人教版七年級數(shù)學教案版范文(22篇)

格式:DOC 上傳日期:2023-11-26 18:19:10
人教版七年級數(shù)學教案版范文(22篇)
時間:2023-11-26 18:19:10     小編:曼珠

教案是教師備課的基礎,能夠幫助教師有效地傳授知識。教案要關注學生的學習動態(tài),及時調整教學策略和方法。探討教案的編寫和實施,共同提升教師的教學能力和專業(yè)素養(yǎng)。

人教版七年級數(shù)學教案版篇一

多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數(shù)學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。良好的學習數(shù)學習慣包括課前自學、專心上課、及時復習、獨立作業(yè)、解決疑難、系統(tǒng)小結和課外學習幾個方面。

及時了解、掌握常用的數(shù)學思想和方法。

中學數(shù)學學習要重點掌握的的數(shù)學思想有以上幾個:集合與對應思想,分類討論思想,數(shù)形結合思想,運動思想,轉化思想,變換思想。

人教版七年級數(shù)學教案版篇二

一:教材分析:

1:教材所處的地位和作用:

以及對他們進行思想教育方面有獨特的意義,同時,對后續(xù)教學內容起到奠基作用。

2:教育教學目標:

(1)知識目標:

(a)通過教學使學生了解應用題的一個重要步驟是根據(jù)題意找出相等關系,然后列出方程,關鍵在于分析已知未知量之間關系及尋找相等關系。

(b)通過和;差;倍;分的量與量之間的分析以及公式中有一個字母表示未知數(shù),其余字母表示已知數(shù)的情況下,列出一元一次方程解簡單的應用題。

(2)能力目標:通過教學初步培養(yǎng)學生分析問題,解決實際問題,綜合歸納整理的能力,以及理論聯(lián)系實際的能力。

(3)思想目標:

通過對一元一次方程應用題的教學,讓學生初步認識體會到代數(shù)方法的優(yōu)越性,同時滲透把未知轉化為已知的辯證思想,介紹我國古代數(shù)學家對一元一次方程的研究成果,激發(fā)學生熱愛中國共產黨,熱愛社會主義,決心為實現(xiàn)社會主義四個現(xiàn)代化而學好數(shù)學的思想;同時,通過理論聯(lián)系實際的方式,通過知識的應用,培養(yǎng)學生唯物主義的思想觀點。

3:重點,難點以及確定的依據(jù):

根據(jù)題意尋找和;差;倍;分問題的相等關系是本課的重點,根據(jù)題意列出一元一次方程是本課的難點,其理論依據(jù)是關鍵讓學生找出相等關系克服列出一元一次方程解應用題這一難點,但由于學生年齡小,解決實際問題能力弱,對理論聯(lián)系實際的問題的理解難度大。

二:學情分析:(說學法)。

1:學生初學列方程解應用題時,往往弄不清解題步驟,不設未知數(shù)就直接進行列方程或在設未知數(shù)時,有單位卻忘記寫單位等。

2:學生在列方程解應用題時,可能存在三個方面的困難:

(1)抓不準相等關系;

(2)找出相等關系后不會列方程;

(3)習慣于用小學算術解法,得用代數(shù)方法分析應用題不適應,不知道要抓怎樣的相等關系。

3:學生在列方程解應用題時可能還會存在分析問題時思路不同,列出方程也可能不同,這樣一來部分學生可能認為存在錯誤,實際不是,作為教師應鼓勵學生開拓思路,只要思路正確,所列方程合理,都是正確的,讓學生選擇合理的思路,使得方程盡可能簡單明了。

4:學生在學習中可能習慣于用算術方法分析已知數(shù)與未知數(shù),未知數(shù)與已知數(shù)之間的關系,對于較為復雜的應用題無法找出等量關系,隨便行事,亂列式子。

5:學生在學習過程中可能不重視分析等量關系,而習慣于套題型,找解題模式。

三:教學策略:(說教法)。

如何突出重點,突破難點,從而實現(xiàn)教學目標。我在教學過程中擬計劃進行如下操作:

1:“讀(看)——議——講”結合法。

2:圖表分析法。

3:教學過程中堅持啟發(fā)式教學的原則。

教學的理論依據(jù)是:

1:必須先明確根據(jù)應用題題意列方程是重點,同時也是難點的觀點,在教學過程中幫助學生抓住關鍵,克服難點,正確列方程弄清楚題意,找出能夠表示應用題全部含義的一個相等關系,并列出代數(shù)式表示這相等關系的左邊和右邊。為此,在教學過程中要讓學生明確知曉解題步驟,通過例1可以讓學生大致了解列出一元一次方程解應用題的方法。

2:在教學過程中要求學生仔細審題,認真閱讀例題的內容提要,弄清題意,找出能夠表示應用題全部含義的一個相等關系,分析的過程可以讓學生只寫在草稿上,在寫解的過程中,要求學生先設未知數(shù),再根據(jù)相等關系列出需要的代數(shù)式,再把相等關系表示成方程形式,然后解這個方程,并寫出答案,在設未知數(shù)時,如有單位,必須讓學生寫在字母后,如例1中,不能把“設原來有_千克面粉”寫成“設原來有_”。另外,在列方程中,各代數(shù)式的單位應該是相同的,如例1中,代數(shù)式“_字串7”“—15%_”“42500”的單位都是千克。在本例教學中,關鍵在于找出這個相等關系,將其中涉及待求的某個數(shù)設為未知數(shù),其余的數(shù)用已知數(shù)或含有已知數(shù)與未知數(shù)的代數(shù)式表示,從而列出方程。在例1中的相等關系比較簡單明顯,可通過啟發(fā)式讓學生自己找出來。在例1教學中同時讓學生鞏固解一元一次方程應用題的五個步驟,特別是第2步是關鍵步驟。

3:針對學生在列方程解應用題中可能存在的三個方面的困難,在教學過程中有意識加以解決,特別是學生抓不準相等關系這方面,可以讓學生通過表格,圖表等形式幫助學生找出相等關系表示成方程。如例1在分析過程中通過表格讓學生明了清楚直觀解決列方程的難點。

4:通過圖表對比使學生更直觀,理解更深刻,同時,降低了理論教學的難度和分量,提高課堂教學效益(教學手段)。

5:在課后習題的安排上適當讓學生通過模仿例題的思想方法,加深學生解應用題的能力,這主要由于學生剛剛入門,多進行模仿,習慣以后,再做與例題不一樣的習題,可以提高運用知識能力,同時讓學生進行一題多解,找出共同點,區(qū)別或最佳列法,以開闊學生的思路。

四:教學程序:

(一):課堂結構:復習提問,導入講授新課,課堂練習,鞏固新課,布置作業(yè)五個部分。

(二):教學簡要過程:

1:復習提問:

(1):什么叫做等式?

(2):等式與方程之間有哪些關系?

(3):求_的15%的代數(shù)式。

(4):敘述代數(shù)式與方程的區(qū)別。

(理由是:通過復習加深學生對等式,方程,代數(shù)式之間關系的理解,有利于學生熟練正確根據(jù)題意列出一元一次方程,從而有利降低本節(jié)的難度。)。

2:導入講授新課:

(1):教具:

一塊小黑板,抄212例1題目及相對應的空表格。

左邊右邊。

(2):新課引述:

(3):講述課文212例1:

(目的是:要求學生認真讀懂題目,尋找反映題目的全部含義的相等關系,必須根據(jù)題目關系,切勿盲目性)通過理解啟發(fā)學生尋找出以下關系:原來重量—運出重量=剩余重量(a)(在指導學生分析尋找題意相等關系時,可能存在學生分析問題思路不同,會找出如下關系:原來重量=運出重量+剩余重量,原來重量—剩余重量=運出重量的相等關系來,這主要由于學生思路不同,得出的關系表面不同,但思路是正確的,應加以鼓勵培養(yǎng)學生這種發(fā)散思維能力。)。

指導學生設原來重量為_千克。這里分析等式左邊:原來重量為_千克,運出重量為15%_千克,把以上填入表格左邊。字串7分析等式右邊:剩余重量為42500千克,填入表格右邊。

(目的是:通過分析使學生易看出,先弄懂題意,找出相等關系,再按照相等關系來設未知數(shù)和列代數(shù)式,有利于降低列方程解應用題的難度)。

把以上左邊和右邊的代數(shù)式分別代入(a)中,同時要求學生注意方程的左邊和右邊的單位要一致,就可以列出方程。

同時要求學生在解答過程中勿漏寫“答”和“設”,且都不要漏寫單位。

結合解題過程向學生介紹一元一次應用題解法的一般步驟:

課本215黑體字。

3:課堂練習:

課文216練習1,2題。

(目的是:讓學生通過適當?shù)哪7吕}的解題思想方法從而加深對本課的內容的理解掌握。)。

4:新課鞏固:

學生對本節(jié)內容進行要小結:

列方程解應用題著重于分析,抓住尋找相等關系。解一元一次應用題的一般步驟及注意事項。

(目的:讓學生加深對應用題的解法的認識和該注意事項的重視。)。

5:作業(yè)布置:

課文221習題4-4(1)a組1,2,3題。

(目的:在于檢驗學生對本節(jié)內容的理解和運用程度,以及實際接受情況,并促使學生進一步鞏固和掌握所學的內容。)。

五:板書設計:

4_4一元一次方程的應用:

例題:小黑板出示例1題目解:設原來有_千克面粉,那么運。

相等關系:原來重量—運出重量=剩余重量出了15%_千克,依題意,得。

等式左邊:等式右邊:_—15%_=42500。

原來重量為_千克,剩余重量為42500千克。解這個方程:

運出重量為15%_千克。85/100__=42500。

解一元一次方程的一般步驟:_=50000(千克)。

小黑板出示課文215黑體字內容提要答:原來有50000千克面粉。

人教版七年級數(shù)學教案版篇三

3,體驗數(shù)形結合的思想。

教學難點歸納相反數(shù)在數(shù)軸上表示的點的特征。

知識重點相反數(shù)的概念。

教學過程(師生活動)設計理念。

設置情境。

引入課題問題1:請將下列4個數(shù)分成兩類,并說出為什么要這樣分類。

4,-2,-5,+2。

允許學生有不同的分法,只要能說出道理,都要難予鼓勵,但教師要做適當?shù)囊龑?,逐漸得出5和-5,+2和-2分別歸類是具有較特征的分法。

(引導學生觀察與原點的距離)。

思考結論:教科書第13頁的思考。

再換2個類似的數(shù)試一試。

培養(yǎng)學生的觀察與歸納能力,滲透數(shù)形思想。

深化主題提煉定義給出相反數(shù)的定義。

學生思考討論交流,教師歸納總結。

規(guī)律:一般地,數(shù)a的相反數(shù)可以表示為-a。

思考:數(shù)軸上表示相反數(shù)的兩個點和原點有什么關系?

練一練:教科書第14頁第一個練習體驗對稱的圖形的特點,為相反數(shù)在數(shù)軸上的特征做準備。

深化相反數(shù)的概念;“零的相反數(shù)是零”是相反數(shù)定義的一部分。

強化互為相反數(shù)的數(shù)在數(shù)軸上表示的點的幾何意義。

給出規(guī)律。

解決問題問題3:-(+5)和-(-5)分別表示什么意思?你能化簡它們嗎?

學生交流。

分別表示+5和-5的相反數(shù)是-5和+5。

練一練:教科書第14頁第二個練習利用相反數(shù)的概念得出求一個數(shù)的相反數(shù)的方法。

小結與作業(yè)。

課堂小結1,相反數(shù)的定義。

2,互為相反數(shù)的數(shù)在數(shù)軸上表示的點的特征。

3,怎樣求一個數(shù)的相反數(shù)?怎樣表示一個數(shù)的相反數(shù)?

本課作業(yè)1,必做題教科書第18頁習題1.2第3題。

2,選做題教師自行安排。

本課教育評注(課堂設計理念,實際教學效果及改進設想)。

1,相反數(shù)的概念使有理數(shù)的各個運算法則容易表述,也揭示了兩個特殊數(shù)的特征.這兩個特殊數(shù)在數(shù)量上具有相同的絕對值,它們的和為零,在數(shù)軸上表示時,離開原點的距離相等等性質均有廣泛的應用.所以本教學設計圍繞數(shù)量和幾何意義展開,滲透數(shù)形結合的思想.

2,教學引人以開放式的問題人手,培養(yǎng)學生的分類和發(fā)散思維的能力;把數(shù)在數(shù)軸上表示出來并觀察它們的特征,在復習數(shù)軸知識的同時,滲透了數(shù)形結合的數(shù)學方法,數(shù)與形的相互轉化也能加深對相反數(shù)概念的理解;問題2能幫助學生準確把握相反數(shù)的概念;問題3實際上給出了求一個數(shù)的相反數(shù)的方法.

3,本教學設計體現(xiàn)了新課標的教學理念,學生在教師的引導下進行自主學習,自主探究,觀察歸納,重視學生的思維過程,并給學生留有發(fā)揮的余地.

人教版七年級數(shù)學教案版篇四

1、通過豐富的實例,學生進一步認識點、線、面、體的幾何特征,感受它們之間的關系。

2、培養(yǎng)學生操作、觀察、分析、猜測和概括等能力,同時滲透轉化、化歸、變換的思想。

3、養(yǎng)成學生積極主動的學習態(tài)度和自主學習的方式。

重點:認識點、線、面、體的幾何特征,感受它們之間的關系。

難點:在實際背景中體會點的含義。

圓柱、圓錐、正方體、長方體、球、棱柱、棱錐模型。

觀察、討論.讓學生共同體會“點動成線、線動成面、面動成體。

讓學生舉出更多的“點動成線、線動成面、面動成體”的例子。

小組合作學習,學生利用學具完成教科書第114頁練習(動手轉一轉)。

設計意圖:教師利用多媒體動態(tài)演示,讓學生主動參與學習活動,觀察感受,經歷體驗圖形的變化過程,通過合作學習,感悟知識的生成、變化、發(fā)展,激發(fā)學生的聯(lián)想與再創(chuàng)造能力。學生自己動手實踐操作,加深學生印象,化解難度。

教師展示圖片(建筑或生活的實物等),讓學生找找生活中的平面、曲面、直線、點等。

讓學生找出生活中更多的包含平面、曲面、直線、曲線、點的例子。

1、課本112頁觀察,并回答它的問題。

引導學生觀察后得出結論:面與面相交得到線,線與線相交得到點。

2、113頁練習(提供實物,議一議,動手摸一摸),思考以下問題:

讓學生自己體會并小組討論得出點、線、面、體之間的關系。

2、閱讀教科書第119頁的實驗與探究,并思考有關問題。

人教版七年級數(shù)學教案版篇五

1知識與技能:

使學生理解和掌握整十數(shù)除整十數(shù)、幾百幾十數(shù)(商一位數(shù))的口算方法,能正確地進行計算。

2過程與方法:

通過觀察、操作、討論的活動,使學生經歷探究口算方法的全過程。

3情感態(tài)度與價值觀:

讓學生感受數(shù)學與生活的聯(lián)系,培養(yǎng)學生用數(shù)學知識解決簡單實際問題的能力。

教學重難點。

1教學重點:

掌握用整十數(shù)除的口算方法。

2教學難點:

理解用整十數(shù)除的口算算理。

教學工具。

多媒體設備。

教學過程。

1復習引入。

口算。

20×3=7×50=6×3=。

20×5=4×9=8×60=。

24÷6=8÷2=12÷3=。

42÷6=90÷3=3000÷5=。

2新知探究。

1.教學例1。

有80面彩旗,每班分20面,可以分給幾個班?

(1)提出問題,尋找解決問題的方法。

師:從中你能獲取什么數(shù)學信息?

師:怎樣解決這個問題?

(2)列式80÷20。

(3)學生獨立探索口算的方法。

師:怎樣算80÷20呢,請同學們先自己想一想、算一算,再說給同桌聽一聽。

學生匯報:

預設學生可能會有以下兩種口算方法:

a.因為20×4=80,所以80÷20=4這是想乘算除。

b.因為8÷2=4,所以80÷20=4這是根據(jù)計數(shù)單位的組成。

為什么可以不看這個“0”?(80÷20可以想“8個十里面有幾個二十?”)。

這樣我們就把除數(shù)是整十數(shù)的轉化為我們已經學過的表內除法。

(4)師小結:

同學們有的用乘法算除法的,也有用表內除法來想的,都很好,那么你喜歡哪種方法呢?

把你喜歡的方法說給同桌聽。

(5)檢查正誤。

師:我們分的結果對不對?請同學們看屏幕(課件演示分的結果)。

(6)用剛學會的方法再次口算,并與同桌交流你的想法。

40÷2020÷1060÷3090÷30。

(7)探究估算的方法。

出示:83÷20≈80÷19≈。

師:你能知道題目要求我們做什么嗎?你怎么知道的?你是怎樣計算的?和同學們交流一下。

生:求83除以20、80除以19大約得多少,從題目中的約等號看出不用精確計算。

師:誰想把你的方法跟大家說一說。

預設:83接近于80,80除以20等于4,所以83除以20約等于4。

19接近于20,80除以20等于4,所以80除以19約等于4。

2.教學例2。

(1)創(chuàng)設情境引出問題。

師:誰會解決這個問題?

150÷50。

(2)小組討論口算方法。

(3)你是怎么這樣快就算出的呢?

a.因為15÷5=3,所以150÷50=3。

b.因為3個50是150,所以150÷50=3。

這一題跟剛才分彩旗的口算方法有不同嗎?

都是運用想乘算除和表內除法這兩種方法來口算的。

師:在解決分彩旗和剛才的問題中,我們共同探討了除法的口算方法,(板題:口算除法)口算時,可以用自己喜歡的方法來口算。

口算練習:150÷30240÷80300÷50540÷90。

3.估算。

(1)探計估算的方法。

師:你能知道題目要求我們做什么嗎?

你能估嗎?請先估算,再把你的估算方法與同伴交流,看看能否互相借鑒。

(2)誰想把你的方法跟大家說一說。

(3)總結方法:把被除數(shù)和除數(shù)都看作與原數(shù)比較接近的整十數(shù)再用口算方法算。

(4)判斷估算是否正確:122÷60=2349÷50≈8為什么不正確?

3鞏固提升。

1.獨立口算。

觀察每道題,怎樣很快說出下面除法算式的商?

如果估算的話把誰估成多少。

2.算一算、說一說。

(1)除數(shù)不變,被除數(shù)乘幾,商也乘幾。

(2)被除數(shù)不變,除數(shù)乘幾,商反而除以幾。

3.解決問題。

(1)一共要寄240本書,每包40本。要捆多少包?

你能找到什么條件、問題。你會解決嗎?

240÷40=6(包)。

答:要捆6包。

(2)這個小朋友也是一個愛看書的好孩子,她在看一本故事書。

出示條件:一共有120個小故事,每天看1個故事。

問題:看完這本書大約需要幾個月?

問:要求看完這本書大約需要幾個月?必須要知道哪些條件,你會求嗎?

120÷30=4(個)。

答:看完這本書大約需要4個月。

課后小結。

這節(jié)課你有什么收獲?還有什么問題?

本節(jié)課學習了整十數(shù)除整十數(shù)、幾百幾十數(shù)(商一位數(shù))的口算方法,能正確地進行計算。

板書。

口算除法。

有80面彩旗,每班分20面,可以分給幾個班?

80÷20=。

人教版七年級數(shù)學教案版篇六

(1)能用代數(shù)式表示實際問題中的數(shù)量關系.

(2)理解單項式、單項式的次數(shù),系數(shù)等概念,會指出單項式的次數(shù)和系數(shù).

講授法、談話法、討論法。

【教學重點】。

單項式的有關概念。

【教學難點】。

負系數(shù)的確定以及準確確定一個單項式的次數(shù)。

【課前準備】。

教師準備教學用課件。

【教學過程】。

一、新課引入。

教師操作課件,展示章前圖案以及字幕,學生觀看并思考下列問題:

1.青藏鐵路線上,在格爾木到拉薩之間有一段很長的凍土地段,列車在凍土地段的行駛速度是100千米/時,在非凍土地段的行駛速度可以達到120千米/時,請根據(jù)這些數(shù)據(jù)回答下列問題:

(1)列車在凍土地段行駛時,2小時能行駛多少千米?3小時呢?t小時呢?

分析:(1)根據(jù)速度、時間和路程之間的關系:路程=速度×時間.列車在凍土地段2小時行駛的路程是100×2=200(千米),3小時行駛的路程為100×3=300(千米),t小時行駛的路程為100×t=100t(千米).

(2)列車通過非凍土地段所需時間為2.1t小時,行駛的路程為120×2.1t(千米);列車通過凍土地段的路程為100t,因此這段鐵路的全長為120×2.1t+100t(千米).

(3)在格里木到拉薩路段,列車通過凍土地段要u小時,那么通過非凍土地段要(u-0.5)小時,凍土地段的路程為100u千米,非凍土地段的路程為120(u-0.5)千米,這段鐵路的全長為[100u+120(u-0.5)]千米,凍土地段與非凍土地段相差為[100u-120(u-0.5)]千米.

思路點撥:上述問題(1)可由學生自己完成,問題(2)、(3)先由學生思考、交流的基礎上教師引導學生分析怎樣列式.

上述的3個問題中的數(shù)量關系我們分別用含有字母的式子表示,通過本章學習,我們還可以將上述問題(2)、(3)進行加減運算,化簡.

kb2.下面,我們再來看幾個用含字母的式子表示數(shù)量關系的問題.

用含有字母的式子填空,看看列出的式子有什么特點.

(1)邊長為a的正方體的表面積為______,體積為_______.

(2)鉛筆的單價是x元,圓珠筆的單價是鉛筆的單價的2.5倍圓珠筆的單價是_______元.

(3)一輛汽車的速度是v千米/時,它t小時行駛的路程為_______千米.

(4)數(shù)n的相反數(shù)是_______.

教師課堂巡視,關注中下程度的學生,及時引導,學生探究交流.

上面各問題的代數(shù)式分別是:6a2,a3,2.5x,vt,-n.

觀察上面各式中運算有什么共同特點?

上面各式中,數(shù)字與字母之間,字母與字母之間都是乘法運算,它們都是數(shù)字與字母的積,例如:6a2表示6×a2,a3表示1×a3,2.5x表示2.5×x,vt表示1×v×t,-n表示-1×n.

像上面這樣,只含有數(shù)與字母的積的式子叫做單項式.單獨的一個數(shù)或一個字母也是單項式.如:-2,a,,都是單項式,而,1+x都不是單項.

單項式中的數(shù)字因數(shù)叫做這個單項式的系數(shù),例如:6a2的系數(shù)是6,a3的系數(shù)是1,-n的系數(shù)是-1,-的系數(shù)是-.

單項式表示數(shù)字與字母相乘時,通常把數(shù)字寫成前面,當一個單項式的系數(shù)是1或-1時通常省略不寫.

一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù).例如,2.5x中字母x的指數(shù)是1,2.5x是一次單項式;vt中字母v與t的指數(shù)和是2,vt是二次單項式,-ab2c中字母a、b、c的指數(shù)和是4,-ab2c是4次單項式.

人教版七年級數(shù)學教案版篇七

1.單項式:只含有數(shù)和字母的乘積的代數(shù)式叫做單項式.單獨的一個數(shù)或一個字母也是單項式.它的本質特征在于:

(1)不含加減運算;。

(2)可以含乘、除、乘方運算,但分母中不能含有字母.

2.單項式的次數(shù)、系數(shù):一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù).單項式中的數(shù)字因數(shù)叫做這個單項式的系數(shù).

3.多項式:幾個單項式的和叫做多項式.多項式中,每個單項式叫做多項式的項,其中不含字母的項叫常數(shù)項.一個多項式中,次數(shù)最高的項的次數(shù),叫做這個多項式的次數(shù).

4.整式:單項和多項式統(tǒng)稱整式.

人教版七年級數(shù)學教案版篇八

2.會求一個已知數(shù)的相反數(shù);。

3.體驗數(shù)形結合思想;。

4.根據(jù)相反數(shù)的意義化簡符號.

二、知識回顧1.數(shù)軸的三要素是什么?在下面畫出一條數(shù)軸:

原點、正方向和單位長度.

2.在上面的數(shù)軸上描出表示5、—2、—5、+2這四個數(shù)的點.

3.觀察上圖并填空:數(shù)軸上與原點的距離是2的點有2個,這些點表示的數(shù)是2、-2;與原點的距離是5的點有2個,這些點表示的數(shù)是5、-5.

三、新知講解1.相反數(shù)的幾何意義。

數(shù)軸上表示互為相反數(shù)的兩個數(shù)的點關于原點對稱.

2.相反數(shù)的概念。

像2和—2、5和—5、3和—3這樣,只有符號不同的兩個數(shù)叫做互為相反數(shù).把其中一個數(shù)叫做另一個數(shù)的相反數(shù).特別地,0的相反數(shù)是0.

四、典例探究。

1.相反數(shù)的幾何意義(相反數(shù)的引入)。

【例1】如果a是一個正數(shù),那么數(shù)軸上與原點的距離是a的點有兩個,即一個表示a,另一個是,它們分別在原點的左邊和右邊,我們說,這兩點關于.

a和互為相反數(shù),也就是說,-a是的相反數(shù).

總結:互為相反數(shù)的兩個數(shù)分別位于原點的兩側,且到原點的距離相等,我們也說數(shù)軸上表示互為相反數(shù)的兩個數(shù)的點關于原點對稱.

練1數(shù)軸上表示相反數(shù)的兩個點和原點的距離.

2.相反數(shù)的概念辨析。

【例2】判斷下列說法正誤.

(1)-5是相反數(shù).()。

(2)-5是5的相反數(shù),5不是-5的相反數(shù).()。

(3)符號相反的兩個數(shù)叫做互為相反數(shù).()。

總結:理解相反數(shù)的定義,要注意以下幾點:

2.是相反數(shù)的兩個數(shù)之間的關系是相互的,如的相反數(shù)是,反之的相反數(shù)是;。

3.“只有”指的是僅僅是符號不同,而數(shù)字(絕對值)是相同的,如-3和5不是相反數(shù),因為它們的數(shù)字不同.

練2辨析:因為向東6米和向西3米是一對相反意義的量,如果規(guī)定向東是正方向,向東6米可以記作+6米,向西3米可以記作-3米,所以+6和-3互為相反數(shù).()。

3.求一個數(shù)的相反數(shù)。

人教版七年級數(shù)學教案版篇九

1.通過與溫度計的類比,了解數(shù)軸的概念,會畫數(shù)軸。

2.知道如何在數(shù)軸上表示有理數(shù),能說出數(shù)軸上表示有理數(shù)的點所表示的數(shù),知道任何一個有理數(shù)在數(shù)軸上都有唯一的點與之對應。

過程方法。

1.從直觀認識到理性認識,從而建立數(shù)軸概念。

2.通過數(shù)軸概念的學習,初步體會對應的思想、數(shù)形結合的思想方法。

3.會利用數(shù)軸解決有關問題。

情感態(tài)度。

通過對數(shù)軸的學習,體會到數(shù)形結合的思想方法,進而初步認識事物之間的聯(lián)系性。

【教學重點】。

1.數(shù)軸的概念。

2.能將已知數(shù)在數(shù)軸上表示出來,說出數(shù)軸上已知點所表示的數(shù)。

【教學難點】。

從直觀認識到理性認識,從而建立數(shù)軸的概念。

【情景引入】。

1.小明感冒了,醫(yī)生用體溫計測量了他的體溫,并說:“37.8度?!?/p>

提疑:醫(yī)生為什么通過體溫計就可以讀出任意一個人的體溫?

(體溫計上的刻度)。

2.我們再一起去看看12月時祖國各地的自然風光和溫度情況(電腦分別顯示黑龍江、焦作、海南三個城市美麗的自然風光,溫度分別為-10°c,0°c,20°c)。

提疑:那么要測量這種氣溫所需要的溫度計的刻度應該如何安排?需要用到哪些數(shù)?

(正數(shù)、零、負數(shù))。

3.請嘗試畫出你想像中的溫度計,并和其他同學交流,注意交流時要發(fā)表自己的見解。然后提問:請找出一支溫度計從外觀上具有哪些不可缺少的特征?(組織學生討論交流)學生可能會從不同的角度回答,教師給予必要的引導,總結出與數(shù)軸相對應的特點,如形狀是直的、0刻度、單位刻度。(電腦動態(tài)演示,將溫度計水平放置,抽象得出數(shù)軸圖形表示有理數(shù)-10,0,20的過程)從而引出課題------數(shù)軸。

人教版七年級數(shù)學教案版篇十

1.理解垂線、垂線段的概念,會用三角尺或量角器過一點畫已知直線的垂線。

2.掌握點到直線的距離的概念,并會度量點到直線的距離。

3.掌握垂線的性質,并會利用所學知識進行簡單的推理。

[教學重點與難點]。

1.教學重點:垂線的定義及性質。

2.教學難點:垂線的畫法。

[教學過程設計]。

一、復習提問:

1、敘述鄰補角及對頂角的定義。

2、對頂角有怎樣的.性質。

二.新課:

引言:

前面我們復習了兩條相交直線所成的角,如果兩條直線相交成特殊角直角時,這兩條直線有怎樣特殊的位置關系呢?日常生活中有沒有這方面的實例呢?下面我們就來研究這個問題。

(一)垂線的定義。

當兩條直線相交的四個角中,有一個角是直角時,就說這兩條直線是互相垂直的,其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。

如圖,直線ab、cd互相垂直,記作,垂足為o。

請同學舉出日常生活中,兩條直線互相垂直的實例。

注意:

1、如遇到線段與線段、線段與射線、射線與射線、線段或射線與直線垂直,特指它們所在的直線互相垂直。

2、掌握如下的推理過程:(如上圖)。

反之,

(二)垂線的畫法。

探究:

1、用三角尺或量角器畫已知直線l的垂線,這樣的垂線能畫出幾條?

2、經過直線l上一點a畫l的垂線,這樣的垂線能畫出幾條?

3、經過直線l外一點b畫l的垂線,這樣的垂線能畫出幾條?

畫法:

讓三角板的一條直角邊與已知直線重合,沿直線左右移動三角板,使其另一條直角邊經過已知點,沿此直角邊畫直線,則這條直線就是已知直線的垂線。

注意:如過一點畫射線或線段的垂線,是指畫它們所在直線的垂線,垂足有時在延長線上。

(三)垂線的性質。

經過一點(已知直線上或直線外),能畫出已知直線的一條垂線,并且只能畫出一條垂線,即:

性質1過一點有且只有一條直線與已知直線垂直。

練習:教材第7頁。

探究:

如圖,連接直線l外一點p與直線l上各點o,

a,b,c,……,其中(我們稱po為點p到直線。

l的垂線段)。比較線段po、pa、pb、pc……的長短,這些線段中,哪一條最短?

性質2連接直線外一點與直線上各點的所有線段中,垂線段最短。

簡單說成:垂線段最短。

(四)點到直線的距離。

直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。

如上圖,po的長度叫做點p到直線l的距離。

人教版七年級數(shù)學教案版篇十一

在知識與方法上類似于數(shù)系的第一次擴張。

也是后繼內容學習的基礎。

內容定位:了解無理數(shù)、實數(shù)概念,了解(算術)平方根的概念;會用根號表示數(shù)的(算術)平方根,會求平方根、立方根,用有理數(shù)估計一個無理數(shù)的大致范圍,實數(shù)簡單的四則運算(不要求分母有理化)。

整體設計思路:無理數(shù)的引入----無理數(shù)的表示----實數(shù)及其相關概念(包括實數(shù)運算),實數(shù)的應用貫穿于內容的始終。

學習對象----實數(shù)概念及其運算;學習過程----通過拼圖活動引進無理數(shù),通過具體問題的解決說明如何表示無理數(shù),進而建立實數(shù)概念;以類比,歸納探索的`方式,尋求實數(shù)的運算法則;學習方式----操作、猜測、抽象、驗證、類比、推理等。

具體過程:首先通過拼圖活動和計算器探索活動,給出無理數(shù)的概念,然后通過具體問題的解決,引入平方根和立方根的概念和開方運算。

最后教科書總結實數(shù)的概念及其分類,并用類比的方法引入實數(shù)的相關概念、運算律和運算性質等。

第一節(jié):數(shù)怎么又不夠用了:通過拼圖活動,讓學生感受無理數(shù)產生的實際背景和引入的必要性;借助計算器探索無理數(shù)是無限不循環(huán)小數(shù),并從中體會無限逼近的思想;會判斷一個數(shù)是有理數(shù)還是無理數(shù)。

第二、三節(jié):平方根、立方根:如何表示正方形的邊長?它的值到底是多少?并引入算術平方根、平方根、立方根等概念和開方運算。

第四節(jié):公園有多寬:在實際生活和生產實際中,對于無理數(shù)我們常常通過估算來求它的近似值,為此這一節(jié)內容介紹估算的方法,包括通過估算比較大小,檢驗計算結果的合理性等,其目的是發(fā)展學生的數(shù)感。

第五節(jié):用計算器開方:會用計算器求平方根和立方根。

經歷運用計算器探求數(shù)學規(guī)律的活動,發(fā)展合情推理的能力。

第六節(jié):實數(shù)。

總結實數(shù)的概念及其分類,并用類比的方法引入實數(shù)的相關概念、運算律和運算性質等。

1、注重概念的形成過程,讓學生在概念的形成的過程中,逐步理解所學的概念;關注學生對無理數(shù)和實數(shù)概念的意義理解。

2、鼓勵學生進行探索和交流,重視學生的分析、概括、交流等能力的考察。

3、注意運用類比的方法,使學生清楚新舊知識的區(qū)別和聯(lián)系。

4、淡化二次根式的概念。

人教版七年級數(shù)學教案版篇十二

1、大于0的數(shù)叫做正數(shù)(positivenumber)。

2、在正數(shù)前面加上負號“-”的數(shù)叫做負數(shù)(negativenumber)。

3、整數(shù)和分數(shù)統(tǒng)稱為有理數(shù)(rationalnumber)。

4、人們通常用一條直線上的點表示數(shù),這條直線叫做數(shù)軸(numberaxis)。

5、在直線上任取一個點表示數(shù)0,這個點叫做原點(origin)。

6、一般的,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值(absolutevalue)。

7、由絕對值的定義可知:一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。

8、正數(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù)。

9、兩個負數(shù),絕對值大的反而小。

10、有理數(shù)加法法則。

(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加。

(2)絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的負號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0。

(3)一個數(shù)同0相加,仍得這個數(shù)。

11、有理數(shù)的加法中,兩個數(shù)相加,交換交換加數(shù)的位置,和不變。

12、有理數(shù)的加法中,三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。

13、有理數(shù)減法法則。

減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

14、有理數(shù)乘法法則。

兩數(shù)相乘,同號得正,異號得負,并把絕對值向乘。

任何數(shù)同0相乘,都得0。

15、有理數(shù)中仍然有:乘積是1的兩個數(shù)互為倒數(shù)。

16、一般的,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等。

17、三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。

18、一般地,一個數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加。

19、有理數(shù)除法法則。

除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。

20、兩數(shù)相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數(shù),都得0。

21、求n個相同因數(shù)的積的運算,叫做乘方,乘方的結果叫做冪(power)。在an中,a叫做底數(shù)(basenumber),n叫做指數(shù)(exponeht)。

22、根據(jù)有理數(shù)的乘法法則可以得出。

負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。

顯然,正數(shù)的任何次冪都是正數(shù),0的任何次冪都是0。

23、做有理數(shù)混合運算時,應注意以下運算順序:

(1)先乘方,再乘除,最后加減;。

(2)同級運算,從左到右進行;。

(3)如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。

24、把一個大于10數(shù)表示成a×10n的形式(其中a是整數(shù)數(shù)位只有一位的數(shù),n是正整數(shù)),使用的是科學計數(shù)法。

25、接近實際數(shù)字,但是與實際數(shù)字還是有差別,這個數(shù)是一個近似數(shù)(approximatenumber)。

26、從一個數(shù)的左邊的第一個非0數(shù)字起,到末尾數(shù)字止,所有的數(shù)字都是這個數(shù)的有效數(shù)字(significantdigit)。

短時間提高數(shù)學成績的方法。

1、查查在知識方面還能做那些努力。關鍵的是做好知識的準備,考前要檢查自己在初中學習的數(shù)學知識是否還有漏洞,是否有遺忘或易混的地方;其次是對解題常犯錯誤的準備,再看一下自己的錯誤筆記,如果你沒有錯題本,那可以把以前的做過的卷子找出來。翻看修改的部分,那就是出錯的地方、爭取在答卷時,不犯或少犯過去曾犯過的錯誤。也就是錯誤不二犯。

2、一定要對自己、對未來充滿信心,心態(tài)問題是影響考試的最重要的原因。走進考場就要有舍我其誰的霸氣。要信心十足,要相信自己已經讀了一千天的初中,進行了三百多天的復習,做了三千至四千道初中數(shù)學題,養(yǎng)兵千日,用兵一時,現(xiàn)在是收獲的時候,自己會取得好成績的。

3、看完書后,把課本放起來,做習題,通過做習題來再一次檢查自己哪些地方做的不夠好,如果碰到不會的地方,可以再看課本,這樣以來,相信會給你留下深刻的印象。

數(shù)學學習方法。

1、基礎很重要。

是不是感覺數(shù)學都能考滿分的同學,連書都不用看,其實數(shù)學學霸更重視基礎。,數(shù)學公式,幾何圖形的性質,函數(shù)的性質等,都是數(shù)學學習的基礎,甚至可以說基礎的好壞,直接決定中考數(shù)學成績的高低。

李現(xiàn)良表示,班里某位同學來找自己講題,其實題目并不難,但這位同學就是因為一些最基礎的知識沒有掌握透徹,導致做題的時候沒有思路?;A不牢、地動山搖,一個小小的知識漏洞可能導致你在整一個題中都沒有思路,非常危險。

2、錯題本很重要。

在所有科目中,數(shù)學這個科目最重要錯題本學習法。李現(xiàn)良同學也特別提倡大家整理錯題,李現(xiàn)良對于錯題本有一些小竅門,那就是平時如果堅持整理錯題,最終會導致自己錯題本很多很厚,我們可以定期復習,對于一些徹底掌握的,可以做個標記,以后就不用再次復習,這樣錯題本使用起來就會效率更高。

3、做題要多反思。

數(shù)學學習要大量做題去鞏固,但做題不要只講究數(shù)量,更要講究質量,遇到經典題,綜合性高的題目時,每道題寫完解答過程后,需要進行分析和反思,多問幾個為什么,這樣才能把題真正做透。

4、把數(shù)學知識形成體系。

數(shù)學學霸李現(xiàn)良表示,課本上的知識都是零散的,建議大家自己畫思維導圖把知識串起來,畫思維導圖的過程,就是不斷理解,讓知識變成結構的過程。

人教版七年級數(shù)學教案版篇十三

本節(jié)教學的重點是掌握單項式與多項式相乘的法則.難點是正確、迅速地進行單項式與多項式相乘的計算.本節(jié)知識是進一步學習多項式乘法,以及乘法公式等后續(xù)知識的基礎。

1.單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加,即。

其中,可以表示一個數(shù)、一個字母,也可以是一個代數(shù)式.。

2.利用法則進行單項式和多項式運算時要注意:

3根據(jù)去括號法則和多項式中每一項包含它前面的符號,來確定乘積每一項的`符號;

設m=-4x2,a=2x2,b=3x,c=-1,

∴(-4x2)·(2x2+3x-1)。

=m(a+b+c)。

=ma+mb+mc。

=(-4x2)·2x2+(-4x2)·3x+(-4x2)·(-1)。

=-8x4-12x3+4x2.。

這樣過渡較自然,同時也滲透了一些代換的思想.。

教學設計示例。

一、教學目標。

1.理解和掌握單項式與多項式乘法法則及推導.。

2.熟練運用法則進行單項式與多項式的乘法計算.。

3.培養(yǎng)靈活運用知識的能力,通過用文字概括法則,提高學生數(shù)學表達能力.。

4.通過反饋練習,培養(yǎng)學生計算能力和綜合運用知識的能力.。

5.滲透公式恒等變形的數(shù)學美.。

二、學法引導。

1.教學方法:講授法、練習法.。

類項,故在學習中應充分利用這種方法去解題.。

三、重點·難點·疑點及解決辦法。

(一)重點。

單項式與多項式乘法法則及其應用.。

(二)難點。

單項式與多項式相乘時結果的符號的確定.。

(三)解決辦法。

復習單項式與單項式的乘法法則,并注意在解題過程中將單項式乘多項式轉化為單項。

式乘單項式后符號確定的問題.。

四、課時安排。

一課時.。

五、教具學具準備。

投影儀、膠片.。

六、師生互動活動設計。

(一)明確目標。

本節(jié)課重點學習單項式與多項式的乘法法則及其應用.。

(二)整體感知。

(三)教學過程。

1.復習導入。

復習:

(1)敘述單項式乘法法則.。

(單項式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個單項式里含有的字母,則連同它的指數(shù)作為積的一個因式.)。

(2)什么叫多項式?說出多項式的項和各項系數(shù).

2.探索新知,講授新課。

簡便計算:

由該等式,你能說出單項式與多項式相乘的法則嗎?單項式與多項式乘法法則:單項式。

與多項式相乘,就是用單項式乘多項式的每一項,再把所得的積相加.。

例1計算:

例2化簡:

練習:錯例辨析。

(2)錯在單項式與多項式的每一項相乘之后沒有添上加號,故正確答案為。

(四)總結、擴展。

(99,河北)下列運算中,不正確的為()。

a.b.。

c.d.。

八、布置作業(yè)。

參考答案:

人教版七年級數(shù)學教案版篇十四

3,感受在特定的條件下數(shù)與形是可以相互轉化的,體驗生活中的數(shù)學。

數(shù)軸的概念和用數(shù)軸上的點表示有理數(shù)。

教學過程(師生活動)設計理念。

設置情境。

教師通過實例、課件演示得到溫度計讀數(shù).

(多媒體出示3幅圖,三個溫度分別為零上、零度和零下)。

問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境。

(小組討論,交流合作,動手操作)創(chuàng)設問題情境,激發(fā)學生的學習熱情,發(fā)現(xiàn)生活中的數(shù)學。

教師:由上述兩問題我們得到什么啟發(fā)?你能用一條直線上的點表示有理數(shù)嗎?

從而得出數(shù)軸的三要素:原點、正方向、單位長度體驗數(shù)形結合思想;只描述數(shù)軸特征即可,不用特別強調數(shù)軸三要求。

尋找規(guī)律。

歸納結論。

問題3:

1,你能舉出一些在現(xiàn)實生活中用直線表示數(shù)的實際例子嗎?

3,哪些數(shù)在原點的左邊,哪些數(shù)在原點的右邊,由此你會發(fā)現(xiàn)什么規(guī)律?

4,每個數(shù)到原點的距離是多少?由此你會發(fā)現(xiàn)了什么規(guī)律?

(小組討論,交流歸納)。

歸納出一般結論,教科書第12的歸納。這些問題是本節(jié)課要求學會的技能,教學中要以學生探究學習為主來完成,教師可結合教科書給學生適當指導。

教科書第12頁練習。

課堂小結。

請學生總結:

1,數(shù)軸的三個要素;

2,數(shù)軸的作以及數(shù)與點的轉化方法。

本課作業(yè)。

1,必做題:教科書第18頁習題1.2第2題。

2,選做題:教師自行安排。

本課教育評注(課堂設計理念,實際教學效果及改進設想)。

1,數(shù)軸是數(shù)形轉化、結合的重要媒介,情境設計的原型來源于生活實際,學生易于體驗和接受,讓學生通過觀察、思考和自己動手操作、經歷和體驗數(shù)軸的形成過程,加深對數(shù)軸概念的理解,同時培養(yǎng)學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規(guī)律。

2,教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數(shù)形結合的數(shù)學思想方法。

3,注意從學生的知識經驗出發(fā),充分發(fā)揮學生的主體意識,讓學生主動參與學習活,并引導學生在課堂上感悟知識的生成,發(fā)展與變化,培養(yǎng)學生自主探索的學習方法。

人教版七年級數(shù)學教案版篇十五

比較正數(shù)和負數(shù)的大小。

1、借助數(shù)軸初步學會比較正數(shù)、0和負數(shù)之間的大小。

2、初步體會數(shù)軸上數(shù)的順序,完成對數(shù)的結構的初步構建。

負數(shù)與負數(shù)的比較。

一、復習:

1、讀數(shù),指出哪些是正數(shù),哪些是負數(shù)?

—85。6+0。9—+0—82。

2、如果+20%表示增加20%,那么—6%表示。

二、新授:

(一)教學例3:

1、怎樣在數(shù)軸上表示數(shù)?(1、2、3、4、5、6、7)。

2、出示例3:

(1)提問你能在一條直線上表示他們運動后的情況嗎?

(2)讓學生確定好起點(原點)、方向和單位長度。學生畫完交流。

(3)教師在黑板上話好直線,在相應的點上用小圖片代表大樹和學生,在問怎樣用數(shù)表示這些學生和大樹的相對位置關系?(讓學生把直線上的點和正負數(shù)對應起來。

(4)學生回答,教師在相應點的下方標出對應的數(shù),再讓學生說說直線上其他幾個點代表的數(shù),讓學生對數(shù)軸上的點表示的正負數(shù)形成相對完整的認識。

(5)總結:我們可以像這樣在直線上表示出正數(shù)、0和負數(shù),像這樣的直線我們叫數(shù)軸。

(6)引導學生觀察:

a、從0起往右依次是?從0起往左依次是?你發(fā)現(xiàn)什么規(guī)律?

(7)練習:做一做的第1、2題。

(二)教學例4:

1、出示未來一周的天氣情況,讓學生把未來一周每天的最低氣溫在數(shù)軸上表示出來,并比較他們的大小。

2、學生交流比較的方法。

3、通過小精靈的話,引出利用數(shù)軸比較數(shù)的大小規(guī)定:在數(shù)軸上,從左到右的順序就是數(shù)從小到大的順序。

4、再讓學生進行比較,利用學生的具體比較來說明“—8在—6的左邊,所以—8〈—6”

5、再通過讓另一學生比較“8〉6,但是—8〈—6”,使學生初步體會兩負數(shù)比較大小時,絕對值大的負數(shù)反而小。

6、總結:負數(shù)比0小,所有的負數(shù)都在0的'左邊,也就是負數(shù)都比0小,而正數(shù)比0大,負數(shù)比正數(shù)小。

7、練習:做一做第3題。

三、鞏固練習。

1、練習一第4、5題。

2、練習一第6題。

3、某日傍晚,黃山的氣溫由上午的零上2攝氏度下降了7攝氏度,這天傍晚黃山的氣溫是攝氏度。

四、全課總結。

(1)在數(shù)軸上,從左到右的順序就是數(shù)從小到大的順序。

(2)負數(shù)比0小,正數(shù)比0大,負數(shù)比正數(shù)小。

第二課教學反思:

許多教師認為“負數(shù)”這個單元的內容很簡單,不需要花過多精力學生就能基本能掌握??扇绻钊脬@研教材,其實會發(fā)現(xiàn)還有不少值得挖掘的內容可以向學生補充介紹。

例3——兩個不同層面的拓展:

1、在數(shù)軸上表示數(shù)要求的拓展。

數(shù)軸除了可以表示整數(shù),還可以表示小數(shù)和分數(shù)。教材例3只表示出正、負整數(shù),最后一個自然段要求學生表示出—1。5。建議此處教師補充要求學生表示出“+1。5”的位置,因為這樣便于對比發(fā)現(xiàn)兩個數(shù)離原點的距離相等,只不過分別在0的左右兩端,滲透+1。5和—1。5絕對值相等。同時,還應補充在數(shù)軸上表示分數(shù),如—1/3、—3/2等,提升學生數(shù)形結合能力,為例4的教學打下夯實的基礎。

2、滲透負數(shù)加減法。

教材中所呈現(xiàn)的數(shù)軸可以充分加以應用,如可補充提問:在“—2”位置的同學如果接著向西走1米,將會到達數(shù)軸什么位置?如果是向東走1米呢?如果他從“—2”的位置要走到“—4”,應該如何運動?如果他想從“—2”的位置到達“+3”,又該如何運動?其實,這些問題就是解決—2—1;2+1;—4—(—2);3—(—2)等于幾,這樣的設計對于學生初中進一步學習代數(shù)知識是極為有利的。

例4——薄書讀厚、厚書讀薄。

薄書讀厚——負數(shù)大小比較的三種類型(正數(shù)和負數(shù)、0和負數(shù)、負數(shù)和負數(shù))。

例4教材只提出一個大的問題“比較它們的大小”,這些數(shù)的大小比較可以分為幾類?每類比較又有什么方法,教材則沒有明確標明。所以教學中,當學生明確數(shù)軸從左到右的順序就是數(shù)從小到大的順序基礎上,我還挖掘了三種不同類型,一一請學生介紹比較方法,將薄書讀厚。

將厚書讀薄——無論哪種類型,比較方法萬變不離其宗。

無論哪種比較方法,最終都可回歸到“數(shù)軸上左邊的數(shù)比右邊的數(shù)小。”即使有學生在比較—8和—6大小時是用“86,所以—8—6”來闡述其原因,其實也與數(shù)軸相關。因為當絕對值越大時,表示離原點的距離越遠,那么在數(shù)軸上表示的點也就在原點左邊越遠,數(shù)也就越小。所以,抓住精髓就能以不變應萬變。

在此,我還補充了—3/7和—2/5比較大小的練習,提升學生靈活應用知識解決實際問題的能力。

人教版七年級數(shù)學教案版篇十六

重點:鄰補角與對頂角的概念。對頂角性質與應用。

難點:理解對頂角相等的性質的探索。

教學設計。

一、創(chuàng)設情境激發(fā)好奇觀察剪刀剪布的過程,引入兩條相交直線所成的角。

在我們的生活的世界中,蘊涵著大量的相交線和平行線,本章要研究相交線所成的角和它的特征。

觀察剪刀剪布的過程,引入兩條相交直線所成的角。

學生觀察、思考、回答問題。

二、認識鄰補角和對頂角,探索對頂角性質。

1、學生畫直線ab、cd相交于點o,并說出圖中4個角,兩兩相配。

共能組成幾對角?根據(jù)不同的位置怎么將它們分類?

學生思考并在小組內交流,全班交流。

當學生直觀地感知角有“相鄰”、“對頂”關系時,教師引導學生用。

幾何語言準確表達;。

有公共的頂點o,而且的兩邊分別是兩邊的反向延長線。

2、學生用量角器分別量一量各角的度數(shù),發(fā)現(xiàn)各類角的度數(shù)有什么關系?

(學生得出結論:相鄰關系的兩個角互補,對頂?shù)膬蓚€角相等)。

3學生根據(jù)觀察和度量完成下表:

兩條直線相交所形成的角分類位置關系數(shù)量關系。

教師提問:如果改變的大小,會改變它與其它角的位置關系和數(shù)量關系嗎?

4、概括形成鄰補角、對頂角概念和對頂角的性質。

三、初步應用。

練習。

下列說法對不對。

(1)鄰補角可以看成是平角被過它頂點的一條射線分成的兩個角。

(2)鄰補角是互補的兩個角,互補的兩個角是鄰補角。

(3)對頂角相等,相等的兩個角是對頂角。

學生利用對頂角相等的性質解釋剪刀剪布過程中所看到的現(xiàn)象。

四。鞏固運用例題:如圖,直線a,b相交,,求的度數(shù)。

鞏固練習。

教科書5頁練習已知,如圖,,求:的度數(shù)。

小結。

鄰補角、對頂角。

作業(yè)課本p9—1,2p10—7,8。

人教版七年級數(shù)學教案版篇十七

教師在備課時,應充分估計學生在學習時可能提出的問題,確定好重點,難點,疑點,和關鍵。根據(jù)學生的實際改變原先的教學計劃和方法,滿腔熱忱地啟發(fā)學生的思維,針對疑點積極引導。

非常高興,能有機會和同學們共同學習

昨天,老師在七年級三班上課時,把他們分成七個小組,每個小組回答問題的情況以搶答賽的形式記分。你們看(出示投影)這是七年級三班七個小組回答問題的表現(xiàn)情況。答對一題得一分,記作+1分;答錯一題扣一分,記作1分。第幾組最棒?老師還沒來得及計算出每個小組的最后得分,咱們班哪位同學能幫老師算出最后結果?(學生在教師引導下回答)

我們已得出了每個小組的最后分數(shù),那么哪個小組是優(yōu)勝小組?(第一小組),回去以后,老師就把小獎品發(fā)給他們,相信他們一定會很高興。

同學們,這節(jié)課你們愿不愿意也分成幾個小組,看一看那個小組的同學表現(xiàn)得最出色?(原意)那么老師就按座次給同學們分組,每一豎排為一組。老師把組號寫在黑板上,以便記分。

希望各組同學積極思考、踴躍發(fā)言。同學們有沒有信心得到老師的小獎品?(有)同學們加油!

我們已得到了這7個小組的最后得分,那位同學能試著用算式表示?(學生在教師指導下列算式)

以上這些算是都是什么運算?(加法),兩個加數(shù)都是什么數(shù)?(有理數(shù)),這就是我們這節(jié)課要學習的有理數(shù)的加法(板書課題)。

剛才老師說要給七年級三班的優(yōu)勝組發(fā)獎品,老師手里有12本作業(yè)本,優(yōu)勝組共6人,老師將送出的作業(yè)本數(shù)占總數(shù)的幾分之幾?(二分之一)分數(shù)最低的一組共7人,他們每人交給老師一個作業(yè)本,占總數(shù)的幾分之幾?(十二分之七)如果,老師得到的作業(yè)本記為正數(shù),送出的作業(yè)本記為負數(shù),則老師手里的作業(yè)本增加或減少幾分之幾?同學們能列出算式嗎?(學生列式)對于這個算式,同學們還能輕易的感知出結果嗎?(不能)

對于有理數(shù)的加法,有的同學們能直接感知得到結果,有的靠感知是不夠的,這就需要我們共同探索規(guī)律!(出示投影),觀察這7個算式,每一個算式都是怎樣的兩個有理數(shù)相加?(引導學生回答)你們還能舉出不同以上情況的算式嗎?(不能),這說明這幾個算式概括了有理數(shù)加法的不同情況。

前兩個算式的加數(shù)在符號上有什么共同點?(相同),那么我們就可以說這是什么樣的兩數(shù)相加?(同號兩數(shù)相加)同學們還能觀察出那幾個算式可歸為一類嗎?(3、4、5、異號兩數(shù)相加,6、7一個數(shù)同0相加)

同學們已把這7個算式分成了三種情況,下面我們分別探討規(guī)律。

(2) 異號兩數(shù)相加,其和有何規(guī)律呢?大家觀察這三個式子回答問題。(引導學生分成兩類,容易得到絕對值相同情況的結論。再引導學生觀察絕對值不相同的情況,回答問題)哪位同學能概括一下這個規(guī)律?(引導學生得出)

(3) 一個數(shù)同0相加,其和有什么規(guī)律呢?(易得出結論)

同學們經過積極思考,探索出了解決有理數(shù)加法的規(guī)律,顧一下(出哪位同學能帶領大家共同回顧一下?(出示投影,學生大聲朗讀)我們把這個規(guī)律稱為有理數(shù)的加法法則。

同學們都很聰明,積極參與探索規(guī)律,每個組都有不錯的成績。個別落后的組不要氣餒,繼續(xù)努力,下面老師就給大家一個得分的機會,看哪一組能[出題制勝]!(出示)

(活動過程1后評價、加分;教師以其中一題為例,講解題格式及過程;活動過程2后:讓每組第三排同學評價加分)

同學們已經基本掌握了有理數(shù)的加法法則,并會運用它,但七年級三班有幾位同學對這一內容掌握的不是太好,以致在作業(yè)中出了毛病,他們?yōu)榇撕芸鄲?。希望咱們同學能幫幫他們,看哪位同學能像妙手回春的神醫(yī)華佗一樣藥到病 除!(師生共同治病)

看來同學們對有理數(shù)的加法已經掌握得很好了,大家還記得前面那個難倒我們的有理數(shù)的加法題呢?那位同學能解決這個問題呢?(學生口述 師板書)。在大家的努力下,我們終于攻破了這個難關。

通過這節(jié)課的學習,大家有什么收獲?(學生回答)同學們都有很多收獲,老師認為收獲最多的是優(yōu)勝組的同學,因為他們能得到老師的小獎品,大家趕緊看看那一組獲勝?歡迎優(yōu)勝組上臺領獎,大家掌聲鼓勵!

同學們,希望你們在未來的學習和生活中都能積極進取,獲得一個又一個的勝利。

人教版七年級數(shù)學教案版篇十八

1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關的實際問題;。

3、體驗數(shù)學學習的樂趣,感受一元一次不等式組在解決實際問題中的價值。

正確分析實際問題中的不等關系,列出不等式組。

建立不等式組解實際問題的數(shù)學模型。

出示教科書第145頁例2(略)。

問:(1)你是怎樣理解“不能完成任務”的數(shù)量含義的?

(2)你是怎樣理解“提前完成任務”的數(shù)量含義的?

(3)解決這個問題,你打算怎樣設未知數(shù)?列出怎樣的不等式?

師生一起討論解決例2.

1、教科書146頁“歸納”(略).

2、你覺得列一元一次不等式組解應用題與列二元一次方程組解應用題的步驟一樣嗎?

在討論或議論的基礎上老師揭示:

步法一致(設、列、解、答);本質有區(qū)別.(見下表)一元一次不等式組應用題與二元一次方程組應用題解題步驟異同表。

人教版七年級數(shù)學教案版篇十九

重點:列代數(shù)式。

難點:弄清楚語句中各數(shù)量的意義及相互關系。

本小節(jié)是在前面代數(shù)式概念引出之后,具體講述如何把實際問題中的數(shù)量關系用代數(shù)式表示出來。課文先進一步說明代數(shù)式的概念,然后通過由易到難的三組例子介紹列代數(shù)式的方法。

列代數(shù)式實質是實現(xiàn)從基本數(shù)量關系的語言表述到代數(shù)式的一種轉化。列代數(shù)式首先要弄清語句中各種數(shù)量的意義及其相互關系,然后把各種數(shù)量用適當?shù)淖帜竵肀硎?,最后再把?shù)及字母用適當?shù)倪\算符號連接起來,從而列出代數(shù)式。

如:用代數(shù)式表示:比的2倍大2的數(shù)。

分析本題屬于“…比…多(大)…或…比…少(小)”的類型,首先要抓住這幾個關鍵詞。然后從中找出誰是大數(shù),誰是小數(shù),誰是差。比的2倍大2的數(shù)換個方式敘述為所求的數(shù)比的2倍大2。大和比前邊的量,即所求的數(shù)為大數(shù),那么比和大之間量,即的2倍則為小數(shù),大后邊的量2即為差。所以本小題是已知小數(shù)和差求大數(shù)。因為大數(shù)=小數(shù)+差,所以所求的數(shù)為:2+2.

(1)要分清語言敘述中關鍵詞語的意義,理清它們之間的數(shù)量關系。如要注意題中的“大”,“小”,“增加”,“減少”,“倍”,“倒數(shù)”,“幾分之幾”等詞語與代數(shù)式中的加,減,乘,除的運算間的關系。

(2)弄清運算順序和括號的使用。一般按“先讀先寫”的原則列代數(shù)式。

(3)數(shù)字與字母相乘時數(shù)字寫在前面,乘號省略不寫,字母與字母相乘時乘號省略不寫。

(4)在代數(shù)式中出現(xiàn)除法時,用分數(shù)線表示。

列代數(shù)式是本章教學的一個難點,學生不容易掌握,這樣老師在上課時,首先要讓學生理解代數(shù)式的本質,弄清語句中各種數(shù)量的意義及其相互關系,然后設計一定數(shù)量的練習題,由易到難,螺旋式上升,使學生能夠正確列出代數(shù)式。

人教版七年級數(shù)學教案版篇二十

2.使學生掌握求一個已知數(shù)的;。

3.培養(yǎng)學生的觀察、歸納與概括的能力.

重點:理解的意義,理解的代數(shù)定義與幾何定義的一致性.

難點:多重符號的化簡.

一、從學生原有的認知結構提出問題。

二、師生共同研究的定義。

特點?

引導學生回答:符號不同,一正一負;數(shù)字相同.

像這樣,只有符號不同的兩個數(shù),我們說它們互為,如+5與。

應點有什么特點?

引導學生回答:分別在原點的兩側;到原點的距離相等.

這樣我們也可以說,在數(shù)軸上的原點兩旁,離開原點距離相等的兩個點所表示的數(shù)互為.這個概念很重要,它幫助我們直觀地看出的意義,所以有的書上又稱它為的幾何意義.

3.0的是0.

這是因為0既不是正數(shù),也不是負數(shù),它到原點的距離就是0.這是等于它本身的的數(shù).

三、運用舉例變式練習。

例1(1)分別寫出9與-7的;。

例1由學生完成.

在學習有理數(shù)時我們就指出字母可以表示一切有理數(shù),那么數(shù)a的如何表示?

引導學生觀察例1,自己得出結論:

數(shù)a的是-a,即在一個數(shù)前面加上一個負號即是它的。

1.當a=7時,-a=-7,7的是-7;。

2.當-5時,-a=-(-5),讀作“-5的”,-5的是5,因此,-(-5)=5.

3.當a=0時,-a=-0,0的是0,因此,-0=0.

么意思?引導學生回答:-(-8)表示-8的;-(+4)表示+4的`;。

例2簡化-(+3),-(-4),+(-6),+(+5)的符號.

能自己總結出簡化符號的規(guī)律嗎?

括號外的符號與括號內的符號同號,則簡化符號后的數(shù)是正數(shù);括號內、外的符號是異號,則簡化符號后的數(shù)是負數(shù).

課堂練習。

1.填空:

(1)+1.3的是______;(2)-3的是______;。

(5)-(+4)是______的;(6)-(-7)是______的。

2.簡化下列各數(shù)的符號:

-(+8),+(-9),-(-6),-(+7),+(+5).

3.下列兩對數(shù)中,哪些是相等的數(shù)?哪對互為?

-(-8)與+(-8);-(+8)與+(-8).

四、小結。

指導學生閱讀教材,并總結本節(jié)課學習的主要內容:一是理解的定義——代數(shù)定義與幾何定義;二是求a的;三是簡化多重符號的問題.

五、作業(yè)。

1.分別寫出下列各數(shù)的:

2.在數(shù)軸上標出2,-4.5,0各數(shù)與它們的。

3.填空:

(1)-1.6是______的,______的是-0.2.

4.化簡下列各數(shù):

5.填空:

(3)如果-x=-6,那么x=______;(4)如果-x=9,那么x=______.

教學過程是以《教學大綱》中“重視基礎知識的教學、基本技能的訓練和能力的培養(yǎng)”,“數(shù)學教學中,發(fā)展思維能力是培養(yǎng)能力的核心”,“堅持啟發(fā)式,反對注入式”等規(guī)定的精神,結合教材特點,以及學生的學習基礎和學習特征而設計的由于內容較為簡單,經過教師適當引導,便可使學生充分參與認知過程.由于“新”知識與有關的“舊”知識的聯(lián)系較為直接,在教學中則著力引導觀察、歸納和概括的過程.

探究活動。

有理數(shù)a、b在數(shù)軸上的位置如圖:

將a,-a,b,-b,1,-1用“”號排列出來.

分析:由圖看出,a1,-1。

解:在數(shù)軸上畫出表示-a、-b的點:

由圖看出:-a-1。

點評:通過數(shù)軸,運用數(shù)形結合的方法排列三個以上數(shù)的大小順序,經常是解這一類問題的最快捷,準確的方法.

人教版七年級數(shù)學教案版篇二十一

從簡單的轉盤游戲開始,使學生在生活經驗和試驗的基礎上,進一步體驗不確定事件的特點及事件發(fā)生的可能性大小。

能用實驗對數(shù)學猜想做出檢驗,從而增加猜想的可信度。 解決問題

在轉盤游戲過程中,經歷猜測結果,實驗驗證,分析試驗結果等數(shù)學活動,增加數(shù)學活動經驗。

情感態(tài)度與價值觀

在合作與交流過程中,體驗小組合作更有利于探究數(shù)學知識,敢于發(fā)表自己觀點,提高個人認識。

在實驗中,體會不確定事件的特點及事件發(fā)生可能性大??;使每個學生都能積極認真參與課堂設計中的實驗,真正在實驗中獲得知識上的認識。

創(chuàng)設情境,切入標題

請同學們猜測,當我自由轉動轉盤時,指針會落在什么顏域呢?

請各小組分別派一名代表,看哪組能轉出紅色。

結果,8小組有6組轉出了紅色。

為什么會出現(xiàn)這樣的結果呢?

因為,在這個轉盤中,紅域的面積大,白域的面積小,因此,當轉盤停上轉動時,指針落到紅域的可能性大。

大家同意這種看法嗎?下面我們親自動手感受一下。

學生按照題目要求進行實驗。

請各組組長把你組的實驗數(shù)據(jù)匯報一下(教師把數(shù)據(jù)填寫在表格里) 實驗結果:六個小組每組實驗16次,全班共實驗96次,指針落在紅域的次數(shù)分別如下9,6,10,5,8,12。共計50次。

請同學們對我們的實驗結果進行分析交流,談談你在試驗中有哪些心得。

根據(jù)觀察,轉盤上紅域的面積為總面積的一半,指針落在紅域的可能性也應該是一半。通過對我們全班的實驗結果分析,指針落在紅域的比例是50∶96,結果接近百分之五十。

在小組內實驗結果不明顯,實驗次數(shù)越多越能說明問題。

通過實驗,我們確定感受到,轉盤游戲中各區(qū)域的面積的可能性大小與指針落在什么區(qū)域的可能性大小有直接關系。以后在生活中再遇到轉盤游戲問題可要想想今天的實驗結論。

下面我們利用轉盤做一下數(shù)學游戲(出示幻燈片),學生按教學設計中要求進行游戲,教師巡回指導。

每組每人游戲一次,全班共游戲48次。其游戲結果是,平均數(shù)增大1的,共35次,平均數(shù)減小1的,共13次。

請同學們對下列問題進行交流(幻燈片出示教材206頁4個問題)。 這個轉盤轉到“平均數(shù)增大1”區(qū)域的可能性大,從面積大小就可以看出。

如果平均數(shù)增大1,我是在卡片上增加一個數(shù),這個數(shù)等于卡片上數(shù)字的個數(shù)加1,如果是平均數(shù)減小1,我就在每個數(shù)上都減去1。

同學們說出很多種方法,不一一列舉。

“平均數(shù)增大1”的次數(shù)占總次數(shù)的百分之七十三,“平均數(shù)減小1”占百分之二十七。

如果將這個實驗繼續(xù)做下去,卡片上所有數(shù)的平均數(shù)會增大。

同學們說的都很好,課后能不能自己也利用轉盤設計一個新的游戲,感興趣的同學可以在課下與我交流。

以下過程同教學設計,略去。

指導學生完成教材第206頁習題。

學生可從各個方面加以小結。 布置作業(yè)

仿照課堂游戲,自編一個新的游戲。 能否利用撲克牌設計本節(jié)轉盤游戲。

人教版七年級數(shù)學教案版篇二十二

本節(jié)教學的重點是掌握解一元一次不等式的步驟.難點是必須切實注意遇到要在不等式兩邊都乘以(或除以)同一負數(shù)時,必須改變不等號的方向.掌握一元一次不等式的解法是進一步學習一元一次方程組的解法以及一元二次不等式的解法的重要基礎.

1、一元一次不等式和一元一次方程概念的異同點

相同點:二者都是只含有一個未知數(shù),未知數(shù)的次數(shù)都是1,左、右兩邊都是整式.

不同點:一元一次不等式表示不等關系,一元一次方程表示相等關系.

(3)同方程類似,我們把或叫做一元一次不等式的標準形式.

2、一元一次不等式和一元一次方程解法的異同點

相同點:步驟相同,二者都是經過變形,把左邊變成,右邊變?yōu)橐粋€常數(shù).

注意:(1)解方程的移項法則對解不等式同樣適用.

三、教法建議

【本文地址:http://m.aiweibaby.com/zuowen/15363512.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔