教案起著指導學生學習、推動教學發(fā)展和促進教師專業(yè)成長的重要作用。教案的評價標準要明確明確,能夠準確評價學生的學習情況。現(xiàn)在是教案展示的時間了!請大家一起來看看這些優(yōu)秀教案的分享。
數(shù)學教案一元二次方程的應用篇一
據(jù)題意,得。
整理后,得。
解這個方程,得。
由得,由得,
答:這兩個奇數(shù)是17,19或者-19,-17。
解法(二)設較小的奇數(shù)為,則較大的奇數(shù)為。
據(jù)題意,得。
整理后,得。
解這個方程,得。
當時,
當時,。
答:兩個奇數(shù)分別為17,19;或者-19,-17。
第12頁。
數(shù)學教案一元二次方程的應用篇二
一元二次方程的應用是在學習了前面的一元二次方程的解法的基礎(chǔ)上,結(jié)合實際問題,討論了如何分析數(shù)量關(guān)系,利用相等關(guān)系來列方程,以及如何解答。
列方程解決實際問題,最重要的是審題,審題是列方程的基礎(chǔ),而列方程是解題的關(guān)鍵,只有在透徹理解題意的基礎(chǔ)上,才能恰當?shù)卦O出未知數(shù),準確找出已知量與未知量之間的等量關(guān)系,正確地列出方程。
在本章教學中我注意分散教學難點,比如說,在學習增長率問題時,我先設計了這樣一組練習:一個車間二月份生產(chǎn)零件500個,三月份比二月份增產(chǎn)10%,三月份生產(chǎn)xx個零件,如果四月份想再增產(chǎn)10%,四月份生產(chǎn)零件xx個。如果增產(chǎn)的百分率是x,那三月份和四月份各能生產(chǎn)零件多少個?通過分散教學難點,引導學生理解題意,從而達到滿意的教學效果。
在本章教學中我還注意對學生進行學法的指導。比如說,在做習題7.12第2題時,有的同學想象不出圖形,就應引導他們畫出示意圖;在比如學習最后一個例題時,面對那么多的量,并且是運動中的量,許多學生無從下手,此時就要引導學生把量在圖形中先標示出來,在慢慢分析題中的數(shù)量關(guān)系。在分析問題時,要強調(diào)當設完未知數(shù),那它就是已知數(shù),參與量的標示。
總之,在教學中通過學生的自主探究、小組間的合作交流、教師的及時點撥,進一步提高學生分析問題、解決問題的能力。
將本文的word文檔下載到電腦,方便收藏和打印。
數(shù)學教案一元二次方程的應用篇三
3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。
教學重點和難點:
教學建議:
1.教材分析:
1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。
2)重點、難點分析。
是一元二次方程的重要組成部分。方程,只有當時,才叫做一元二次方程。如果且,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。
(2)條件是用“關(guān)于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時題中隱含了的條件,這在解題中是不能忽略的。
(3)方程中含有字母系數(shù)的項,且出現(xiàn)“關(guān)于的方程”這樣的語句,就要對方程中的字母系數(shù)進行討論。如:“關(guān)于的方程”,這就有兩種可能,當時,它是一元一次方程;當時,它是一元二次方程,解題時就會有不同的結(jié)果。
將本文的word文檔下載到電腦,方便收藏和打印。
數(shù)學教案一元二次方程的應用篇四
是一元二次方程的重要組成部分。方程,只有當時,才叫做一元二次方程。如果且,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。
(2)條件是用“關(guān)于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時題中隱含了的條件,這在解題中是不能忽略的。
(3)方程中含有字母系數(shù)的項,且出現(xiàn)“關(guān)于的方程”這樣的語句,就要對方程中的字母系數(shù)進行討論。如:“關(guān)于的方程”,這就有兩種可能,當時,它是一元一次方程;當時,它是一元二次方程,解題時就會有不同的結(jié)果。
教學目的。
2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。
教學難點和難點:。
重點:。
數(shù)學教案一元二次方程的應用篇五
新課程要求培養(yǎng)學生應用數(shù)學的意識與能力,作為數(shù)學教師,我們要充分利用已有的生活經(jīng)驗,把所學的數(shù)學知識用到現(xiàn)實中去,體會數(shù)學在現(xiàn)實中應用價值。
本章節(jié)的應用基本上是以學生熟悉的'現(xiàn)實生活為問題的背景,讓學生從具體的問題情境中抽象出數(shù)量關(guān)系,歸納出變化規(guī)律,并能用數(shù)學符號表示,最終解決實際問題。這類注重聯(lián)系實際考查學生數(shù)學應用能力的問題,體現(xiàn)時代性,并且結(jié)合社會熱點、焦點問題,引導學生關(guān)注國家、人類和世界的命運。既有強烈的德育功能,又可以讓學生從數(shù)學的角度分析社會現(xiàn)象,體會數(shù)學在現(xiàn)實生活中的作用。
對教學過程進行反思,既有成功的一面,又有不足之處。需改進的方面有:
1、由于怕完不成任務,給學生獨立思考時間安排有些不合理,這樣容易讓思維活躍的學生的回答代替了其他學生的思考,掩蓋了其他學生的疑問。例如p46有多種解法,課后一些學生與老師交流,但課上沒有得到充分的展示。
2、只考慮捕捉學生的思維亮點,一生列錯了方程,老師沒有給予及時糾正。導致使一些同學陷入誤區(qū)。3、有些問題講的過于快,理解較慢的同學跟不上。
數(shù)學教案一元二次方程的應用篇六
2.知道的一般形式,會把化成一般形式。
3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。
教學重點和難點:
重點:的概念和它的一般形式。
難點:對的一般形式的正確理解及其各項系數(shù)的確定。
教學建議:
1.教材分析:
1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出的概念,介紹了的一般形式以及中各項的名稱。
1.了解整式方程和的概念;
2.知道的一般形式,會把化成一般形式。
3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。
教學難點和難點:。
重點:。
1.的有關(guān)概念。
2.會把化成一般形式。
難點:的含義.
第12頁。
數(shù)學教案一元二次方程的應用篇七
(2)掌握一元二次方程的一般形式,會判斷一元二次方程的二次項系數(shù)、一次項系數(shù)和常數(shù)項。
【教學過程】。
(一)創(chuàng)設情景,引入新課。
由學生說出這幾個方程的共同特征,從而引出一元二次方程的概念。
(二)新授。
1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)。
任一個一元二次方程都可以轉(zhuǎn)化成一般形式,注意二次項系數(shù)不為零。
3:講解例子。
5:講解例子。
6:一般步驟。
(三)小結(jié)。
(四)布置作業(yè)。
數(shù)學教案一元二次方程的應用篇八
3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。
教學重點和難點:
難點:對一元二次方程的一般形式的正確理解及其各項系數(shù)的確定。
教學建議:
1.教材分析:
1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。
2)重點、難點分析。
數(shù)學教案一元二次方程的應用篇九
(2)掌握一元二次方程的一般形式,會判斷一元二次方程的二次項系數(shù)、一次項系數(shù)和常數(shù)項。
(2)會用因式分解法解一元二次方程
【教學重點】一元二次方程的概念、一元二次方程的一般形式
【教學難點】因式分解法解一元二次方程
【教學過程】
(一)創(chuàng)設情景,引入新課
由學生說出這幾個方程的共同特征,從而引出一元二次方程的概念。
(二)新授
1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)
2:一元二次方程的一般形式(形如ax+bx+c=0)
3:講解例子
4:利用因式分解法解一元二次方程
5:講解例子
6:一般步驟
(三)小結(jié)
(四)布置作業(yè)
數(shù)學教案一元二次方程的應用篇十
2.通過自學探究掌握裁邊分割問題。
(閱讀課本p47頁,思考下列問題)。
1.閱讀探究3并進行填空;
2.完成p48的思考并掌握裁邊分割問題的特點;
設上、下邊襯的寬均為9xcm,左、右邊襯的寬均為7xcm,則:
由中下層學生口答書中填空,老師再給予補充。
思考:如果換一種設法,是否可以更簡單?
設正中央的長方形長為9acm,寬為7acm,依題意得。
9a·7a=(可讓上層學生在自學時,先上來板演)。
效果檢測時,由同座的同學給予點評與糾正。
9.如圖,要設計一幅寬20m,長30m的圖案,兩橫兩豎寬度之比為3∶2,若使彩條面積是圖案面積的四分之一,應怎樣設計彩條的寬帶?(討論用多種方法列方程比較)。
注意點:要善于利用圖形的平移把問題簡單化!
(只要求設元、列方程)。
數(shù)學教案一元二次方程的應用篇十一
第二步:將左端的二次三項式分解為兩個一次因式的積;。
第三步:方程左邊兩個因式分別為0,得到兩個一次方程,它們的解就是原方程的解.
解法二:配方法。
x^2-4x+3=x^2-4x+4-1=(x-2)^2-1=0。
即(x-2)^2=1。
于是x=3或x=1。
一般來說,一元二次方程往往可以用這樣2種方法解答,特別是對配方來說,它可能更實用,普遍。
比如x^2+x-1=0。
我們可能分解不出它的因式來,不過我們可以采用配方法。
x^2+x-1=(x+1/2)^2-5/4=0。
于是得到x=(根號5-1)/2或x=(-根號5-1)/2。
小練習。
1.分解因式:
(4)(x+1)2-16=________。
2.方程(2x+1)(x-5)=0的解是_________。
3.方程2x(x-2)=3(x-2)的解是___________。
5.已知y=x2+x-6,當x=________時,y的值為0;當x=________時,y的值等于24.6.方程x2+2ax-b2+a2=0的解為__________.
數(shù)學教案一元二次方程的應用篇十二
理解并掌握一元二次方程求根公式的推導過程,能正確、熟練地運用公式法解一元二次方程。
【過程與方法】。
經(jīng)歷探究求根公式的過程,發(fā)展合情推理能力,提高運算能力并養(yǎng)成良好的運算習慣。
【情感、態(tài)度與價值觀】。
通過公式法解一元二次方程,感受解法的多樣性,在學習活動中獲取成功的體驗。
【教學重點】。
【教學難點】。
(一)引入新課。
配方,得。
(四)小結(jié)作業(yè)。
作業(yè):課后練習題,試著用多種方法解答。
略
數(shù)學教案一元二次方程的應用篇十三
九年級的學生,在講本節(jié)課之前,已經(jīng)系統(tǒng)的學習了一元一次方程及相關(guān)概念,學習了整式、分式和二次根式,從知識結(jié)構(gòu)上看他們已經(jīng)具備了繼續(xù)探究一元二次方程的基礎(chǔ)。這個階段的學生自主探究和合作交流的能力很強,并且他們比較、分析、抽象和概括的能力也有很大提高。由于他們有強烈的求知欲,當遇到新的問題時,會自然的產(chǎn)生進一步探究的欲望。而我所教(11)班是年級中一個普通班,學生數(shù)學底子薄,基礎(chǔ)差,學生由于學習困難,基礎(chǔ)差,沒有自信,也就對數(shù)學的學習興趣越來越弱,有人甚至要放棄對數(shù)學的學習,作為他們的老師,首先培養(yǎng)他們自信心,啟發(fā)他們對數(shù)學的喜愛,慢慢培養(yǎng)他們的自信心,使數(shù)學基本概念、基本運算方法悄然走進學生的生活、走進他們對知識的運用中去。
教學目標。
一、知識與技能:
1.理解并掌握一元二次方程的概念,知道一元二次方程的一般形式;。
2.會把一個一元二次方程化為一般形式,會正確地判斷一元二次方程的項與系數(shù);。
3.通過本節(jié)課的學習,培養(yǎng)學生觀察、比較、分析、探究和歸納的能力。
二、過程與方法。
三、情感態(tài)度與價值觀。
2.通過本節(jié)知識的學習,使學生認識到知識的產(chǎn)生、變化和發(fā)展的過程。
教學重點和難點。
難點:1.由實際問題向數(shù)學問題的轉(zhuǎn)化過程。2.正確識別一般式中的“項”及“系數(shù)”。
數(shù)學教案一元二次方程的應用篇十四
今天,在教務處的組織下,我參加了柏老師的九年級數(shù)學課——《用因式分解法解一元二次方程》的公開課活動。
這節(jié)課,柏老師運用了“先學后導,分層推進”的教學模式開展教學活動。教學設計科學、嚴謹、合理。能對教材內(nèi)容進行取舍,不照本宣科。習題設計典型,有梯度。整個教學過程環(huán)環(huán)相扣,層層推進,最終教學效果理想。但是我個人認為在具體細節(jié)上還有有待改進的地方:。
1、知識性錯誤。因式分解是指把一個多項式分解成幾個整式相乘的形式。柏老師說成了分解成單項式相乘的形式。整式既包含單項式也有多項式。
2、整個教學過程中,還是沒有把學習的主動權(quán)交給學生,牽著學生走。不讓學生大膽的進行自主嘗試。其實,我們從后面的課堂檢測環(huán)節(jié)中可以看出學生的自主學習能力是非常強的。那幾個比較難的解方程學生都能用最簡單的方法求解。
3、從新課前的復習環(huán)節(jié)可以看出學生對已經(jīng)學過的概念記憶不清楚,對每節(jié)課所學的知識點不清。我們每節(jié)課的教學環(huán)節(jié)里基本都有“學習目標”出示和“歸納小結(jié)”的環(huán)節(jié)。這兩個環(huán)節(jié)看似不起眼,但細細推敲來,它們的作用就是讓學生清楚到底學什么和學到了什么,這兩個環(huán)節(jié)教學到位了,學生對所學知識也就是茶壺里煮餃子——心中有數(shù)了。
4、在“后導”環(huán)節(jié)要注重發(fā)揮學生的.自主、合作學習能力。因為學生在先學環(huán)節(jié)已經(jīng)掌握的一定的知識和能力,這時候教師適時的放手,讓學生通過自主學習,掌握知識,從而才能水到渠成的對知識進行歸納總結(jié)。就不會像本節(jié)課在歸納小結(jié)時這么牽強。
5、教師對教材鉆研不透徹。后面的六個解方程練習題是本節(jié)課的課后練習題,必然是都可以因式分解法來求解的。但是老師在個別輔導時強調(diào)用其他解法。
數(shù)學教案一元二次方程的應用篇十五
2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。
教學重點和難點:
難點:對一元二次方程的一般形式的正確理解及其各項系數(shù)的確定。
教學建議:
1.教材分析:
1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。
2)重點、難點分析。
是一元二次方程的重要組成部分。方程,只有當時,才叫做一元二次方程。如果且,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。
(2)條件是用“關(guān)于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時題中隱含了的條件,這在解題中是不能忽略的。
(3)方程中含有字母系數(shù)的項,且出現(xiàn)“關(guān)于的方程”這樣的語句,就要對方程中的字母系數(shù)進行討論。如:“關(guān)于的方程”,這就有兩種可能,當時,它是一元一次方程;當時,它是一元二次方程,解題時就會有不同的結(jié)果。
數(shù)學教案一元二次方程的應用篇十六
1、知識與技能目標:認識一元二次方程,并能分析簡單問題中的數(shù)量關(guān)系列出一元二次方程。
2、過程與方法:學生通過觀察與模仿,建立起對一元二次方程的感性認識,獲得對代數(shù)式的初步經(jīng)驗,鍛煉抽象思維能力。
3、情感態(tài)度與價值觀:學生在獨立思考的過程中,能將生活中的經(jīng)驗與所學的知識結(jié)合起來,形成實事求是的態(tài)度以及進行質(zhì)疑和獨立思考的習慣。
重點:理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會將不規(guī)則的一元二次方程化成標準的一元二次方程。
(一)導入新課。
生:老師,這是雷鋒叔叔。
生:是的老師。
生:想。
師:同學們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學習一元二次方程。
(二)新課教學。
師:我們來看到這個題目,要設計一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應設計為全高?同學們用ac來表示上部,bc來表示下部先簡單列一下這個比例關(guān)系,待會老師下去看看同學們的式子。
(下去巡視)。
(三)小結(jié)作業(yè)。
師:今天大家學習了一元二次方程,同學們回去還要加強鞏固,做練習題的1、2(2)題。
xx。
xx。
數(shù)學教案一元二次方程的應用篇十七
了解一元二次方程的概念;一般式ax2+bx+c=0(a0)及其派生的概念;應用一元二次方程概念解決一些簡單題目.
1.通過設置問題,建立數(shù)學模型,模仿一元一次方程概念給一元二次方程下定義.
2.一元二次方程的一般形式及其有關(guān)概念.
3.解決一些概念性的題目.
4.通過生活學習數(shù)學,并用數(shù)學解決生活中的問題來激發(fā)學生的學習熱情.
重難點關(guān)鍵。
1.重點:一元二次方程的概念及其一般形式和一元二次方程的有關(guān)概念并用這些概念解決問題.
2.難點關(guān)鍵:通過提出問題,建立一元二次方程的數(shù)學模型,再由一元一次方程的概念遷移到一元二次方程的概念.
教學過程。
一、復習引入。
學生活動:列方程.
如果假設門的高為x尺,那么,這個門的寬為_______尺,根據(jù)題意,得________.
整理、化簡,得:__________.
問題(2)如圖,如果,那么點c叫做線段ab的黃金分割點.
如果假設ab=1,ac=x,那么bc=________,根據(jù)題意,得:________.
整理得:_________.
如果假設剪后的正方形邊長為x,那么原來長方形長是________,寬是_____,根據(jù)題意,得:_______.
整理,得:________.
老師點評并分析如何建立一元二次方程的數(shù)學模型,并整理.
二、探索新知。
學生活動:請口答下面問題.
(1)上面三個方程整理后含有幾個未知數(shù)?
(2)按照整式中的多項式的規(guī)定,它們最高次數(shù)是幾次?
(3)有等號嗎?或與以前多項式一樣只有式子?
老師點評:(1)都只含一個未知數(shù)x;(2)它們的最高次數(shù)都是2次的;(3)都有等號,是方程.
因此,像這樣的方程兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的.最高次數(shù)是2(二次)的方程,叫做一元二次方程.
一般地,任何一個關(guān)于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a0).這種形式叫做一元二次方程的一般形式.
一個一元二次方程經(jīng)過整理化成ax2+bx+c=0(a0)后,其中ax2是二次項,a是二次項系數(shù);bx是一次項,b是一次項系數(shù);c是常數(shù)項.
例1.將方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并寫出其中的二次項系數(shù)、一次項系數(shù)及常數(shù)項.
分析:一元二次方程的一般形式是ax2+bx+c=0(a0).因此,方程(8-2x)(5-2x)=18必須運用整式運算進行整理,包括去括號、移項等.
解:去括號,得:
移項,得:4x2-26x+22=0。
其中二次項系數(shù)為4,一次項系數(shù)為-26,常數(shù)項為22.
例2.(學生活動:請二至三位同學上臺演練)將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并寫出其中的二次項、二次項系數(shù);一次項、一次項系數(shù);常數(shù)項.
分析:通過完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a0)的形式.
解:去括號,得:
x2+2x+1+x2-4=1。
移項,合并得:2x2+2x-4=0。
其中:二次項2x2,二次項系數(shù)2;一次項2x,一次項系數(shù)2;常數(shù)項-4.
三、鞏固練習。
教材p32練習1、2。
四、應用拓展。
例3.求證:關(guān)于x的方程(m2-8m+17)x2+2mx+1=0,不論m取何值,該方程都是一元二次方程.
分析:要證明不論m取何值,該方程都是一元二次方程,只要證明m2-8m+170即可.
證明:m2-8m+17=(m-4)2+1。
∵(m-4)20。
(m-4)2+10,即(m-4)2+10。
不論m取何值,該方程都是一元二次方程.
五、歸納小結(jié)(學生總結(jié),老師點評)。
本節(jié)課要掌握:
(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a0)和二次項、二次項系數(shù),一次項、一次項系數(shù),常數(shù)項的概念及其它們的運用.
六、布置作業(yè)。
【本文地址:http://m.aiweibaby.com/zuowen/15269933.html】