平方差公式教學(xué)教案(模板15篇)

格式:DOC 上傳日期:2023-11-25 03:58:19
平方差公式教學(xué)教案(模板15篇)
時間:2023-11-25 03:58:19     小編:筆舞

教案的編寫還需要考慮到教師的教學(xué)風(fēng)格和學(xué)生的學(xué)習(xí)情況,確保教學(xué)效果的最大化。教案的編寫需要根據(jù)學(xué)生的前置知識和學(xué)習(xí)能力來確定內(nèi)容和難度。教案范文展示了不同教學(xué)模式和教學(xué)策略的應(yīng)用。

平方差公式教學(xué)教案篇一

本課的學(xué)習(xí)目的主要是熟練掌握整式的運算,并且這些知識是以后學(xué)習(xí)分式、根式運算以及函數(shù)等知識的基礎(chǔ),同時也是學(xué)習(xí)物理、化學(xué)等學(xué)科及其他科學(xué)技術(shù)不可或缺的數(shù)學(xué)工具。而本節(jié)是整式乘法中乘法公式的首要內(nèi)容,學(xué)生只有熟練掌握了包括平方差公式在內(nèi)的乘法公式及它的推導(dǎo)過程,才能實現(xiàn)本節(jié)乃至本章作為數(shù)學(xué)工具的重要作用。因此,在教學(xué)安排上,我選擇從學(xué)生熟悉的求多邊形面積入手,遵循從感性認識上升為理性思維的認知規(guī)律,得出抽象的。概念,并在多項式乘法的基礎(chǔ)上,再次推導(dǎo)公式,使原本枯燥的數(shù)學(xué)概念具有一定的實際意義和說理性;之后安排了一系列的例題和練習(xí)題,把新知運用到實戰(zhàn)中去,解決簡單的實際問題,這樣既調(diào)動了學(xué)生學(xué)習(xí)的主動性,又鍛煉了思維,整個過程由淺入深,在對所得結(jié)論不斷觀察、討論、分析中,加深對概念的理解,增強學(xué)生應(yīng)用知識解決問題的能力,從而達到較好的授課效果。

數(shù)學(xué)是一門抽象的學(xué)科,但數(shù)學(xué)是來源于實際生活的。因此,數(shù)學(xué)教育的目的是將數(shù)學(xué)運用到實際生活中去,讓學(xué)生深切感受到數(shù)學(xué)是有價值的科學(xué),來源于生活,是其他科學(xué)的基礎(chǔ)。本節(jié)公式中字母的含義對學(xué)生來講很抽象,是本節(jié)的難點,也是學(xué)生運用公式解決實際問題的最大障礙,通過鞏固練習(xí),讓學(xué)生逐步體會,為今后學(xué)習(xí)其他乘法公式做好準備。乘法公式的逆用就是因式分解的重要方法,因此,在本節(jié)補充練習(xí)中,已經(jīng)開始滲透這部分知識,為后面學(xué)習(xí)因式分解做好鋪墊。

但是,我在教本章內(nèi)容時卻始終感到困惑。本以為這一章很簡單,由于教材安排存在一定問題,如將同底數(shù)冪乘法、冪的乘方、積的乘方、單項式乘以單項式、單項式乘以多項式、多項式乘以多項式這么多的內(nèi)容安排在一起,造成學(xué)生沒掌握好、消化好,知識間相互混淆,設(shè)置了障礙。所以很多學(xué)生出現(xiàn)下列錯誤(3x?2)(3x?2)?3x象我們想象中掌握的那么好。

本章教材編者在此安排不太合理,沒有考慮到學(xué)生的認知規(guī)律,不利于學(xué)生很好掌握,所以,我感覺以后上這章的時候不能按照教材課時安排走。否則還會出現(xiàn)今天的問題。

平方差公式教學(xué)教案篇二

指導(dǎo)學(xué)生用語言描述,兩數(shù)和與兩數(shù)差的積等于它們的平方差。這個公式叫做平方差公式。

指導(dǎo)學(xué)生發(fā)現(xiàn)公式的特點:

1、左邊為兩數(shù)的和乘以兩數(shù)的差,即在左邊是兩個二項式的積,在這兩個二項式中有一項(a)完全相同,另一項(b與-b)互為相反數(shù)。右邊為這兩個數(shù)的平方差即完全相同的項的平方減去符號相反的平方。

2、公式中的a,b不僅可以表示具體的數(shù)字,還可以是單項式,多項式等代數(shù)式。

提醒學(xué)生利用平方公式計算,首先觀察是否符合公式的特點,這兩個數(shù)分別是什么,其次要區(qū)別相同的項和相反的項,表示兩數(shù)平方差時要加括號。

平方差公式教學(xué)教案篇三

學(xué)習(xí)目標:

1、能推導(dǎo)平方差公式,并會用幾何圖形解釋公式;。

3、經(jīng)歷探索平方差公式的推導(dǎo)過程,發(fā)展符號感,體會“特殊——一般——特殊”的認識規(guī)律.

學(xué)習(xí)重難點:

難點:探索平方差公式,并用幾何圖形解釋公式.

學(xué)習(xí)過程:

一、自主探索。

1、計算:(1)(m+2)(m-2)(2)(1+3a)(1-3a)。

(3)(x+5y)(x-5y)(4)(y+3z)(y-3z)。

2、觀察以上算式及其運算結(jié)果,你發(fā)現(xiàn)了什么規(guī)律?再舉兩例驗證你的發(fā)現(xiàn).

3、你能用自己的語言敘述你的發(fā)現(xiàn)嗎?

(1)、公式左邊的兩個因式都是二項式。必須是相同的兩數(shù)的和與差?;蛘哒f兩個二項式必須有一項完全相同,另一項只有符號不同。

(2)、公式中的a與b可以是數(shù),也可以換成一個代數(shù)式。

二、試一試。

平方差公式教學(xué)教案篇四

這節(jié)課學(xué)習(xí)的主要內(nèi)容是運用平方差公式進行因式分解,學(xué)習(xí)時如果直接就給同學(xué)們講把前面在整式的乘法中學(xué)習(xí)到的平方差公式反過來運用就形成了因式分解的平方差公式,然后就是反復(fù)的運用、反復(fù)的操練的話,學(xué)生學(xué)起來就會覺得沒有味道,對數(shù)學(xué)有一種厭煩感,所以我就想到了運用逆向思維的方法來學(xué)習(xí)這節(jié)課的內(nèi)容,而且非常不利于學(xué)生理解整式乘法和因式分解之間的互逆的關(guān)系。

在新課引入的過程中,首先讓學(xué)生回憶了前面在整式的乘法中遇到的乘法公式,比如平方差公式、完全平方公式。然后,巧妙的'將剛才用平方差公式計算得出的三個多項式作為因式分解的題目請學(xué)生嘗試一下。可以說,對新問題的引入,是采取了由淺入深的方法,使學(xué)生對新知識不產(chǎn)生任何的畏懼感。

在這節(jié)課中就明顯出現(xiàn)了這個問題,許多學(xué)生容易產(chǎn)生的問題都集中在一起讓學(xué)生解決,反而將學(xué)生搞得不清不楚。所以,通過這節(jié)展示課也讓我學(xué)到了很多,比如,化解難點時要考慮到學(xué)生的思維障礙,不可操之過急,否則適得其反。

平方差公式教學(xué)教案篇五

平方差公式是多項式乘法運算中一個重要的公式,是特殊的多項式與多項式相乘的一種簡便計算。通過復(fù)習(xí)多項式乘以多項式的計算導(dǎo)入新課,為探究新知識奠定基礎(chǔ)。在重難點處設(shè)計問題:“觀察以上3個算式的特點和運算結(jié)果的特點,對比等號兩邊代數(shù)式的結(jié)構(gòu),你發(fā)現(xiàn)了什么?”讓學(xué)生發(fā)現(xiàn)規(guī)律并嘗試運用自己的語言來描述。

問題提出后,學(xué)生能積極進行分組討論、交流,各組小組長闡述自己小組討論的結(jié)果。大多數(shù)的學(xué)生能找出規(guī)律,說出大概意思,但是無法用精準的語言完整的描述出來,語言表達無條理、含糊。針對這種情況,在以后的課堂教學(xué)過程中要注意加強對學(xué)生的邏輯思維能力和語言表達能力的.培養(yǎng)。最后經(jīng)過師生的共同努力,得出了平方差公式以及公式的特征。

在例題展示環(huán)節(jié)中,我通過2道例題的運算,訓(xùn)練學(xué)生正確應(yīng)用公式進行計算,體會公式在簡化運算中的作用。實踐練習(xí)的設(shè)計,使學(xué)生從不同角度認識平方差公式,進一步加強學(xué)生對公式的理解。在運用公式時,學(xué)生基本掌握運用平方差公式的步驟:首先要判斷算式是否符合平方差公式特征,然后再尋找算式中的a,b項,最后運用平方差公式運算。

拓展延伸環(huán)節(jié)中,學(xué)生通過尋找算式中的a,b項,慢慢發(fā)現(xiàn)a,b項不僅可以代表數(shù),也可以代表單項式、多項式等代數(shù)式,這樣設(shè)計可以進一步深化學(xué)生對字母含義的理解。在學(xué)生獨立完成練習(xí)和堂測中,經(jīng)過巡視,我發(fā)現(xiàn)近三分之一的學(xué)生對較復(fù)雜的多項式不能準確找出a,b項,特別是b項代表多項式時,負數(shù)去括號時出錯較多。

最后通過設(shè)計遞進式的問題串,引導(dǎo)學(xué)生自己一步步總結(jié)出本節(jié)課所學(xué)的知識內(nèi)容,從而培養(yǎng)他們的歸納總結(jié)和語言表達能力。

本節(jié)課采用學(xué)習(xí)小組討論、交流的學(xué)習(xí)方式,讓學(xué)優(yōu)生帶動學(xué)困生,整體教學(xué)效果良好,學(xué)生基本掌握平方差公式的運用,對于較復(fù)雜的a、b項的運算,在自習(xí)課上將加強練習(xí)。

平方差公式教學(xué)教案篇六

(4)(+3z)(-3z)=_____.

(1)(x+1)(1+x),。

(2)(2x+)(-2x),。

(3)(a-b)(-a+b),。

(4)(-a-b)(-a+b)。

幫助學(xué)生理解公式的特征,掌握公式的特征是正確運用公式的關(guān)鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數(shù)、也可以表示單項式或多項式,由于學(xué)生的認知能力有一個過程,教學(xué)中應(yīng)由易到難逐步安排學(xué)習(xí)這方面的內(nèi)容。

平方差公式教學(xué)教案篇七

《平方差公式》是一節(jié)公式定理課,是各位老師非常熟悉的一個課題,對大家更熟悉,我深深感到一種壓力。但是,無論如何,“新”、“實”是我追求的目標。為此,我作了如下努力:

1、把數(shù)學(xué)問題“蘊藏”在游戲中。

導(dǎo)入新課,是課堂教學(xué)的重要一環(huán)。“好的開始是成功的一半”,首先是一個智力搶答,學(xué)生通過搶答初步感知平方差公式,接下來,采用小組合作學(xué)習(xí)的方式,利用“四問”讓學(xué)生進行試驗操作,學(xué)生選擇的字母有很多種,讓它們都有其共性。由此,學(xué)生在探索中驗證自己的猜想,同時也感受和認識知識的發(fā)生和發(fā)展的過程,得出(a+b)(a-b)=a2-b2.經(jīng)過不斷的嘗試小組合作學(xué)習(xí)方式的教學(xué),我發(fā)現(xiàn)也真正體會到,只要我們給學(xué)生創(chuàng)造一個自由活動的空間,學(xué)生便會還給我們一個意外的驚喜。

2、充分重視“自主、合作、探究”的教學(xué)方式的運用。

把探究的機會留給學(xué)生,讓學(xué)生在動腦思考中構(gòu)建知識,真正成為教學(xué)活動的主體。使他們在活動中進行規(guī)律的總結(jié),并且通過交流練習(xí)、應(yīng)用,深化了對規(guī)律的理解。學(xué)生對知識的掌握往往通過練習(xí)來達到目的。新授后要有針對性強的有效訓(xùn)練,讓學(xué)生對所學(xué)知識建立初步的表象,以達到對知識的理解、掌握及應(yīng)用,實現(xiàn)從感性認識到理性認識的升華。在此設(shè)計了三個層次的有效訓(xùn)練,讓學(xué)生體會平方差公式的特點:第一層次是直接運用公式,第二層次是將式子進行適當(dāng)變形后應(yīng)用公式,第三個層次是平方差公式的靈活應(yīng)用。通過做題學(xué)生歸納出平方差公式的運用技巧。

3、自置懸念,享受成功。

以四人小組為單位,各小組出兩道具有平方差公式的結(jié)構(gòu)特征的題目,看誰出得有水平。學(xué)生每人都設(shè)計了題目,任意叫了四位學(xué)生在黑板上寫,經(jīng)評價結(jié)果都對了。這種方法,不僅令人耳目一新,而且把學(xué)生引入不協(xié)調(diào)——探究——發(fā)現(xiàn)——解決問題的一個學(xué)習(xí)過程,使學(xué)生獲得思維之趣,參與之樂,成功之悅。

4、切實落在實效上。

本節(jié)課在采用小組學(xué)習(xí)之后,為了讓學(xué)生的鞏固有效果,采用了學(xué)生上臺講解、作業(yè)實物投影的方式來進行,多種方式的選擇,讓學(xué)生暴露出自己的問題,然后通過生生互動、師生互動解決問題,實現(xiàn)問題及時處理,學(xué)習(xí)效果不錯。

5、值得注意的是:

1、節(jié)奏的把握上。

這一節(jié)我覺得不是很順,尤其在從幾何角度解釋平方差公式、例2⑵的其他計算方法等問題上,花了不少時間,節(jié)奏把握的不是很好。

2、充分發(fā)揮學(xué)生的主體地位上。

這節(jié)課上,我覺得學(xué)生的積極性不很高,回答問題沒有激情,說明我背學(xué)生還不夠,自己想象的比現(xiàn)實的好。

平方差公式教學(xué)教案篇八

在探索平方差公式的過程中,發(fā)展學(xué)生的符號感和推理能力。在計算的過程中發(fā)現(xiàn)規(guī)律,并能用符號表達,體會數(shù)學(xué)語言的嚴謹與簡潔。

激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣,鼓勵學(xué)生自己探索,培養(yǎng)學(xué)生的合作意識與創(chuàng)新能力。

重點。

難點。

一、復(fù)習(xí)導(dǎo)入。

1.回顧多項式乘多項式的法則。

2.創(chuàng)設(shè)情境:你能快速地口算下列式子的值嗎?

(1);(2).

師生共同想辦法,想到能否把數(shù)轉(zhuǎn)化成較整的數(shù)?

變形成:,

再試試把它當(dāng)成多項式乘法來算算,有什么發(fā)現(xiàn)?

繼續(xù)用你發(fā)現(xiàn)的方法算算,,,成功了嗎?

我們把這個有趣的結(jié)論整理并推廣,就可以得到今天要學(xué)習(xí)的一個乘法公式,平方差公式。

二、新課講解。

探究新知。

1.觀察相乘的兩個多項式有什么特點?運算的結(jié)果有什么特點?

討論交流后總結(jié)出:兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差。

2.把式子里具體的數(shù)換成字母表示的數(shù),結(jié)論還成立嗎?

3.從上面的計算中你有什么發(fā)現(xiàn)呢?

引導(dǎo)學(xué)生發(fā)現(xiàn)對于不同形式的兩個數(shù),都有它們的和與它們的差的積都等于它們的平方差!用公式表示就是:,這里字母是任意形式的兩個數(shù)。這個公式叫做平方差公式。

下列多項式乘法中,能用平方差公式計算的是_______________(填寫序號)。

(1);(2);(3);

(4);(5);(6).

學(xué)生分組討論交流,歸納什么情況下可以使用平方差公式。通過討論,對平方差公式的理解達到一個新的高度:所謂兩數(shù)和、兩數(shù)差,從多項式的角度來看,就是有一項相同(),有一項相反(和),只要相乘的兩個多項式具備這樣的特點,都可以用平方差公式計算。不難判斷,上面的式子中(2)、(5)、(6)都可以用平方差公式計算。

三、典例剖析。

師生共同解答,教師板書。初學(xué)運用時要寫清楚步驟。

學(xué)生解答,關(guān)注學(xué)生是否理解平方差公式,能否正確識別乘法公式里的。

例3.計算:

學(xué)生解答,教師巡視,關(guān)注學(xué)生能否合理變形,靈活運用公式計算。

四、課堂練習(xí)。

1.下面各式的計算對不對?如果不對,應(yīng)怎樣改正?

(1);

(1);(2);

(3);(4).

3.計算:

(1);(2);

教師要注意發(fā)現(xiàn)學(xué)生的錯誤,組織學(xué)生對錯誤進行分析,對于第1題可以引導(dǎo)學(xué)生分析導(dǎo)致錯誤的原因。

五、小結(jié)。

師生共同回顧平方差公式的結(jié)構(gòu)特點,體會公式的作用,交流計算的經(jīng)驗。教師對課堂上學(xué)生掌握不夠牢固的知識進行辨析、強調(diào)與補充,學(xué)生也可以談一談個人的學(xué)習(xí)感受。

六、布置作業(yè)。

p50第1、6題。

平方差公式教學(xué)教案篇九

本節(jié)課是圍繞“引導(dǎo)學(xué)生有效預(yù)習(xí)”的課題設(shè)計的,通過預(yù)設(shè)的問題引發(fā)學(xué)生思考,在學(xué)生的預(yù)習(xí)基礎(chǔ)上回答相關(guān)的問題,產(chǎn)生對整式的乘法、提公因式法和公式法的對比。

讓學(xué)生充分自主的對知識產(chǎn)生探究,同時利用數(shù)形結(jié)合的思想驗證平方差公式;再通過質(zhì)疑的方式加深對平方差公式結(jié)構(gòu)特征的認識,有助于讓學(xué)生在應(yīng)用平方差公式行分解因式時注意到它的前提條件;通過例題練習(xí)的鞏固,讓學(xué)生把握教材,吃透教材,讓學(xué)生更加熟練、準確,起到強化、鞏固的作用,讓學(xué)生領(lǐng)會換元的思想,達到初步發(fā)展學(xué)生綜合應(yīng)用的能力。

本節(jié)課是運用提公因式法后公式法的第一課時——用平方差公式法分解因式。它是整式乘法的平方差公式的逆向應(yīng)用,它是解高次方程的基礎(chǔ),在教材中具有重要的地位。在教材的處理上以學(xué)生的自主探索為主,在原有用平方差公式進行整式乘法計算的知識的基礎(chǔ)上充分認識分解因式。明確因式分解是乘法公式的一種恒等變形,讓學(xué)生學(xué)會合情推理的能力,同時也培養(yǎng)了學(xué)生愛思考,善交流的良好學(xué)習(xí)慣。

(一)知識與技能。

2.掌握提公因式法、平方差公式分解因式的綜合應(yīng)用。

(二)過程與方法。

1.經(jīng)歷探究分解因式方法的過程,體會整式乘法與分解因式之間的聯(lián)系。

2.通過乘法公式:(a+b)(a-b)=a2-b2逆向變形,進一步發(fā)展觀察、歸納、類比、概括等能力,發(fā)展有條理地思考及語言表達能力。

3.通過活動4,將高次偶數(shù)指數(shù)向下次指數(shù)的轉(zhuǎn)達化,培養(yǎng)學(xué)生的化歸思想。

4.通過活動1,發(fā)現(xiàn)并歸納出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2-b2=(a+b)(a-b)。

5.通過活動4,讓學(xué)生自己發(fā)現(xiàn)問題,提出問題,然后解決問題,體會在解決問題的過程中與他人合作的重要性。

(三)情感與態(tài)度。

1.通過探究平方差公式,讓學(xué)生獲得成功的體驗,鍛煉克服困難的意志,建立自己信心。

平方差公式教學(xué)教案篇十

進一步使學(xué)生理解掌握平方差公式,并通過小結(jié)使學(xué)生理解公式數(shù)學(xué)表達式與文字表達式在應(yīng)用上的差異.

教學(xué)重點和難點:公式的應(yīng)用及推廣.

1.(1)用較簡單的代數(shù)式表示下圖紙片的面積.

(2)沿直線裁一刀,將不規(guī)則的右圖重新拼接成一個矩形,并用代數(shù)式表示出你新拼圖形的面積.

講評要點:

沿hd、gd裁開均可,但一定要讓學(xué)生在裁開之前知道。

hd=bc=gd=fe=a-b,

這樣裁開后才能重新拼成一個矩形.希望推出公式:

a2-b2=(a+b)(a-b)。

2.(1)敘述平方差公式的數(shù)學(xué)表達式及文字表達式;。

(2)試比較公式的兩種表達式在應(yīng)用上的差異.

說明:平方差公式的數(shù)學(xué)表達式在使用上有三個優(yōu)點.(1)公式具體,易于理解;(2)公式的特征也表現(xiàn)得突出,易于初學(xué)的人“套用”;(3)形式簡潔.但數(shù)學(xué)表達式中的a與b有概括性及抽象性,這樣也就造成對具體問題存在一個判定a、b的`問題,否則容易對公式產(chǎn)生各種主觀上的誤解.

依照公式的文字表達式可寫出下面兩個正確的式子:

經(jīng)對比,可以讓人們體會到公式的文字表達式抽象、準確、概括.因而也就“欠”明確(如結(jié)果不知是誰與誰的平方差).故在使用平方差公式時,要全面理解公式的實質(zhì),靈活運用公式的兩種表達式,比如用文字公式判斷一個題目能否使用平方差公式,用數(shù)學(xué)公式確定公式中的a與b,這樣才能使自己的計算即準確又靈活.

3.判斷正誤:

(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)。

(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)。

(1)102×98;(2)(y+2)(y-2)(y2+4).

解:(1)102×98(2)(y+2)(y-2)(y2+4)。

=(100+2)(100-2)=(y2-4)(y2+4)。

=9996;。

(1)103×97;(2)(x+3)(x-3)(x2+9);。

(3)59.8×60.2;(4)(x-)(x2+)(x+).

3.請每位同學(xué)自編兩道能運用平方差公式計算的題目.

例2填空:

思考題:什么樣的二項式才能逆用平方差公式寫成兩數(shù)和與這兩數(shù)的差的積?

(某兩數(shù)平方差的二項式可逆用平方差公式寫成兩數(shù)和與這兩數(shù)的差的積)。

練習(xí)。

填空:

1.x2-25=()();。

2.4m2-49=(2m-7)();。

3.a4-m4=(a2+m2)()=(a2+m2)()();。

例3計算:

(1)(a+b-3)(a+b+3);(2)(m2+n-7)(m2-n-7).

解:(1)(a+b-3)(a+b+3)(2)(m2+n-7)(m2-n-7)。

=[(a+b)-3][(a+b)+3]=[(m2-7)+n][(m2-7)-n]。

=(a+b)2-9=a2+2ab+b2-9.=(m2-7)2-n2。

=m4-14m2+49-n2.

1.什么是平方差公式?一般兩個二項式相乘的積應(yīng)是幾項式?

3.怎樣判斷一個多項式的乘法問題是否可以用平方差公式?

(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);。

(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).

(1)69×71;(2)53×47;(3)503×497;(4)40×39.

平方差公式教學(xué)教案篇十一

學(xué)習(xí)方法:歸納、概括、總結(jié)。

創(chuàng)設(shè)問題情境,引入新課。

在前兩學(xué)時中我們學(xué)習(xí)了因式分解的定義,即把一個多項式分解成幾個整式的積的形式,還學(xué)習(xí)了提公因式法分解因式,即在一個多項式中,若各項都含有相同的因式,即公因式,就可以把這個公因式提出來,從而將多項式化成幾個因式乘積的形式。

如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項式乘法的相反過程,就能利用這種關(guān)系找到新的因式分解的方法,本學(xué)時我們就來學(xué)習(xí)另外的一種因式分解的方法——公式法。

1、請看乘法公式。

(a+b)(a-b)=a2-b2(1)。

左邊是整式乘法,右邊是一個多項式,把這個等式反過來就是。

a2-b2=(a+b)(a-b)(2)。

利用平方差公式進行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式。

a2-b2=(a+b)(a-b)。

如x2-16。

=(x)2-42。

=(x+4)(x-4)。

9m2-4n2。

=(3m)2-(2n)2。

=(3m+2n)(3m-2n)。

例1、把下列各式分解因式:

例2、把下列各式分解因式:。

(1)9(m+n)2-(m-n)2;(2)2x3-8x.

補充例題:判斷下列分解因式是否正確。

(1)(a+b)2-c2=a2+2ab+b2-c2.

(2)a4-1=(a2)2-1=(a2+1)(a2-1)。

1、教科書習(xí)題。

2、分解因式:x4-16x3-4x4x2-(y-z)2。

3、若x2-y2=30,x-y=-5求x+y。

平方差公式教學(xué)教案篇十二

平方差公式的教學(xué)已經(jīng)是好幾次了,舊教材總是定向于代數(shù)方法,新課程理念同幾何意義探究,這也是對教學(xué)者的一次挑戰(zhàn),通過教學(xué),我從中領(lǐng)會到它所蘊含的新的教學(xué)理念,新的教學(xué)方式和方法。

1、在教學(xué)設(shè)計時應(yīng)提供充分探索與交流的空間,使學(xué)生進一步經(jīng)歷觀察,實驗、猜測、推理、交流、反思等活動,我在設(shè)計中讓學(xué)生從計算花圃面積入手,要求學(xué)生找出不同的計算方法,學(xué)生欣然接受了挑戰(zhàn),通過交流,給出了兩種方法,繼而通過觀察發(fā)現(xiàn)了面積的求法與乘法公式之間的吻合,激發(fā)了學(xué)生學(xué)習(xí)興趣的同時也激活了學(xué)生的思維,所以這個探究過程是很有效的。

2、我知道培養(yǎng)學(xué)生數(shù)形結(jié)合思想方法和能力的重要性,通過幾何意義說明平方差方式的探究過程,學(xué)生可以切實感受到兩者之間的聯(lián)系,學(xué)會一些探究的基本方法與思路,并體會到數(shù)學(xué)證明的靈巧間法與和諧美是很有必要的。

3、加強師生之間的活動也是必要的。在活動中,通過我的組織、引導(dǎo)和鼓勵下,學(xué)生不斷地思考和探究,并積極地進行交流,使活動有序進行,我始終以平等、欣賞、尊重的態(tài)度參與到學(xué)生活動中,營造出了一個和諧,寬松的教學(xué)環(huán)境。

平方差公式教學(xué)教案篇十三

導(dǎo)入新課,是課堂教學(xué)的重要一環(huán)。“好的開始是成功的一半”,首先是一個智力搶答,學(xué)生通過搶答初步感知平方差公式,接下來,采用小組合作學(xué)習(xí)的方式,利用“四問”讓學(xué)生進行試驗操作,學(xué)生選擇的字母有很多種,讓它們都有其共性。由此,學(xué)生在探索中驗證自己的猜想,同時也感受和認識知識的發(fā)生和發(fā)展的過程,得出(a+b)(a-b)=a2-b2.經(jīng)過不斷的嘗試小組合作學(xué)習(xí)方式的教學(xué),我發(fā)現(xiàn)也真正體會到,只要我們給學(xué)生創(chuàng)造一個自由活動的空間,學(xué)生便會還給我們一個意外的驚喜。

把探究的機會留給學(xué)生,讓學(xué)生在動腦思考中構(gòu)建知識,真正成為教學(xué)活動的主體。使他們在活動中進行規(guī)律的總結(jié),并且通過交流練習(xí)、應(yīng)用,深化了對規(guī)律的理解。學(xué)生對知識的掌握往往通過練習(xí)來達到目的。新授后要有針對性強的有效訓(xùn)練,讓學(xué)生對所學(xué)知識建立初步的表象,以達到對知識的理解、掌握及應(yīng)用,實現(xiàn)從感性認識到理性認識的升華。在此設(shè)計了三個層次的有效訓(xùn)練,讓學(xué)生體會平方差公式的特點:第一層次是直接運用公式,第二層次是將式子進行適當(dāng)變形后應(yīng)用公式,第三個層次是平方差公式的靈活應(yīng)用。通過做題學(xué)生歸納出平方差公式的運用技巧。

以四人小組為單位,各小組出兩道具有平方差公式的結(jié)構(gòu)特征的題目,看誰出得有水平。學(xué)生每人都設(shè)計了題目,任意叫了四位學(xué)生在黑板上寫,經(jīng)評價結(jié)果都對了。這種方法,不僅令人耳目一新,而且把學(xué)生引入不協(xié)調(diào)——探究——發(fā)現(xiàn)——解決問題的一個學(xué)習(xí)過程,使學(xué)生獲得思維之趣,參與之樂,成功之悅。

本節(jié)課在采用小組學(xué)習(xí)之后,為了讓學(xué)生的鞏固有效果,采用了學(xué)生上臺講解、作業(yè)實物投影的方式來進行,多種方式的選擇,讓學(xué)生暴露出自己的問題,然后通過生生互動、師生互動解決問題,實現(xiàn)問題及時處理,學(xué)習(xí)效果不錯。

1、節(jié)奏的把握上。

這一節(jié)我覺得不是很順,尤其在從幾何角度解釋平方差公式、例2⑵的其他計算方法等問題上,花了不少時間,節(jié)奏把握的不是很好。

2、充分發(fā)揮學(xué)生的主體地位上。

這節(jié)課上,我覺得學(xué)生的積極性不很高,回答問題沒有激情,說明我背學(xué)生還不夠,自己想象的比現(xiàn)實的好。

平方差公式教學(xué)教案篇十四

教學(xué)目標:

一、知識與技能。

1、參與探索平方差公式的過程,發(fā)展學(xué)生的推理能力2、會運用公式進行簡單的乘法運算。

二、過程與方法。

1、經(jīng)歷探索過程,學(xué)會歸納推導(dǎo)出某種特種特定類型乘法并用簡單的。

數(shù)學(xué)式子表達出,即給出公式。

2、在探索過程的教學(xué)中,培養(yǎng)學(xué)生觀察、歸納的能力,發(fā)展學(xué)生的符。

號感和語言描述能力。

三、情感與態(tài)度。

以探索、歸納公式和簡單運用公式這一數(shù)學(xué)情景,加深學(xué)生的體驗,增加學(xué)習(xí)數(shù)學(xué)和使用的信心。培養(yǎng)學(xué)生由觀察-發(fā)現(xiàn)-歸納-驗證-使用這一數(shù)學(xué)方法的逐步形成.

教學(xué)重點:公式的簡單運用。

教學(xué)難點:公式的推導(dǎo)。

教學(xué)方法:學(xué)生探索歸納與教師講授結(jié)合。

課前準備:投影儀、幻燈片。

平方差公式教學(xué)教案篇十五

本節(jié)課選自人教版八年級上冊第15章第二節(jié)內(nèi)容,它是在學(xué)生已經(jīng)掌握了多項式乘法之后,自然過渡到具有特殊形式的多項式的乘法,是從一般到特殊的認知規(guī)律的典型范例。對它的學(xué)習(xí)和研究,不僅給出了特殊的多項式乘法的簡便算法,而且為以后的因式分解、分式的化簡等內(nèi)容奠定了基礎(chǔ),同時也為學(xué)習(xí)完全平方公式的學(xué)習(xí)提供了方法。因此,中公教育專家認為,平方差公式作為初中階段的第一個公式,在教學(xué)中具有很重要地位。

二、說學(xué)情。

學(xué)生已熟練掌握了冪的運算和整式乘法,但在進行多項式乘法運算時常常會出現(xiàn)符號錯誤及漏項等問題;另外,數(shù)學(xué)公式中字母具有高度概括性、廣泛應(yīng)用性,鑒于八年級學(xué)生的認知水平,理解上有困難。因此,我們把教學(xué)難點定為:理解平方差公式的。結(jié)構(gòu)特征,靈活應(yīng)用平方差公式。

三、說教學(xué)目標。

基于對教材的理解和分析,我在教學(xué)中以學(xué)生為主體,以學(xué)生的學(xué)為根本,我把本課的目標定位為:

知識與技能目標:了解平方差公式產(chǎn)生的背景,理解平方差公式的意義,掌握平方差公式的結(jié)構(gòu)特征,并能靈活運用平方差公式解決問題。

過程與方法目標:經(jīng)歷平方差公式產(chǎn)生的探究過程,培養(yǎng)觀察、猜想、歸納、概括、推理的能力和符號感,感受利用轉(zhuǎn)化、數(shù)形結(jié)合等數(shù)學(xué)思想方法解決實際問題的策略。

情感態(tài)度與價值觀目標:通過探究平方差公式,形成學(xué)習(xí)數(shù)學(xué)公式的一般套路,體會成功的喜悅,培養(yǎng)團結(jié)協(xié)助的意識,增強學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣。

教學(xué)重點:理解平方差公式的意義,掌握平方差公式的結(jié)構(gòu)特征。

教學(xué)難點:運用平方差公式解決問題。

四、說教法、學(xué)法。

課堂是學(xué)生學(xué)習(xí)的主陣地,真正做到把課堂還給學(xué)生,因而我采取的的教學(xué)模式定為:三先兩主動,即讓學(xué)生先說話、先動手、先總結(jié),讓學(xué)生主動提問、主動探索。學(xué)習(xí)方法:學(xué)生積極參與、大膽猜想、合作交流和自主探索。

五、說教學(xué)過程。

(一)創(chuàng)設(shè)情景,引入新課。

數(shù)學(xué)課標強調(diào):“數(shù)學(xué)來源于實際生活”,為了體現(xiàn)這一思想,我設(shè)計了一個實際問題。這里只提供情境,刺激學(xué)生主動提出問題,因為“提出問題”比“解決問題”更重要。這個以生活實例創(chuàng)設(shè)的情境,不僅激發(fā)學(xué)生的求知興趣,又為平方差公式的引人服務(wù),更為說明平方差公式的幾何意義做好鋪墊。

(二)合作交流,探求新知。

首先,我用情境中一道題目,并再安排了兩個練習(xí),通過對特殊的多項式與多項式相乘的計算,既復(fù)習(xí)了舊知,又為下面學(xué)習(xí)習(xí)近平方差公式作了鋪墊,讓學(xué)生感受從一般到特殊的認識規(guī)律,引出乘法公式----平方差公式。

順勢鼓勵學(xué)生用自己的語言歸納表述,總結(jié)出公式,從而提高學(xué)生的語言組織與表達能力。

然后,教師通過分析公式的本質(zhì)特征使學(xué)生掌握公式,在認清公式的結(jié)構(gòu)特征的基礎(chǔ)上,

進一步剖析a、b的廣泛含義,抓住了概念的核心,使學(xué)生在公式的運用中能得心應(yīng)手,起到事半功倍的效果。

最后,用學(xué)生最喜歡的拼圖游戲,引導(dǎo)學(xué)生從“形”的角度認識平方差公式的幾何意義,再次驗證了猜想。滲透了數(shù)形結(jié)合的思想,讓學(xué)生體會到代數(shù)與幾何的內(nèi)在聯(lián)系,引導(dǎo)學(xué)生學(xué)會從多角度、多方面來思考問題。

(三)鞏固深化,內(nèi)化新知。

總結(jié)出平方差公式后,我先設(shè)計兩個簡單練習(xí)題。通過練習(xí),使學(xué)生加深對平方差公式結(jié)構(gòu)特點的認識和理解,進一步掌握平方差公式的本質(zhì)特征和運用平方差公式必須具備的條件。

然后設(shè)計了三個例題。例1和例2是教材上的內(nèi)容,例3是我設(shè)計的一道實際問題。

例1有兩道小題,其中設(shè)計第(1)題,然后學(xué)生完成。第(2)題學(xué)生板演,師生共同糾錯。例2有兩道小題,先讓學(xué)生嘗試練習(xí),出錯后教師及時糾正,使學(xué)生認識深刻。第一題體現(xiàn)了轉(zhuǎn)化的思想和數(shù)式通性;另一題是平方差公式與一般多項式乘法的綜合,強調(diào)不能用公式的仍按多項式乘法法則進行。

例3運用平方差公式解決實際問題,體現(xiàn)了數(shù)學(xué)來源于生活,服務(wù)于生活,學(xué)生感受到學(xué)習(xí)數(shù)學(xué)的價值,設(shè)計此題與平方差公式的幾何意義相吻合,加深學(xué)生對平方差公式的理解。

(四)反饋練習(xí),鞏固新知。

練習(xí)題的設(shè)計有梯度,從基礎(chǔ)應(yīng)用公式入手,到拓展提高。加強基本知識和基本技能訓(xùn)練,使不同水平的學(xué)生學(xué)習(xí)都有收獲,體現(xiàn)出“人人學(xué)有用的數(shù)學(xué)”。

在練習(xí)的基礎(chǔ)上,教師歸納總結(jié),提升學(xué)習(xí)理念。

(五)當(dāng)堂練習(xí)。

這部分給出兩類練習(xí)題。

設(shè)計意圖(第一類題是完全平方公式的直接應(yīng)用,通過實例,使學(xué)生進一步體會到完全平方公式中字母a,b的含義是很廣泛的,它可以是數(shù),也可以是整式)(第二道題直接給出一些同學(xué)的錯誤認識,強調(diào)錯誤原因并引導(dǎo)學(xué)生走出誤區(qū))。

(六)課堂小結(jié)。

設(shè)計意圖:(讓學(xué)生回想本節(jié)課的主要內(nèi)容完全平方公式,教師再次強調(diào)并指出易錯點和需注意的地方公式中項數(shù)、符號、字母及其指數(shù)。)。

(七)布置作業(yè)。

作業(yè)分必做題和選做題兩部分。

設(shè)計意圖:(必做題鞏固本節(jié)課知識,讓學(xué)生熟練應(yīng)用公式。選做題為下節(jié)課的學(xué)習(xí)做鋪墊,同時分層布置作業(yè)也滿足了不同層次學(xué)生的要求)。

【本文地址:http://m.aiweibaby.com/zuowen/14806873.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔