓形轉(zhuǎn)化成長方形的過程,學(xué)生在如此豐富的知識經(jīng)驗基礎(chǔ)上就做到了心中有數(shù),猜想的膽量就更大,假想的合理性就更強(qiáng)。)。
3、確定方法,探究實(shí)驗,推導(dǎo)公式。
(1)思考你發(fā)現(xiàn)了什么?
(2)學(xué)生匯報:實(shí)驗的結(jié)果與猜想的結(jié)果基本相同。
(3)教師用課件演示將圓柱體轉(zhuǎn)化成長方體的過程,向?qū)W生明確圓柱的體積確實(shí)可以像計算長方體體積那樣,用底面積乘以高。(課件出示)。
(4)小結(jié):要想求出一個圓柱的體積,需要知道什么條件?
(5)學(xué)生自學(xué)第17頁例4上面的一段話:用字母表示公式。
圓柱的體積數(shù)學(xué)教學(xué)設(shè)計篇七
教育不只是一種簡單的“告訴”。學(xué)生擁有自己的獨(dú)立思考水平和認(rèn)知系統(tǒng)。當(dāng)他們遇到一個新的待解決的問題情境時,他們會自覺而主動地從自己已有的知識架構(gòu)和認(rèn)知經(jīng)驗中摸索、收集、調(diào)動處理問題的方法和策略。數(shù)學(xué)課程標(biāo)準(zhǔn)在“空間與圖形”這一部分內(nèi)容中,也提出要注重通過觀察、操作、推理等活動,逐步認(rèn)識簡單幾何體的形狀、大小,并發(fā)展學(xué)生的`空間觀念。
圓柱是一種比較常見的立體圖形。在實(shí)際生活中,圓柱形的物體很多,學(xué)生對圓柱都有初步的感性認(rèn)識。因此在教學(xué)過程中,先讓學(xué)生簡單地說說圓柱是一個怎樣的圖形,再舉例說說日常生活中見過哪些物體是圓柱體的,使學(xué)生對圓柱有個更進(jìn)一步感覺。接著利用學(xué)生的好奇心和急于探究的心理,讓學(xué)生看一看、摸一摸手中的圓柱體實(shí)物,使學(xué)生從對圓柱的初步認(rèn)識到慢慢地發(fā)現(xiàn)其中的知識。再把各自的發(fā)現(xiàn)進(jìn)行對比、證明,總結(jié)得出圓柱的特征。
在探索圓柱體側(cè)面的特征時,特別注重學(xué)生自己操作、討論、探索,學(xué)生得到的結(jié)論很多,如圓柱體側(cè)面展開后得到長方形、平行四邊形、正方形,然后再給學(xué)生時間去發(fā)現(xiàn)展開圖與圓柱體側(cè)面有怎樣的關(guān)系,學(xué)生的思維得到了很好的培養(yǎng)。
整個教學(xué)過程中,圓柱的特征成為學(xué)生探究的主體需要,學(xué)生由被動的接受者、參與者變成了探索者、創(chuàng)造者。而教師僅僅是引導(dǎo)者、組織者和合作者。課堂是學(xué)生的課堂,教師應(yīng)少講、少說,把大量的時間和空間還給學(xué)生,讓學(xué)生積極開展合作學(xué)習(xí),實(shí)現(xiàn)生生多向交流。
圓柱的體積數(shù)學(xué)教學(xué)設(shè)計篇八
學(xué)情分析:
根據(jù)六年級的教學(xué)情況來看,班中絕大部分同學(xué)都能跟上現(xiàn)有的進(jìn)度,通過本節(jié)課教學(xué)要使靈活運(yùn)用圓柱體積的計算方法解決生活中一些簡單的問題,通過想象、操作等活動,理解圓柱體體積公式的推導(dǎo)過程,掌握計算公式;會運(yùn)用公式計算圓柱的體積。
教學(xué)目標(biāo):
1.通過切割圓柱體,拼成近似的長方體,從而推導(dǎo)出圓柱的體積公式這一教學(xué)過程,向?qū)W生滲透轉(zhuǎn)化思想。
2.通過圓柱體體積公式的推導(dǎo),培養(yǎng)學(xué)生的分析推理能力。
3.理解圓柱體體積公式的。推導(dǎo)過程,掌握計算公式;會運(yùn)用公式計算圓柱的體積。
教學(xué)重點(diǎn):
教學(xué)難點(diǎn):
教學(xué)用具:
教學(xué)過程:
一、復(fù)習(xí)引新。
1.求下面各圓的面積(回答)。
(1)r=1厘米;(2)d=4分米;(3)c=6.28米。
要求說出解題思路。
2.提問:什么叫體積?常用的體積單位有哪些?
3.已知長方體的底面積s和高h(yuǎn),怎樣計算長方體的體積?(板書:長方體的體積=底面積×高)。
二、探索新知。
1、根據(jù)學(xué)過的體積概念,說說什么是圓柱的體積。(板書課題)。
2、公式推導(dǎo)。(有條件的可分小組進(jìn)行)。
(1)請同學(xué)指出圓柱體的底面積和高。
(2)回顧圓面積公式的推導(dǎo)。(切拼轉(zhuǎn)化)。
3、回顧了圓的面積公式推導(dǎo),你有什么啟發(fā)?
生答:把圓柱轉(zhuǎn)化成長方體計算體積。
4、動手操作。
請2位同學(xué)上臺用教具來演示,邊演示邊講解。
把圓柱的底面平均分成16份,切開后把它拼成一個近似地長方體。
多請幾組同學(xué)上臺講解,完善語言。
提問:為什么用“近似”這個詞?
5、教師演示。
把圓柱拼成了一個近似的長方體。
6、如果把圓柱的底面平均分成32份、64份……切開后拼成的物體會有什么變化?
生答:拼成的物體越來越接近長方體。
追問:為什么?
生答:平均分的份數(shù)越多,每份就越小,弧就越短,拼起來的長方體的長就越近似于一條線段,這樣整個形體就越近似于長方體。
7、剛才我們通過動手操作,把圓柱切拼成一個近似的長方體。
師:拼成的長方體和原來的圓柱有什么聯(lián)系?請與同學(xué)們進(jìn)行交流?
出示討論題。
(1)、拼成的長方體的底面積與原來圓柱的底面積有什么關(guān)系?為什么是相等的?
(2)、拼成的長方體的高與原來圓柱的高有什么關(guān)系?為什么是相等的?
(3)、拼成的長方體的體積與原來圓柱的體積有什么關(guān)系?為什么?
板書:
長方體體積底面積高。
8、根據(jù)上面的實(shí)驗和討論,想一想,可以怎樣求圓柱的體積?
生答:把圓柱切拼成一個近似的長方體,拼成的長方體的底面積等于圓柱的底面積,拼成長方體的高等于圓柱的高,因為長方體體積=底面積×高,所以圓柱體積=底面積×高。
9、用字母如何表示。
v=sh。
10、小結(jié)。
圓柱的體積是怎樣推導(dǎo)出來的?計算圓柱的體積必須知道哪些條件?
11、教學(xué)算一算。
審題。提問:你能獨(dú)立完成這題嗎?指名一同學(xué)板演,其余學(xué)生做在練習(xí)本上。集體訂正:列式依據(jù)是什么?應(yīng)注意哪些問題?最后結(jié)果用體積單位)。
12、教學(xué)“試一試”
小結(jié):求圓柱的體積,必須知道底面積和高。如果不知道底面積,只知道半徑r,通過什么途徑求出圓柱的體積?如果知道d呢?知道c呢?知道r、d、c,都要先求出底面積再求體積。
三、鞏固練習(xí)。
課后“練一練”里的練習(xí)題。
四、課堂小結(jié)。
這節(jié)課學(xué)習(xí)了什么內(nèi)容?圓柱的體積怎樣計算,這個公式是怎樣得到的?指出:這節(jié)課,我們通過轉(zhuǎn)化,把圓柱體切拼轉(zhuǎn)化成長方體,(在課題下板書:圓柱轉(zhuǎn)化長方體)得出了圓柱體的體積計算公式v=sh。
圓柱的體積數(shù)學(xué)教學(xué)設(shè)計篇九
2、提問:“能用一句話說說什么是圓柱的體積嗎?”
(學(xué)生互相討論后匯報,教師設(shè)疑)。
二、自主探究、
1、比較大小、探究圓柱的體積與哪些要素有關(guān)。
(1)先出示了兩個大小不等的圓柱體讓學(xué)生判斷哪個體積大?
(2)提問:“要比較兩個圓柱體的體積你有什么好辦法?”學(xué)生想到將圓柱體放進(jìn)水中,比較哪個水面升得高。
(3)讓學(xué)生運(yùn)用這樣的方法自己比較底等高不等和高等底不等的兩組圓柱的體積,并將實(shí)驗結(jié)果填入實(shí)驗報告1中。(課件出示)。
(4)學(xué)生通過動手操作匯報結(jié)論:當(dāng)?shù)椎葧r,圓柱越高體積越大;當(dāng)高等時,圓柱底面越大體積越大。即圓柱的體積的大小與它的底面積和高有關(guān)。
2、大膽猜想,感知體積公式,確定探究目標(biāo)。
(1)再次設(shè)疑:如果要準(zhǔn)確的知道哪個圓柱的體積大,大多少,你有什么好辦法?學(xué)生想如何計算圓柱的體積。
(2)引導(dǎo)學(xué)生回憶圓的面積公式和長方體的體積公式的推導(dǎo)過程。
(3)讓學(xué)生思考:怎樣計算圓柱的體積呢,依據(jù)學(xué)過的知識,你可以做出怎樣的假設(shè)?
(4)學(xué)生小組討論交流并匯報:圓柱平均分成若干小扇形體后應(yīng)該也能夠轉(zhuǎn)化成一個近似長方體;圓柱的體積可能也是用底面積乘高來計算。
(5)讓學(xué)生依據(jù)假設(shè)結(jié)論分組測量圓柱c和圓柱d的有關(guān)數(shù)據(jù),用計算器計算體積,并填入實(shí)驗報告2中。(課件出示)。
4、確定方法,探究實(shí)驗,驗證體積公式。
(1)首先要求學(xué)生利用實(shí)驗工具,自主商討確定研究方法。
(2)學(xué)生通過討論交流確定了兩種驗證方案。
方案一:將圓柱c放入水中,驗證圓柱c的體積。
方案二:將學(xué)具中已分成若干分扇形塊的圓柱d拆拼成新的形體,計算新形體的體積,驗證圓柱d的體積。
(3)學(xué)生按照自己所設(shè)想的方案動手實(shí)驗,并記錄有關(guān)數(shù)據(jù),填入實(shí)驗報告2中。
(5)學(xué)生匯報:實(shí)驗的結(jié)果與猜想的結(jié)果基本相同。
(6)教師用課件演示將圓柱體轉(zhuǎn)化成長方體的過程,向?qū)W生明確圓柱的體積確實(shí)可以像計算長方體體積那樣,用底面積乘以高。
(7)小結(jié):
要想求出一個圓柱的體積,需要知道什么條件?
(8)學(xué)生自學(xué)第8頁例4上面的一段話:用字母表示公式。
學(xué)生反饋?zhàn)詫W(xué)情況:
v=sh。
三、鞏固發(fā)展。
1、課件出示例4,學(xué)生獨(dú)立完成。
指名說說這樣列式的依據(jù)是什么。
2、鞏固反饋。
3、完成第9頁的“試一試”和練一練”中的兩道題。
(“練一練”只列式,不計算)。
集體訂正,說一說圓柱體的體積還可以怎樣算?
5、拓展練習(xí)。
(1)一個長方形的紙片長是6分米,寬4分米。用它分別圍成兩個圓柱體,a是用4分米做底高6分米,b是用6分米做底高是4分米它們的體積大小一樣嗎?請你計算說明理由。(得數(shù)保留兩位小數(shù))。
四、全課小結(jié):
談?wù)勥@節(jié)課你有哪些收獲。
圓柱的體積數(shù)學(xué)教學(xué)設(shè)計篇十
冀教版《數(shù)學(xué)》六年級下冊第29—31頁。
1.經(jīng)歷認(rèn)識圓柱體積,探索圓柱體積計算公式及簡單應(yīng)用的過程。
2.探索并掌握圓柱體積公式,能計算圓柱的體積。
3.在探索圓柱體積的過程中,進(jìn)一步體會轉(zhuǎn)化的數(shù)學(xué)思想,體驗數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)結(jié)論的確定性。
教學(xué)重點(diǎn):探索并掌握圓柱體積公式,能計算圓柱的體積。
教學(xué)難點(diǎn):探索并掌握圓柱體積公式。
教具準(zhǔn)備:兩個不易直觀比較體積大小的圓柱桶,探索體積的課件。
執(zhí)教者:張聰棉。
教學(xué)時數(shù):一課時。
一、情境導(dǎo)入。
出示準(zhǔn)備好的圓柱筒,同學(xué)們這兩個物體,哪個大一些,
誰大就是指它的體積大,今天我們就學(xué)習(xí)--圓柱體的體積。
師:看到課題你能想到哪些有關(guān)的數(shù)學(xué)知識?或想知道什么數(shù)學(xué)知識?
體積的單位有立方米,立方分米,立方厘米。相鄰的單位之間的進(jìn)率是1000。
二、板書課題,出示學(xué)習(xí)目標(biāo)。
(一)圓柱的體積公式是怎樣推導(dǎo)出來的,
三、出示自學(xué)指導(dǎo)。
(二)觀察拼出的近似長方體和圓柱,你發(fā)現(xiàn)它們有什么關(guān)系?
四、學(xué)生自學(xué)。
學(xué)生看書自學(xué),教師巡視。
五、學(xué)生試做。
學(xué)生試做。
1.底面積是25平方厘米,高4分米。
2.底面半徑2分米,高10分米。
3.底面直徑和高都是20米。
判斷對錯。
1.一個圓柱形水桶,它的容積也就等于它的表面積。()。
2.一個長方體與一個圓柱,底面積相等,高相等,那么體積也相等。()。
3.底面積不相等的兩個圓柱的體積一定不相等。()。
5.計算一根圓柱形鋼材有多少立方分米,是鋼材的表面積。()。
填空:
1.把圓柱的底面平均分成許多相等的扇形,然后把圓柱切開,可以拼成一個近似的(。
)。它的底面積等于圓柱的(),它的高就是圓柱的()。
2.圓柱體積的計算公式是(),用字母表示是()。
3.一個圓柱底面積是25cm2,高是4cm,體積是()cm3。
4.一個圓柱底面半徑是2cm,高是10cm,體積是()cm3。
六、議一議。
(1)把圓柱體平均分成若干份,可以拼成一個()圖形?這兩個圖形的()相等。
師:做完的同學(xué)看黑板上同學(xué)的做法,是否正確,如果有不同答案,可以上前面來改正。
評議黑板上的數(shù)學(xué)題。
小結(jié):這節(jié)課你學(xué)會了哪些知識?
七、小測試。
今天同學(xué)們的收獲一定不少,現(xiàn)在我們做個當(dāng)堂測驗,只寫答案不抄題,看誰又快又對(見測驗題)。
一、填空(每題10分)。
1.把圓柱的底面分成許多相等的扇形,然后把圓柱切開,可以拼成一個近似的()。這個長方體的底面積等于圓柱的(),高等于圓柱的()。因為長方體的體積等于()乘(),所以圓柱的體積等于()乘()。
2.一個圓柱的底面積是80平方厘米,高是5厘米,體積是()平方厘米。
3.一個圓柱的體積是21平方厘米,底面積是7平方厘米,高是()厘米。
4.一個圓柱的底面積是25平方厘米,高是0.4分米,體積是()平方厘米。
二、判斷(每題5分)。
1.把一個圓柱截成兩個小圓柱,它的表面積和體積都增加了。()。
2.如果兩個圓柱的體積相等,那么他們的高也相等。()。
3.一個圓柱的底面半徑擴(kuò)大2倍,高不變,它的體積擴(kuò)大2倍。()。
1.底面積10平方厘米,高15厘米。
2.底面直徑和高都是20厘米。
3.底面周長62.8厘米,高10厘米。
四、一根長50分米的長方體鋼材,底面是一個邊長10分米的正方形。如果把它鍛造成底面面積是1000平方分米的圓柱形鋼材,這根圓柱鋼材的高是多少分米?(15分)。
本節(jié)的教學(xué)重難點(diǎn)是:
1.探索并掌握圓柱體積公式,能計算圓柱的體積。
2.在探索圓柱體積的過程中,進(jìn)一步體會轉(zhuǎn)化的數(shù)學(xué)思想,體驗數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)結(jié)論的確定性。
教學(xué)方法:我利用課件演示和實(shí)物演示來解決。讓學(xué)生學(xué)會轉(zhuǎn)化的數(shù)學(xué)思想。
成功之處:1.利用遷移規(guī)律引入新課,為學(xué)生創(chuàng)設(shè)良好的學(xué)習(xí)情境;。
2.遵循學(xué)生的認(rèn)知規(guī)律,引導(dǎo)學(xué)生觀察、思考、說理,調(diào)動多種感觀參與學(xué)習(xí);。
3.正確處理"兩主"關(guān)系,充分發(fā)揮學(xué)生的主體作用,注意學(xué)生學(xué)習(xí)的參與過程及知識的獲取過程,學(xué)生積極性高,學(xué)習(xí)效果好。達(dá)到預(yù)期效果.
不足之處:1.個別學(xué)生還是對公式不會靈活應(yīng)用。
2.練習(xí)題有些多,應(yīng)選擇一些有代表性的題,這樣小測驗就能有充足的時間了。
3.關(guān)注學(xué)生的有些少,尤其是應(yīng)關(guān)注做錯的學(xué)生,應(yīng)知道為什么錯,及時在課堂評價出結(jié)果會更好。
4.老師講得多,應(yīng)放手讓學(xué)生自己觀察自己處理自己總結(jié),會更好。
圓柱的體積數(shù)學(xué)教學(xué)設(shè)計篇十一
冀教版小學(xué)數(shù)學(xué)六年級下冊第32—34頁。
知識和技能:經(jīng)歷認(rèn)識圓柱體積,探索圓柱體積計算公式及簡單應(yīng)用的過程。
過程與方法:讓學(xué)生經(jīng)歷觀察、猜想、證明等數(shù)學(xué)活動過程。探索并掌握圓柱體積公式,能計算圓柱的體積。
情感、態(tài)度和價值觀:在探索圓柱體積的過程中,培養(yǎng)學(xué)生應(yīng)用已有知識解決問題的能力,進(jìn)一步體會轉(zhuǎn)化的數(shù)學(xué)思想,體驗數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和結(jié)論的確定性。
探索并掌握圓柱體積公式,能計算圓柱的體積。
圓柱體積公式的推導(dǎo)過程及簡單應(yīng)用。
兩個不易直觀比較體積大小的圓柱桶,探索體積的課件
一課時
一、情景導(dǎo)入
1.出示“亮亮和爺爺過生日”的情境圖。學(xué)生觀察,說說發(fā)現(xiàn)了什么?想到了哪些問題?
2.學(xué)生觀察思考后回答。
生:亮亮和爺爺?shù)纳盏案舛际菆A柱形的。
生:生日蛋糕大,就是蛋糕的體積大;生日蛋糕小,就是蛋糕的體積小。
3.出示兩個圓柱體,學(xué)生觀察、猜想。
師:是啊,有時我們觀察到的大小不一定準(zhǔn)確,我們還是通過計算比較大小更準(zhǔn)確些。今天我們就一起學(xué)習(xí)“圓柱的體積”
3.揭示并板書課題:圓柱的體積
(設(shè)計意圖:創(chuàng)設(shè)情境導(dǎo)入激趣,通過觀察讓學(xué)生對圓柱體體積有了初步的認(rèn)識,充分調(diào)動學(xué)生的求知欲,同時又為學(xué)生探索新知做好準(zhǔn)備。)
二、合作探究
(一)引導(dǎo)回憶
1.設(shè)疑:看到課題你能想到哪些有關(guān)數(shù)學(xué)知識?你還想知道什么數(shù)學(xué)知識?
2.學(xué)生回憶后回答。
師:同學(xué)們知道的可真不少,對以前學(xué)過的知識掌握得很扎實(shí),那么怎樣才能知道一個物體的體積有多大呢?現(xiàn)在我們就共同研究圓柱體積的計算方法。
(設(shè)計意圖:通過創(chuàng)設(shè)問題情境,可以引導(dǎo)學(xué)生運(yùn)用已有的.生活經(jīng)驗和就知識積極思考,形成任務(wù)驅(qū)動的探究氛圍。
(二)推導(dǎo)、論證“圓柱的體積”
1.引發(fā)思考猜想
師:我們以前學(xué)過學(xué)過了長方體和正方體的體積,我們知道了物體所占空間的大小叫做物體的體積。那么怎樣計算圓柱的體積呢?請同學(xué)們猜想一下。
生:我們是不是象學(xué)過的長方體和正方體體積一樣用“底面積×高”呢?
師:同學(xué)猜想的很有道理。
師:再回顧我們以前探索圓面積公式時是把圓轉(zhuǎn)化成哪種圖形來計算的?(課件演示:圓面積公式的推導(dǎo))生:我們可以按照這樣的方法把圓柱體轉(zhuǎn)化為已經(jīng)學(xué)過的長方體或正方體推導(dǎo)出圓柱體體積。
2.師生合作推導(dǎo)驗證
教師用課件演示,學(xué)生觀察思考。
生:相同點(diǎn)是都可以拼成一個近似的長方體。
生:不同點(diǎn)是等分的份數(shù)不同,等分的份數(shù)越多,拼成的圖形就越接近一個近似的長方體。
4.小組同學(xué)討論后匯報結(jié)果,同時板書。
生:(1)把圓柱拼成長方體后,形狀變了,體積不變。
板書:長方體的體積=圓柱的體積
(2)拼成的長方體的底面積等于圓柱的底面積,高就是圓柱的高。
師:(1)配合回答,演示課件,閃爍相應(yīng)的部位,并板書相應(yīng)的內(nèi)容。
板書:圓柱的體積=底面積×高
用字母表示v=sh
師:讓學(xué)生書空,再次讓學(xué)生鞏固圓柱體積公式的推導(dǎo)過程。(設(shè)計意圖:再探究圓柱體積計算的過程中,進(jìn)一步體會轉(zhuǎn)化的數(shù)學(xué)思想,體驗數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)結(jié)論的穩(wěn)定性。
1.學(xué)生讀題試算。
2.集體訂正。
四、應(yīng)用與拓展
1.完成教材第34“試一試”。
(1)學(xué)生仔細(xì)看圖,明確題意。
(2)學(xué)生自主完成后,全班交流。
五、課堂總結(jié)
本節(jié)課你有什么收獲?還有什么疑問?附:板書
圓柱的體積
長方體的體積=底面積×高
圓柱的體積=底面積×高
本節(jié)課的教學(xué)體現(xiàn)了:
一、利用遷移規(guī)律引入新課,為學(xué)生創(chuàng)設(shè)良好的學(xué)習(xí)情境;
三、正確處理兩主關(guān)系,充分發(fā)揮學(xué)生的主體作用,注意學(xué)生學(xué)習(xí)的參與過程及知識的獲取過程,學(xué)生積極性高,學(xué)習(xí)效果好,達(dá)到預(yù)期效果。不足之處學(xué)生討論時間控制太少,課后作業(yè)個別學(xué)生還是對公式不會靈活應(yīng)用。
圓柱的體積數(shù)學(xué)教學(xué)設(shè)計篇十二
2、提問:“能用一句話說說什么是圓柱的體積嗎?”
(學(xué)生互相討論后匯報,教師設(shè)疑)。
二、自主探究、
1、比較大小、探究圓柱的體積與哪些要素有關(guān)。
(1)先出示了兩個大小不等的圓柱體讓學(xué)生判斷哪個體積大?
(2)提問:“要比較兩個圓柱體的體積你有什么好辦法?”學(xué)生想到將圓柱體放進(jìn)水中,比較哪個水面升得高。
(3)讓學(xué)生運(yùn)用這樣的方法自己比較底等高不等和高等底不等的兩組圓柱的體積,并將實(shí)驗結(jié)果填入實(shí)驗報告1中。(課件出示)。
(4)學(xué)生通過動手操作匯報結(jié)論:當(dāng)?shù)椎葧r,圓柱越高體積越大;當(dāng)高等時,圓柱底面越大體積越大。即圓柱的體積的大小與它的底面積和高有關(guān)。
2、大膽猜想,感知體積公式,確定探究目標(biāo)。
(1)再次設(shè)疑:如果要準(zhǔn)確的知道哪個圓柱的體積大,大多少,你有什么好辦法?學(xué)生想如何計算圓柱的體積。
(2)引導(dǎo)學(xué)生回憶圓的面積公式和長方體的體積公式的推導(dǎo)過程。
(3)讓學(xué)生思考:怎樣計算圓柱的體積呢,依據(jù)學(xué)過的知識,你可以做出怎樣的假設(shè)?
(4)學(xué)生小組討論交流并匯報:圓柱平均分成若干小扇形體后應(yīng)該也能夠轉(zhuǎn)化成一個近似長方體;圓柱的體積可能也是用底面積乘高來計算。
(5)讓學(xué)生依據(jù)假設(shè)結(jié)論分組測量圓柱c和圓柱d的有關(guān)數(shù)據(jù),用計算器計算體積,并填入實(shí)驗報告2中。(課件出示)。
4、確定方法,探究實(shí)驗,驗證體積公式。
(1)首先要求學(xué)生利用實(shí)驗工具,自主商討確定研究方法。
(2)學(xué)生通過討論交流確定了兩種驗證方案。
方案一:將圓柱c放入水中,驗證圓柱c的體積。
方案二:將學(xué)具中已分成若干分扇形塊的圓柱d拆拼成新的形體,計算新形體的體積,驗證圓柱d的體積。
(3)學(xué)生按照自己所設(shè)想的方案動手實(shí)驗,并記錄有關(guān)數(shù)據(jù),填入實(shí)驗報告2中。
(5)學(xué)生匯報:實(shí)驗的結(jié)果與猜想的結(jié)果基本相同。
(6)教師用課件演示將圓柱體轉(zhuǎn)化成長方體的過程,向?qū)W生明確圓柱的體積確實(shí)可以像計算長方體體積那樣,用底面積乘以高。
(7)小結(jié):
要想求出一個圓柱的體積,需要知道什么條件?
(8)學(xué)生自學(xué)第8頁例4上面的一段話:用字母表示公式。
學(xué)生反饋?zhàn)詫W(xué)情況:
v=sh。
三、鞏固發(fā)展。
1、課件出示例4,學(xué)生獨(dú)立完成。
指名說說這樣列式的依據(jù)是什么。
2、鞏固反饋。
3、完成第9頁的“試一試”和練一練”中的兩道題。
(“練一練”只列式,不計算)。
集體訂正,說一說圓柱體的體積還可以怎樣算?
5、拓展練習(xí)。
(1)一個長方形的紙片長是6分米,寬4分米。用它分別圍成兩個圓柱體,a是用4分米做底高6分米,b是用6分米做底高是4分米它們的體積大小一樣嗎?請你計算說明理由。(得數(shù)保留兩位小數(shù))。
四、全課小結(jié):
談?wù)勥@節(jié)課你有哪些收獲。
圓柱的體積數(shù)學(xué)教學(xué)設(shè)計篇十三
用已學(xué)的圓柱體積知識解決生活中的實(shí)際問題,并滲透轉(zhuǎn)化思想。
經(jīng)歷探究不規(guī)則物體體積的轉(zhuǎn)化、測量和計算過程,讓學(xué)生在動手操作中初步建立“轉(zhuǎn)化”的數(shù)學(xué)思想,體驗“等積變形”的轉(zhuǎn)化過程。
通過實(shí)踐,讓學(xué)生在合作中建立協(xié)作精神,并增強(qiáng)學(xué)生“用數(shù)學(xué)”的意識。
教學(xué)重點(diǎn):利用所學(xué)知識合理靈活地分析、解決不規(guī)則物體的體積的計算方法。
教學(xué)難點(diǎn):轉(zhuǎn)化前后的溝通。
每組一個礦泉水瓶(課前統(tǒng)一搜集農(nóng)夫山泉礦泉水瓶,裝有適量清水,水高度分別為6、7、8、9厘米),直尺。
問:圓柱的體積怎么計算?體積和容積有什么區(qū)別?
2.揭題:這節(jié)課,我們要根據(jù)這些體積和容積的知識來解決生活中的實(shí)際問題。(完整板書:用圓柱的體積解決問題。)。
【設(shè)計意圖】通過復(fù)習(xí)圓柱的體積計算方法以及體積和容積之間的聯(lián)系和區(qū)別,為學(xué)習(xí)新知做好知識上的準(zhǔn)備。
1.創(chuàng)設(shè)情境,提出問題。
每個小組桌子上有一個沒有裝滿水的礦泉水瓶。
教師:原本這是一瓶裝滿水的礦泉水,已經(jīng)喝了一部分,你能根據(jù)它來提一個數(shù)學(xué)問題嗎?(隨機(jī)板書)。
預(yù)設(shè)1:瓶子還有多少水?(剩下多少水?)。
預(yù)設(shè)2:喝了多少水?(也就是瓶子的空氣部分。)。
預(yù)設(shè)3:這個瓶子一共能裝多少水?(也就是這個瓶子的容積是多少?)。
2.你覺得你能輕松解決什么問題?
(1)預(yù)設(shè)1:瓶子有多少水?(怎么解決?)。
學(xué)生:瓶子里剩下的水呈圓柱狀,只要量出這個圓柱的底面直徑和高就能算出它的體積。
教師:需要用到什么工具?(直尺)你想利用直尺得到哪些數(shù)據(jù)?(底面直徑、水的高度)。
小結(jié):知道了底面直徑和水的高度,要解決這個問題的確輕而易舉。請你準(zhǔn)備好直尺,或許等會兒有用哦!
(2)預(yù)設(shè)2:喝了多少水?
學(xué)生:喝掉部分的形狀是不規(guī)則,沒有辦法計算。
教師:當(dāng)物體形狀不規(guī)則時,我們想求出它的體積可以怎么辦?
教師相機(jī)引導(dǎo):能否將空氣部分變成一個規(guī)則的立體圖形呢?
學(xué)生能說出方法更好,不能說出則引導(dǎo):我們不妨把瓶子倒過來看看,你發(fā)現(xiàn)了什么?
引導(dǎo)學(xué)生發(fā)現(xiàn):在瓶子倒置前后,水的體積不變,空氣的體積不變,因此,喝了多少水=倒置后空氣部分的體積,倒置后空氣部分是一個圓柱,要求出它的體積需要哪些數(shù)據(jù)?(倒置后空氣的高度)。
(3)怎么求這個礦泉水瓶的容積?引導(dǎo)學(xué)生得出:倒置前水的體積+倒置后空氣的體積=瓶子容積。
【設(shè)計意圖】課本中的例題呈現(xiàn)如下,
例題是直接呈現(xiàn)轉(zhuǎn)化方法的,我是想先屏蔽相關(guān)數(shù)據(jù)信息和方法,通過激發(fā)學(xué)生解決問題的內(nèi)在需求,根據(jù)自己的生活學(xué)習(xí)經(jīng)驗來想辦法解決,才有了對數(shù)學(xué)情境的改編,以期通過轉(zhuǎn)化、觀察、對比,讓學(xué)生發(fā)現(xiàn)倒置前后兩部分立體圖形之間的相同點(diǎn),溝通兩部分體積之間的內(nèi)在聯(lián)系,順利地把新知轉(zhuǎn)化為舊知,分散了難點(diǎn),從而找到解決問題的方法。
3.小組合作,測量計算。
(礦泉水瓶內(nèi)直徑為6cm)。
教師:方法找到了,接下來能否正確求出瓶子的容積就看你們的了!
(1)課件出示:
一個內(nèi)直徑是()的瓶子里,水的高度是(),把瓶蓋擰緊倒置放平,無水部分是圓柱形,高度是()。這個瓶子的容積是多少?(測量時取整厘米數(shù))。
(2)四人小組合作:
a.組長安排好分工:
要量出所需數(shù)據(jù),其他組員要監(jiān)督好測量方法與結(jié)果是否正確,要按要求把題目填完整。
b.組內(nèi)互相說一說:倒置前后哪兩部分的體積不變?
礦泉水瓶的容積=()+()。
c.做好以上準(zhǔn)備工作后,利用所得數(shù)據(jù)獨(dú)立計算,再組內(nèi)校對結(jié)果是否正確。
【設(shè)計意圖】這一環(huán)節(jié)讓學(xué)生大膽動手操作,在實(shí)踐中不斷發(fā)現(xiàn)解決問題,在同伴的交流中拓展自己的思維,讓學(xué)生在合作中建立協(xié)作精神。
4.交流反饋。
教師巡查,選擇礦泉水瓶中原有水高度分別6、7、8、9厘米的同學(xué)板演。
瓶中水高度為6厘米的:
3.14×(6÷2)2×6+3.14×(6÷2)2×13。
=3.14×9×(6+13)。
≈537(毫升)。
瓶中水高度為7厘米的:
3.14×(6÷2)2×7+3.14×(6÷2)2×12。
=3.14×9×(7+12)。
≈537(毫升)。
瓶中水高度為8厘米的:
3.14×(6÷2)2×8+3.14×(6÷2)2×11。
=3.14×9×(8+11)。
≈537(毫升)。
瓶中水高度為9厘米的:
3.14×(6÷2)2×9+3.14×(6÷2)2×10。
=3.14×9×(9+10)。
≈537(毫升)。
教師:出示某品牌礦泉水瓶的標(biāo)簽,上面寫著凈含量為550毫升,基本符合。
5.解答正確嗎?
教師引導(dǎo)學(xué)生回顧反思:剛才我們是怎樣解決問題的?
小結(jié):根據(jù)具體情況選擇合適的轉(zhuǎn)化方法,像這樣不規(guī)則立體圖形的體積可以轉(zhuǎn)化為規(guī)則的立體圖形來計算。
【設(shè)計意圖】通過回顧解決問題的過程,幫助學(xué)生把本環(huán)節(jié)的數(shù)學(xué)活動經(jīng)驗進(jìn)行總結(jié),引導(dǎo)學(xué)生在后續(xù)的學(xué)習(xí)中碰到相似的問題也可同樣利用轉(zhuǎn)化的思想來解決。
1.?dāng)?shù)學(xué)書p27做一做。
(1)學(xué)生獨(dú)立思考,解決問題。
(2)把自己的想法與同桌說一說。
(3)交流反饋:重點(diǎn)交流如何轉(zhuǎn)化,倒置后哪兩部分體積不變?
求小明喝了多少水實(shí)際上是求礦泉水瓶上面無水部分的體積,這部分為不規(guī)則的立體圖形。
將水瓶倒置后不規(guī)則容器轉(zhuǎn)化成了圓柱:該圓柱體積=小明喝了的水。
3.14×(6÷2)2×10=282.6(毫升)。
(1)請學(xué)生計算,并反饋訂正。
(2)反饋要點(diǎn):
整個吊瓶容積=圖像中空氣部分的容積+還剩下液體的體積。
根據(jù)圖象,可以得出在第12分鐘吊瓶有80毫升是空的。
剩下液體的體積=100-2.5×12=70(毫升)。
即整個吊瓶容積=80+70=150(毫升)。
【設(shè)計意圖】從生活中常見的吊瓶問題引出,感受數(shù)學(xué)與生活的密切聯(lián)系,能根據(jù)圖像提取解決問題的有效信息,既提升了所學(xué)知識,又關(guān)注了學(xué)生的思考,培養(yǎng)學(xué)生的分析、解決問題能力。
(2)討論方法:
a.重疊:假設(shè)把兩個大小一樣的斜截體拼成一個底面周長為9.42厘米,高為(4+6)厘米的圓柱,這個立體圖形的體積是新圓柱體積的一半。
b.切割:把這個立體圖形分為兩部分,下面是一個底面周長為9.42厘米,高為4厘米的圓柱體,上面是一個高為(6-4)厘米的圓柱斜截體,且體積是高為(6-4)厘米的圓柱體積的一半。
(3)用自己認(rèn)可的方法計算,并進(jìn)行反饋。
解法一:3.14×(9.42÷3.14÷2)2×10÷2=35.325(立方厘米)。
解法二:3.14×(9.42÷3.14÷2)2×4+3.14×(9.42÷3.14÷2)2×2÷2=35.325(立方厘米)。
(4)反饋小結(jié):可以有不同的轉(zhuǎn)化方法來解決問題。
【設(shè)計意圖】不滿足于一種方法的轉(zhuǎn)化,展示多種方法,開拓學(xué)生的思維。
教師:回憶一下,今天這節(jié)課有什么收獲?
教師和學(xué)生共同小結(jié):求不規(guī)則的立體圖形的體積可以將它轉(zhuǎn)化成為規(guī)則的立體圖形,這節(jié)課我們主要是將不規(guī)則的立體圖形轉(zhuǎn)化成為圓柱,用圓柱的體積計算方法來解決問題。
在解決問題時,主要要弄清楚轉(zhuǎn)化前后兩部分之間的關(guān)系。
【設(shè)計意圖】通過小結(jié),讓學(xué)生自主地對回顧本課所學(xué)知識進(jìn)行梳理總結(jié),通過歸納與提煉,讓學(xué)生明確轉(zhuǎn)化思想在數(shù)學(xué)學(xué)習(xí)中的重要性。
圓柱的體積數(shù)學(xué)教學(xué)設(shè)計篇十四
用已學(xué)的圓柱體積知識解決生活中的實(shí)際問題,并滲透轉(zhuǎn)化思想。
(二)過程與方法
經(jīng)歷探究不規(guī)則物體體積的轉(zhuǎn)化、測量和計算過程,讓學(xué)生在動手操作中初步建立“轉(zhuǎn)化”的數(shù)學(xué)思想,體驗“等積變形”的轉(zhuǎn)化過程。
(三)情感態(tài)度和價值觀
通過實(shí)踐,讓學(xué)生在合作中建立協(xié)作精神,并增強(qiáng)學(xué)生“用數(shù)學(xué)”的意識。
教學(xué)重點(diǎn):利用所學(xué)知識合理靈活地分析、解決不規(guī)則物體的體積的計算方法。
教學(xué)難點(diǎn):轉(zhuǎn)化前后的溝通。
每組一個礦泉水瓶(課前統(tǒng)一搜集農(nóng)夫山泉礦泉水瓶,裝有適量清水,水高度分別為6、7、8、9厘米),直尺。
(一)復(fù)習(xí)舊知,做好鋪墊
1、板書:圓柱的體積。
問:圓柱的體積怎么計算?體積和容積有什么區(qū)別?
2、揭題:這節(jié)課,我們要根據(jù)這些體積和容積的知識來解決生活中的實(shí)際問題。(完整板書:用圓柱的體積解決問題)
【設(shè)計意圖】通過復(fù)習(xí)圓柱的體積計算方法以及體積和容積之間的聯(lián)系和區(qū)別,為學(xué)習(xí)新知做好知識上的準(zhǔn)備。
(二)探索實(shí)踐,體驗轉(zhuǎn)化過程
1、創(chuàng)設(shè)情境,提出問題。
每個小組桌子上有一個沒有裝滿水的礦泉水瓶。
教師:原本這是一瓶裝滿水的礦泉水,已經(jīng)喝了一部分,你能根據(jù)它來提一個數(shù)學(xué)問題嗎?(隨機(jī)板書)
預(yù)設(shè)1:瓶子還有多少水?(剩下多少水?)
預(yù)設(shè)2:喝了多少水?(也就是瓶子的空氣部分。)
預(yù)設(shè)3:這個瓶子一共能裝多少水?(也就是這個瓶子的容積是多少?)
2、你覺得你能輕松解決什么問題?
(1)預(yù)設(shè)1:瓶子有多少水?(怎么解決?)
學(xué)生:瓶子里剩下的水呈圓柱狀,只要量出這個圓柱的底面直徑和高就能算出它的體積。
教師:需要用到什么工具?(直尺)你想利用直尺得到哪些數(shù)據(jù)?(底面直徑、水的高度)
小結(jié):知道了底面直徑和水的高度,要解決這個問題的確輕而易舉。請你準(zhǔn)備好直尺,或許等會兒有用哦!
(2)預(yù)設(shè)2:喝了多少水?
學(xué)生:喝掉部分的形狀是不規(guī)則,沒有辦法計算。
教師:當(dāng)物體形狀不規(guī)則時,我們想求出它的體積可以怎么辦?
教師相機(jī)引導(dǎo):能否將空氣部分變成一個規(guī)則的立體圖形呢?
學(xué)生能說出方法更好,不能說出則引導(dǎo):我們不妨把瓶子倒過來看看,你發(fā)現(xiàn)了什么?
引導(dǎo)學(xué)生發(fā)現(xiàn):在瓶子倒置前后,水的體積不變,空氣的體積不變,因此,喝了多少水=倒置后空氣部分的體積,倒置后空氣部分是一個圓柱,要求出它的體積需要哪些數(shù)據(jù)?(倒置后空氣的高度)
【本文地址:http://m.aiweibaby.com/zuowen/14786991.html】