探索勾股定理教學設(shè)計范文(17篇)

格式:DOC 上傳日期:2023-11-30 17:49:07
探索勾股定理教學設(shè)計范文(17篇)
時間:2023-11-30 17:49:07     小編:BW筆俠

宗教是人類對于信仰和靈性追求的表達,它給人們帶來安慰和指引。在總結(jié)中可以適當引用統(tǒng)計數(shù)據(jù)、案例和事例來支持自己的觀點。接下來,小編為大家整理了一些總結(jié)的范文,希望能對大家有所幫助。

探索勾股定理教學設(shè)計篇一

(2)了解互逆命題、互逆定理.

2.目標解析。

目標(2)能根據(jù)原命題寫出它的逆命題,并了解原命題為真命題時,逆命題不一定為真命題.

三、教學問題診斷分析。

勾股定理的逆定理的證明是先作一個合適的直角三角形,再證明有已知條件的三角形和直角三角形全等等,這種證法學生不容易想到,難以理解,在教學時應(yīng)該注意啟發(fā)引導.

本課的教學難點是證明勾股定理的逆定理.

1.創(chuàng)設(shè)問題情境。

師生活動:學生獨立回憶勾股定理,師生共同分析得出其題設(shè)和結(jié)論,教師引導指出勾股定理是從形的特殊性得出三邊之間的數(shù)量關(guān)系.

追問1:你能把勾股定理的題設(shè)與結(jié)論交換得到一個新的命題嗎?

師生活動:師生共同得出新的命題,教師指出其為勾股定理的逆命題.

追問2:“如果三角形三邊長、b、c滿足,那么這個三角形是直角三角形.”能否把它作為判定直角三角形的依據(jù)呢?本節(jié)課我們一起來研究這個問題.

探索勾股定理教學設(shè)計篇二

1、體驗勾股定理的探索過程,由特例猜想勾股定理,再由特例驗證勾股定理。

2、會利用勾股定理解釋生活中的簡單現(xiàn)象。

(二)能力訓練要求。

1、在學生充分觀察、歸納、猜想、探索勾股定理的過程中,發(fā)展合情推理能力,體會數(shù)形結(jié)合的思想。

2、在探索勾股定理的過程中,發(fā)展學生歸納、概括和有條理地表達活動過程及結(jié)論的能力。

(三)情感與價值觀要求。

1、培養(yǎng)學生積極參與、合作交流的意識。

2、在探索勾股定理的過程中,體驗獲得成功的快樂,鍛煉學生克服困難的勇氣。

二、教學重、難點。

難點:在方格紙上通過計算面積的方法探索勾股定理。

三、教學方法。

交流探索猜想。

在方格紙上,同學們通過計算以直角三角形的三邊為邊長的三個正方形的面積,在合作交流的過程中,比較這三個正方形的面積,由此猜想出直角三角形的三邊關(guān)系。

四、教具準備。

1、學生每人課前準備若干張方格紙。

2、投影片三張:

第一張:填空(記作1、1、1a);

第二張:問題串(記作1、1、1b);

第三張:做一做(記作1、1、1c)。

探索勾股定理教學設(shè)計篇三

勾股定理是平面幾何有關(guān)度量的最基本定理,它從邊的角度進一步刻畫了直角三角形的特點。學習勾股定理極其逆定理是進一步認識和理解直角三角形的需要,也是后續(xù)有關(guān)幾何度量運算和代數(shù)學習的必然基礎(chǔ)?!?0xx版數(shù)學課程標準》對勾股定理教學內(nèi)容的要求是:

1、在研究圖形性質(zhì)和運動等過程中,進一步發(fā)展空間觀念;

2、在多種形式的數(shù)學活動中,發(fā)展合情推理能力;

3、經(jīng)歷從不同角度分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性;

4、探索勾股定理及其逆定理,并能運用它們解決一些簡單的實際問題。

本節(jié)課的教學目標是:

1、能正確運用勾股定理及其逆定理解決簡單的實際問題。

教學重點和難點:

應(yīng)用勾股定理及其逆定理解決實際問題是重點。

把實際問題化歸成數(shù)學模型是難點。

根據(jù)新課標提出的“要從學生已有的生活經(jīng)驗出發(fā),讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型并進行解釋和運用的同時,在思維能力情感態(tài)度和價值觀等方面得到進步和發(fā)展”的理念,我想盡量給學生創(chuàng)設(shè)豐富的實際問題情境,使教學活動充滿趣味性和吸引力,讓他們在自主探究,合作交流中分析問題,建立數(shù)學模型,利用勾股定理及其逆定理解決問題。在教學過程中,采用一題多變的形式拓寬學生視野,訓練學生思維的靈活性,滲透化歸的思想以及分類討論思想,方程思想等,使學生在獲得知識的同時提高能力。

在教學設(shè)計中,盡量考慮到不同學習水平的學生,注意知識由易到難的層次性,在課堂上,要照顧到接受較慢的學生。使不同學生有不同的收獲和發(fā)展。

第一環(huán)節(jié):情境引入。

情景1:復習提問:勾股定理的語言表述以及幾何語言表達?

設(shè)計意圖:溫習舊知識,規(guī)范語言及數(shù)學表達,體現(xiàn)。

設(shè)計意圖:既靈活考察學生對勾股定理的理解,又增加了趣味性,還能考察學生三角形三邊關(guān)系。

第二環(huán)節(jié):合作探究(圓柱體表面路程最短問題)。

情景3:課本引例(螞蟻怎樣走最近)。

第三環(huán)節(jié):變式訓練(由圓柱體表面路程最短問題逐步變?yōu)殚L方體表面的距離最短問題)。

設(shè)計意圖:將問題的條件稍做改變,讓學生嘗試獨立解決,拓展學生視野,又加深他們對知識的理解和鞏固。再將圓柱問題變?yōu)檎襟w長方體問題,學生有了之前的經(jīng)驗,自然而然的將立體轉(zhuǎn)化為平面,利用勾股定理解決,此處長方體問題中學生會有不同的做法,正好透分類討論思想。

第四環(huán)節(jié):議一議。

設(shè)計意圖:

第五環(huán)節(jié):方程與勾股定理。

第六環(huán)節(jié):交流小結(jié)內(nèi)容:師生相互交流總結(jié):

1、解決實際問題的方法是建立數(shù)學模型求解、

2、在尋求最短路徑時,往往把空間問題平面化,利用勾股定理及其逆定理解決實際問題、

3、在直角三角形中,已知一條邊和另外兩條邊的關(guān)系,借助方程可以求出另外兩條邊。

意圖:鼓勵學生結(jié)合本節(jié)課的學習談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應(yīng)用及它們的悠久歷史、《勾股定理的應(yīng)用》教學設(shè)計第七環(huán)作業(yè)設(shè)計:

第一道題難度較小,大部分學生可以獨立完成,第二道題有較大難度,可以交流討論完成。

探索勾股定理教學設(shè)計篇四

勾股定理是平面幾何有關(guān)度量的最基本定理,它從邊的角度進一步刻畫了直角三角形的特點。學習勾股定理極其逆定理是進一步認識和理解直角三角形的需要,也是后續(xù)有關(guān)幾何度量運算和代數(shù)學習的必然基礎(chǔ)?!?0xx版數(shù)學課程標準》對勾股定理教學內(nèi)容的要求是:

1、在研究圖形性質(zhì)和運動等過程中,進一步發(fā)展空間觀念;

2、在多種形式的數(shù)學活動中,發(fā)展合情推理能力;

3、經(jīng)歷從不同角度分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性;

4、探索勾股定理及其逆定理,并能運用它們解決一些簡單的實際問題。

本節(jié)課的教學目標是:

1、能正確運用勾股定理及其逆定理解決簡單的實際問題。

教學重點和難點:

應(yīng)用勾股定理及其逆定理解決實際問題是重點。

把實際問題化歸成數(shù)學模型是難點。

根據(jù)新課標提出的“要從學生已有的生活經(jīng)驗出發(fā),讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型并進行解釋和運用的同時,在思維能力情感態(tài)度和價值觀等方面得到進步和發(fā)展”的理念,我想盡量給學生創(chuàng)設(shè)豐富的實際問題情境,使教學活動充滿趣味性和吸引力,讓他們在自主探究,合作交流中分析問題,建立數(shù)學模型,利用勾股定理及其逆定理解決問題。在教學過程中,采用一題多變的形式拓寬學生視野,訓練學生思維的靈活性,滲透化歸的思想以及分類討論思想,方程思想等,使學生在獲得知識的同時提高能力。

在教學設(shè)計中,盡量考慮到不同學習水平的學生,注意知識由易到難的層次性,在課堂上,要照顧到接受較慢的學生。使不同學生有不同的收獲和發(fā)展。

第一環(huán)節(jié):情境引入。

情景1:復習提問:勾股定理的語言表述以及幾何語言表達?

設(shè)計意圖:溫習舊知識,規(guī)范語言及數(shù)學表達,體現(xiàn)。

設(shè)計意圖:既靈活考察學生對勾股定理的理解,又增加了趣味性,還能考察學生三角形三邊關(guān)系。

第二環(huán)節(jié):合作探究(圓柱體表面路程最短問題)。

情景3:課本引例(螞蟻怎樣走最近)。

第三環(huán)節(jié):變式訓練(由圓柱體表面路程最短問題逐步變?yōu)殚L方體表面的距離最短問題)。

設(shè)計意圖:將問題的條件稍做改變,讓學生嘗試獨立解決,拓展學生視野,又加深他們對知識的理解和鞏固。再將圓柱問題變?yōu)檎襟w長方體問題,學生有了之前的經(jīng)驗,自然而然的將立體轉(zhuǎn)化為平面,利用勾股定理解決,此處長方體問題中學生會有不同的做法,正好透分類討論思想。

第四環(huán)節(jié):議一議。

設(shè)計意圖:

第六環(huán)節(jié):交流小結(jié)內(nèi)容:師生相互交流總結(jié):

1、解決實際問題的方法是建立數(shù)學模型求解、

2、在尋求最短路徑時,往往把空間問題平面化,利用勾股定理及其逆定理解決實際問題。

3、在直角三角形中,已知一條邊和另外兩條邊的關(guān)系,借助方程可以求出另外兩條邊。

第七環(huán)作業(yè)設(shè)計:

第一道題難度較小,大部分學生可以獨立完成,第二道題有較大難度,可以交流討論完成。

知識技能:了解勾股定理的文化背景,體驗勾股定理的探索過程、

數(shù)學思考:在勾股定理的探索過程中,發(fā)展合情推理能力,體會數(shù)形結(jié)合的思想、解決問題:

1、通過拼圖活動,體驗數(shù)學思維的嚴謹性,發(fā)展形象思維、

2、在探究活動中,學會與人合作并能與他人交流思維的過程和探究結(jié)果、

情感態(tài)度:

1、通過對勾股定理歷史的了解,感受數(shù)學文化,激發(fā)學習熱情、

2、在探究活動中,體驗解決問題方法的多樣性,培養(yǎng)學生的合作交流意識和探索精神、

2、難點是用拼圖的方法證明勾股定理、

探索勾股定理教學設(shè)計篇五

勾股定理是學生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進行學習的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一,在實際生活中用途很大。

教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進行運用。

據(jù)此,制定教學目標如下:

3、培養(yǎng)學生觀察、比較、分析、推理的能力。

4、通過介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

教法和學法是體現(xiàn)在整個教學過程中的,本課的教法和學法體現(xiàn)如下特點:

以自學輔導為主,充分發(fā)揮教師的`主導作用,運用各種手段激發(fā)學生學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。

切實體現(xiàn)學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。

通過演示實物,引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發(fā)學生鉆研新知的欲望。

本節(jié)內(nèi)容的教學主要體現(xiàn)在學生動手、動腦方面,根據(jù)學生的認知規(guī)律和學習心理,教學程序設(shè)計如下:

1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4。那么弦等于5。這樣引起學生學習興趣,激發(fā)學生求知欲。

2、是不是所有的直角三角形都有這個性質(zhì)呢?教師要善于激疑,使學生進入樂學狀態(tài)。

3、板書課題,出示學習目標。

教師指導學生自學教材,通過自學感悟理解新知,體現(xiàn)了學生的自主學習意識,鍛煉學生主動探究知識,養(yǎng)成良好的自學習慣。

1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發(fā)學生的表現(xiàn)欲。

2、教師引導學生按照要求進行拼圖,觀察并分析;

(1)這兩個圖形有什么特點?

(2)你能寫出這兩個圖形的面積嗎?

(3)如何運用勾股定理?是否還有其他形式?

這時教師組織學生分組討論,調(diào)動全體學生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發(fā)性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。

1、出示練習,學生分組解答,并由學生總結(jié)解題規(guī)律。課堂教學中動靜結(jié)合,以免引起學生的疲勞。

2、出示例1學生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現(xiàn)鞏固練習,進一步提高學生運用知識的能力,對練習中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。

引導學生對知識要點進行總結(jié),梳理學習思路。分發(fā)自我反饋練習,學生獨立完成。

探索勾股定理教學設(shè)計篇六

通過本節(jié)內(nèi)容的學習,使學生親身經(jīng)歷和體驗,感受發(fā)現(xiàn)規(guī)律的樂趣,同時體會計算器的工具性作用。

五年級學生已經(jīng)基本掌握計算器的使用方法,但是還并不完全認識計算器在學習、生活中的工具性作用,所以教學中還要讓學生進一步加深認識;在數(shù)學計算過程中,學生已有一定的通過計算結(jié)果尋找計算規(guī)律的經(jīng)驗,通過進一步探討,體會發(fā)現(xiàn)規(guī)律是學習捷徑,感受其中的樂趣。

1、能借助計算器探求簡單的數(shù)學規(guī)律。

2、培養(yǎng)學生觀察、歸納、概括、推理的數(shù)學能力。

3、讓學生感受到計算器給學習與生活帶來的便捷。

重點:

1、能讓學生發(fā)現(xiàn)簡單的數(shù)學規(guī)律。

2、培養(yǎng)學生合作交流的學習方法。

難點:

幫助學生培養(yǎng)觀察、推理的數(shù)學能力。

一、激發(fā)學生興趣。

1、小組合作。

巡視,指導學生討論。

2、小組討論,匯報。

二、自主探索。

出示例題10,讓學生觀察等式的變化,發(fā)現(xiàn)規(guī)律。

1、觀察,發(fā)現(xiàn)。

2、知識遷移。

不用計算,用發(fā)現(xiàn)的規(guī)律直接寫出后幾題的商。

學生能應(yīng)用所發(fā)現(xiàn)的規(guī)律填出后幾題的商。

敘述發(fā)現(xiàn)的規(guī)律。

設(shè)計意圖【發(fā)揮學生的觀察、發(fā)現(xiàn)的自主能動性】。

3、小結(jié)。

三、知識拓展。

1、練習。

出示題目:先找規(guī)律,再按規(guī)律填數(shù)。

6×7=42。

6.6×6.7=44.22。

6.66×66.7=444.222。

6.6666×6666.7=。

6.66666×66666.7=。

2、觀察式子所呈現(xiàn)的特征。

設(shè)計意圖【培養(yǎng)學生知識遷移能力、應(yīng)用能力】。

四、指導學生總結(jié)。

設(shè)計意圖【培養(yǎng)學生歸納、概括、推理能力。因為計算器顯示的數(shù)位有限?!?。

五、作業(yè)。

1÷0.1=1×10。

3×100=3÷。

設(shè)計意圖【感受數(shù)學美?!?。

板書設(shè)計。

探索勾股定理教學設(shè)計篇七

教材所處的地位與作用。

“探索勾股定理”是人教版八年級《數(shù)學》下冊內(nèi)容。“勾股定理”是安排在學生學習了三角形、全等三角形、等腰三角形等有關(guān)知識之后,它揭示了直角三角形三邊之間的一種美妙關(guān)系,將數(shù)與形密切聯(lián)系起來,在幾何學中占有非常重要的位置。同時勾股定理在生產(chǎn)、生活中也有很大的用途。

二、教學目標。

綜上分析及教學大綱要求,本課時教學目標制定如下:

1、知識目標。

知道勾股定理的由來,初步理解割補拼接的面積證法。

掌握勾股定理,通過動手操作利用等積法理解勾股定理的證明過程。

2、能力目標。

在探索勾股定理的過程中,讓學生經(jīng)歷“觀察——合理猜想——歸納——驗證”的數(shù)學思想,并體會數(shù)形結(jié)合以及由特殊到一般的思想方法,培養(yǎng)學生的觀察力、抽象概括能力、創(chuàng)造想象能力以及科學探究問題的能力。

3、情感目標。

通過觀察、猜想、拼圖、證明等操作,使學生深刻感受到數(shù)學知識的發(fā)生、發(fā)展過程。

介紹“趙爽弦圖”,讓學生感受到中國古代在勾股定理研究方面所取得的偉大成就,激發(fā)學生的數(shù)學激情及愛國情感。

三、教學重難點。

本課重點是掌握勾股定理,讓學生深刻感悟到直角三角形三邊所具備的特殊關(guān)系。由于八年級學生構(gòu)造能力較低以及對面積證法的不熟悉,因此本課的難點便是勾股定理的證明。

四、教學問題診斷。

本節(jié)主要攻克的問題就是本節(jié)的難點:勾股定理的證明。我打算采用面積法來講解,但這種借助于圖形的面積來探索、驗證數(shù)學結(jié)論的數(shù)形結(jié)合思想,對于學生來說,有些陌生,難以理解,又加之數(shù)學課本身的課程特征,在講解時,沒有文科那么深動形象,所以針對這一現(xiàn)狀,我在教法和學法上都進行了改進。

五、教法與學法分析。

[教學方法與手段]針對八年級學生的知識結(jié)構(gòu)和心理特征,本節(jié)課選擇引導探索法,由淺入深,由特殊到一般地提出問題,引導學生自主探索,合作交流,并利用多媒體進行教學。

[學法分析]在教師組織引導下,采用自主探索、合作交流的方式,讓學生自己實驗,自己獲取知識,并感悟?qū)W習方法,借此培養(yǎng)學生動手、動口、動腦能力,使學生真正成為學習的主體。讓學生感受到自己是學習的主體,增強他們的主動感和責任感,這樣對掌握新知會事半功倍。

1、創(chuàng)設(shè)情境,引入新課。

本節(jié)課開始利用多媒體介紹了在北京召開的國際數(shù)學家大會的會標,其圖案為“趙爽弦圖”,由此導入新課,是為了激發(fā)學生的興趣和民族自豪感,它是課堂教學的重要一環(huán)。“好的開始是成功的一半”,在課的起始階段迅速集中學生注意力,把他們的思緒帶進特定的學習情境中,激發(fā)學生濃厚的學習興趣和強烈的求知欲。多媒體展示這一有意義的圖案,可有效開啟學生思維的閘門,激勵探究,使學生的學習狀態(tài)由被動變?yōu)橹鲃?,在輕松愉悅的氛圍中學到知識。

2、觀察發(fā)現(xiàn),類比猜想。

讓學生仔細觀察畢達哥拉斯朋友家的瓷磚(圖1),從而得到特殊的等腰直角三角形三邊關(guān)系,緊接著由特殊到一般,讓學生合理猜測:是否任意直角三角形都符合這個“三邊關(guān)系”的結(jié)論?同學們很輕易的得到了結(jié)論。最后對此結(jié)論通過在網(wǎng)格中數(shù)格子進行驗證,讓學生經(jīng)歷了“觀察——合理猜測——歸納——驗證”的這一數(shù)學思想。在數(shù)格子的驗證過程中,發(fā)現(xiàn)任意直角三角形(圖2)斜邊上長出的正方形中網(wǎng)格不規(guī)則,沒法數(shù)出。通過同學們的.討論,發(fā)現(xiàn)數(shù)不出來的原因是格子不規(guī)則,從而想到了用補或割的方法進行計算,其原則就是由不規(guī)則經(jīng)過割補變?yōu)橐?guī)則。

3、實驗探究,證明結(jié)論。

因為勾股定理的出現(xiàn),使數(shù)學從單一的純計算進入了幾何圖形的證明,所以為了讓學生感受數(shù)形結(jié)合這一數(shù)學思想,讓學生親自動手,互相協(xié)作,拿一塊由a2和b2組成的不規(guī)則的平面圖形經(jīng)割補,變?yōu)橐?guī)則的c2,又因兩塊割補前后面積相等,從而得到勾股定理:a2+b2=c2,也因此引入了“等積法”證明勾股定理。

4、練兵之際。

這是“總統(tǒng)證法”,此時讓學生自己探索,然后討論。選用“總統(tǒng)證法”,第一是為了讓同學們熟悉“等積法”,第二讓學生感受數(shù)學的地位之高,第三在沒有講解的情況下,學生自己得出了“總統(tǒng)證法”,大大增強了學生的自信心和自豪感。

5、自己動手,拼出弦圖。

讓同學們拿出了提前準備好的四個全等的邊長為a、b、c的直角三角形進行拼圖,小組活動,拼出自己喜愛的圖形,但有一個前提是所拼出的圖形必須能夠用等積法證明勾股定理。此時已經(jīng)是把課堂全部還給了學生,讓他們在數(shù)學的海洋中馳騁,提供這種學習方式就是為了讓孩子們更加開闊,更加自主,更方便于他們到廣闊的海洋中去尋找寶藏,學生們拼得很好,并且都給出了正確的證明,在黑板上盡情地展示了一番。

6、總結(jié)反思。

通過這一堂課,我認為數(shù)學教學的核心不是知識本身,而是數(shù)學的思維方式,而培養(yǎng)這種數(shù)學思維方式需要豐富的數(shù)學活動。在活動中學生可以用自己創(chuàng)造與體驗的方法來學習數(shù)學,這樣才能真正的掌握數(shù)學,真正擁有數(shù)學的思維方式,這一課的學習就是通過讓學生自主探索知識,從而將其轉(zhuǎn)化為自己的,真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學習,教學模式也從教師講授為主轉(zhuǎn)為了學生動腦、動手、自主研究,小組學習討論交流為主,把數(shù)學課堂轉(zhuǎn)化為“數(shù)學實驗室”,學生通過自己活動得出結(jié)論,使創(chuàng)新精神與實踐能力得到了發(fā)展。

七、設(shè)計說明。

1、根據(jù)學生的知識結(jié)構(gòu),我采用的數(shù)學流程是:創(chuàng)設(shè)情境引入新課——觀察發(fā)現(xiàn)類比猜想——實驗探究證明結(jié)論——自己動手拼出弦圖——總結(jié)反思這五部分。這一流程體現(xiàn)了知識的發(fā)生、形成和發(fā)展的過程,讓學生經(jīng)歷了觀察——猜想——歸納——驗證的思想和數(shù)形結(jié)合的思想。

2、探索定理采用了面積法,引導學生利用實驗由特殊到一般的數(shù)學思想對直角三角形三邊關(guān)系進行了研究,并得出了結(jié)論。這種方法是認識事物規(guī)律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好的思維品質(zhì)的形成有重要作用,對學生終身發(fā)展也有很大作用。

探索勾股定理教學設(shè)計篇八

1、體驗勾股定理的探索過程,由特例猜想勾股定理,再由特例驗證勾股定理。

2、會利用勾股定理解釋生活中的簡單現(xiàn)象。

(二)能力訓練要求。

1、在學生充分觀察、歸納、猜想、探索勾股定理的過程中,發(fā)展合情推理能力,體會數(shù)形結(jié)合的思想。

2、在探索勾股定理的過程中,發(fā)展學生歸納、概括和有條理地表達活動過程及結(jié)論的能力。

(三)情感與價值觀要求。

1、培養(yǎng)學生積極參與、合作交流的意識。

2、在探索勾股定理的過程中,體驗獲得成功的快樂,鍛煉學生克服困難的勇氣。

重點:探索和驗證勾股定理。

難點:在方格紙上通過計算面積的方法探索勾股定理。

交流探索猜想。

在方格紙上,同學們通過計算以直角三角形的三邊為邊長的三個正方形的面積,在合作交流的過程中,比較這三個正方形的面積,由此猜想出直角三角形的三邊關(guān)系。

1、學生每人課前準備若干張方格紙。

2、投影片三張:

第一張:填空(記作1.1.1a);。

第二張:問題串(記作1.1.1b);。

第三張:做一做(記作1.1.1c)。

創(chuàng)設(shè)問題情境,引入新課。

出示投影片(1.1.1a)。

(1)三角形按角分類,可分為xx。

(2)對于一般的三角形來說,判斷它們?nèi)鹊臈l件有哪些?對于直角三角形呢?

(3)有兩個直角三角形,如果有兩條邊對應(yīng)相等,那么這兩個直角三角形一定全等嗎?

探索勾股定理教學設(shè)計篇九

1.勾股定理的逆定理是研究特殊三角形——直角三角形的一種判定方法,體現(xiàn)了數(shù)形結(jié)合的思想。

2.通過勾股定理與它的逆定理的學習,加深了學生對性質(zhì)與判定之間辨證統(tǒng)一關(guān)系的認識。

3.完善了知識結(jié)構(gòu),為后繼學習打下基礎(chǔ)。

初中生已經(jīng)具備一定的獨立思考和探索能力,并能在探索過程中形成自已的觀點,能在傾聽別人意見的過程中逐漸完善自已的想法,而且本班學生比較上進,思維活躍,愿意表達自已的見解,有一定的互動互助基礎(chǔ)。

1.知識與技能:

(2)掌握勾股定理的逆定理,并能應(yīng)用勾股定理的逆定理判定一個三角形是不是直角三角形。

2.過程與方法。

(1)通過對勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生、發(fā)展與形成過程。

(2)通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗數(shù)形結(jié)合方法的應(yīng)用。

(3)通過對勾股定理的逆定理的證明,體會數(shù)形結(jié)合方法在問題解決中的作用,并能應(yīng)用勾股定理的逆定理來解決相關(guān)問題。

3.情感態(tài)度。

(2)在探索勾股定理的逆定理的活動中,通過一系列的富有探究性的問題,滲透與他人交流、合作的意識和探究精神。

探索勾股定理教學設(shè)計篇十

1、知識目標:

(2)學會利用勾股定理進行計算、證明與作圖;。

2、能力目標:

(1)在定理的證明中培養(yǎng)學生的拼圖能力;。

(2)通過問題的解決,提高學生的運算能力。

3、情感目標:

(1)通過自主學習的發(fā)展體驗獲取數(shù)學知識的感受;。

(2)通過有關(guān)勾股定理的歷史講解,對學生進行德育教育.

教學難點:通過有關(guān)勾股定理的歷史講解,對學生進行德育教育。

教學用具:直尺,微機。

教學方法:以學生為主體的討論探索法。

探索勾股定理教學設(shè)計篇十一

1、知識與技能目標:會用勾股定理及直角三角形的判定條件解決實際問題。

2、過程與方法目標:經(jīng)歷勾股定理的應(yīng)用過程,熟練掌握其應(yīng)用方法,明確應(yīng)用的條件。

3、情感態(tài)度與價值觀目標:通過自主學習的發(fā)展體驗獲取數(shù)學知識的感受;通過有關(guān)勾股定理的歷史講解,對學生進行德育。

知識點1:(已知兩邊求第三邊)。

1.在直角三角形中,若兩直角邊的長分別為1cm,2cm,則斜邊長為xx。

2.已知直角三角形的兩邊長為3、4,則另一條邊長是xx。

3.三角形abc中,ab=10,ac=17,bc邊上的高線ad=8,求bc的長?

知識點2:

利用方程求線段長。

(1)使得c,d兩村到e站的距離相等,e站建在離a站多少km處?

(2)de與ce的位置關(guān)系。

(3)使得c,d兩村到e站的距離最短,e站建在離a站多少km處?

利用方程解決翻折問題。

3、在矩形紙片abcd中,ad=4cm,ab=10cm,按圖所示方式折疊,使點b與點d重合,折痕為ef,求de的長。

談一談你這節(jié)課都有哪些收獲?

本節(jié)課是人教版數(shù)學八年級下冊第十七章第一節(jié)第二課時的內(nèi)容,是學生在學習了三角形的'有關(guān)知識,了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個三角形是直角三角形的條件的基礎(chǔ)上學習勾股定理,加深對勾股定理的理解,提高學生對數(shù)形結(jié)合的應(yīng)用與理解。本節(jié)第一課時安排了對勾股定理的觀察、計算、猜想、證明及簡單應(yīng)用的過程;第二課時是通過例題分析與講解,讓學生感受勾股定理在實際生活中的應(yīng)用,通過從實際問題中抽象出直角三角形這一模型,強化轉(zhuǎn)化思想,培養(yǎng)學生解決問題的意識和應(yīng)用能力。

探索勾股定理教學設(shè)計篇十二

作為一名數(shù)學教師,如何才能引領(lǐng)一年級學生走進數(shù)學,培養(yǎng)學生學習數(shù)學的興趣呢?我想,應(yīng)該從孩子們接觸到的真正意義上的第一堂數(shù)學課開始,用心地為孩子們翻開這精彩的第一頁。于是,我把各種教學常規(guī)、學生的實際情況以及相應(yīng)的數(shù)學知識進行有機整合,精心設(shè)計了以下兩個環(huán)節(jié),和大家一起共享。

環(huán)節(jié)一:我和數(shù)學書交朋友。

1、認一認數(shù)學書。(片段摘要)師:小朋友,這一節(jié)是數(shù)學課,那你認識數(shù)學書嗎?

師:(拿數(shù)學書演示)請小朋友仔細觀察數(shù)學書的封面上都有些什么呢?他們在干什么?(生自由說,重點引導學生說出有幾個小朋友在干什么。)。

師:你能找到“數(shù)學”兩個字嗎?誰會指著讀一讀?你還認識封面上的哪些字呢?(師可帶領(lǐng)學生認一認,讀一讀,如:一年級,上冊等等。)。

反思:剛上一年級的小朋友,通過三年的幼兒園學習,已經(jīng)掌握了一些知識,但在孩子們的思想中對語文、數(shù)學、音樂等課程的區(qū)分并不清楚,也從未接觸過具體的課本,于是,在這真正意義上的第一堂數(shù)學課上,指導他們來認一認數(shù)學書是很有必要的。實踐也證明,通過此環(huán)節(jié)的設(shè)計,在后來的教學中,我很難發(fā)現(xiàn)學生有拿錯數(shù)學課本的現(xiàn)象。

2、聞一聞數(shù)學書。我一直保留著一個習慣,不,應(yīng)該是一種癖好,就是一拿到新書,就會不自覺地隨手一翻,然后用鼻子靠近書頁,去聞一聞新書所特有的那種濃濃的油墨香味。細細想來,這個癖好是從何而起?記憶最深處,還是和這群學生一樣大時,跟幾個同齡人背著一大包新書聚在一起,用隔年的年歷紙小心翼翼地包書,期間,就會不時聞到一縷縷幽幽的油墨香味,漸漸地,便記住并喜歡上了這種獨特的味道。無獨有偶,跟同事或朋友談起這個話題,他們竟然也有著同樣的感受。于是,我堅信,讓學生來聞一聞新書的味道是學習的開始,讓他們在這種濃濃的油墨香味中感受到要學習新知的美好憧憬,并教育學生要愛惜書本,等把這本書都學完了,再讓他們來問聞聞它的味道。

3、翻一翻數(shù)學書。翻書最基本的要求是要認識頁碼,還要準確地知道數(shù)字的排列規(guī)律。一年級的小朋友基本上都會熟練地從1數(shù)到100,也會比較一些數(shù)字的大小。根據(jù)這一情況,我設(shè)計了一個翻書的小游戲“比誰找得快”。

(片段摘要)。

師:請小朋友把書翻到第8頁。

師:你是怎樣找到第8頁的?

生1:我是一頁一頁翻過去的。

生2:因為第8頁在很前面,我就先翻一點點,看看是不是,我翻到的是第10頁,第8頁在前面,我就再往前翻過一頁。

師:你真會動腦筋,想的方法很好,鼓掌表揚。小朋友們,看來翻書也有很大的學問呢。接著,我有連續(xù)地變換著方式來讓學生找頁數(shù)。

-反思:備課時,這一環(huán)節(jié)的設(shè)計旨在讓學生學會翻書,認識頁碼,知道數(shù)字的大小,也便于自己能更好地熟悉和了解學生對已有知識的掌握情況。但學生的實際反應(yīng)太讓我驚訝了,原來他們已經(jīng)對數(shù)字有把如此深刻的理解。而且在具體的操作中有部分同學已經(jīng)有了估計的意識,對于具體的數(shù)字頁碼,他們沒有一頁一頁地去翻,而是會用“先翻過一些,再比較”的方法來快速找到教師所要求的頁碼,這是一條捷徑,這條捷徑就是學生對于認識數(shù)字的已有經(jīng)驗,也是教師進行再次教學的一個起點,教師若摸不清學生原有的`知識基礎(chǔ),也就找不到再次教學時的這個關(guān)鍵起點,更不能抓住學生學習的生長點,那樣在以后的教學中,必將多走重復路、冤枉路。

環(huán)節(jié)二:我的“新家”在哪里?

1、認一認教室。師:小朋友,你知道自己在哪個班嗎?

(開學初,經(jīng)常有學生會走錯教室,此設(shè)計旨在讓學生認清并記住自己的班級所在地。)。

師:小朋友,這個教室就是你們在學校里的“新家”,看一看,我們的“新家”布置得怎樣?你會按著前后左右的順序來說一說嗎?(鼓勵并引導學生按一定的順序來敘述)。

2、找一找位置。教師先介紹教室課桌的擺放,告訴學生什么叫“一排”,什么叫“一組”,然后舉例:×××坐在第3排,×××坐在第2組第5個。讓學生學著說說自己的位置。

變換方式:說出你好朋友的位置,讓大家來猜一猜。

(這一環(huán)節(jié)的設(shè)計旨在讓學生認識并喜歡自己的教室,熟悉身邊的同學、老師,在交流中培養(yǎng)學生的觀察能力和語言表達能力。)。

探索勾股定理教學設(shè)計篇十三

一、教案背景概述:

教材分析:勾股定理是直角三角形的重要性質(zhì),它把三角形有一個直角的“形”的特點,轉(zhuǎn)化為三邊之間的“數(shù)”的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計算問題,它是直角三角形特有的性質(zhì),是初中數(shù)學教學內(nèi)容重點之一。本節(jié)課的重點是發(fā)現(xiàn)勾股定理,難點是說明勾股定理的正確性。

學生分析:

1、考慮到三角尺學生天天在用,較為熟悉,但真正能仔細研究過三角尺的同學并不多,通過這樣的情景設(shè)計,能非常簡單地將學生的注意力引向本節(jié)課的本質(zhì)。

2、以與勾股定理有關(guān)的人文歷史知識為背景展開對直角三角形三邊關(guān)系的討論,能激發(fā)學生的學習興趣。

設(shè)計理念:本教案以學生手中舞動的三角尺為知識背景展開,以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學生對勾股定理的發(fā)展過程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗勾股定理的探索和運用過程,激發(fā)學生學習數(shù)學的興趣,特別是通過向?qū)W生介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和探究創(chuàng)新的精神。

教學目標:

1、經(jīng)歷用面積割、補法探索勾股定理的過程,培養(yǎng)學生主動探究意識,發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。

2、經(jīng)歷用多種割、補圖形的方法驗證勾股定理的過程,發(fā)展用數(shù)學的眼光觀察現(xiàn)實世界和有條理地思考能力以及語言表達能力等,感受勾股定理的文化價值。

3、培養(yǎng)學生學習數(shù)學的興趣和愛國熱情。

4、欣賞設(shè)計圖形美。

二、教案運行描述:

教學準備階段:

學生準備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。

老師準備:畢達哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。

三、教學流程:

(一)引入。

同學們,當你每天手握三角尺繪制自己的宏偉藍圖時,你是否想過:他們的邊有什么關(guān)系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關(guān)系)。

(二)實驗探究。

設(shè)網(wǎng)格正方形的邊長為1,直角三角形的直角邊分別為a、b,斜邊為c,觀察并計算每個正方形的面積,以四人小組為單位填寫下表:

(討論難點:以斜邊為邊的正方形的面積找法)。

交流后得出一般結(jié)論:(用關(guān)于a、b、c的式子表示)。

(三)探索所得結(jié)論的正確性。

當直角三角形的直角邊分別為a、b,斜邊為c時,是否一定成立?

1、指導學生運用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計合理分割(或補全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進行)。

在學生所創(chuàng)作圖形中選擇有代表性的割、補圖,展示出來交流講解,并引導學生進行說理:

如圖2(用補的方法說明)。

師介紹:(出示圖片)畢達哥拉斯,公元前約500年左右,古西臘一位哲學家、數(shù)學家。一天,他應(yīng)邀到一位朋友家做客,他一進朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對角線為邊向形外作正方形的面積。于是他回到家里立刻對他的這一發(fā)現(xiàn)進行了探究證明……,終獲成功。后來西方人們?yōu)榱思o念他的這一發(fā)現(xiàn),將這一定理命名為“畢達哥拉斯定理”。1952年,希臘政府為了紀念這位偉大的數(shù)學家,特別選用他設(shè)計的這種圖形為主圖發(fā)行了一枚紀念郵票。(見課本52頁彩圖2―1,欣賞圖片)。

如圖3(用割的方法去探索)。

師介紹:(出示圖片)中國古代數(shù)學家們很早就發(fā)現(xiàn)并運用這個結(jié)論。早在公元前左右,大禹治水時期,就曾經(jīng)用過此方法測量土地的等高差,公元前1100年左右,西周的數(shù)學家商高就曾用“勾三、股四、弦五”測量土地,他們對這一結(jié)論的運用至少比古希臘人早500多年。公元200年左右,三國時期吳國數(shù)學家趙爽曾構(gòu)造此圖驗證了這一結(jié)論的正確性。他的這個證明,可謂別具匠心,極富創(chuàng)新意識,他用幾何圖形的割、來證明代數(shù)式之間的相等關(guān)系,既嚴密,又直觀,為中國古代以“形”證“數(shù)”,形、數(shù)統(tǒng)一的獨特風格樹立了一個典范。他是我國有記載以來第一個證明這一結(jié)論的數(shù)學家。我國數(shù)學家們?yōu)榱思o念我國在這方面的數(shù)學成就,將這一結(jié)論命名為“勾股定理”。(點題)。

20xx年,世界數(shù)學家大會在中國北京召開,當時選用這個圖案作為會場主圖,它標志著我國古代數(shù)學的輝煌成就。(見課本50頁彩圖,欣賞圖片)。

如圖4(構(gòu)造新圖形的方法去探索)。

四、總結(jié):

本節(jié)課學習的勾股定理用語言敘說為:

五、作業(yè):

1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問題并交流。

探索勾股定理教學設(shè)計篇十四

一是讓學生自己回顧總結(jié)本節(jié)的收獲。(多數(shù)為具體的知識和方法)。

二是教師要引導學生學習科學家敏銳的觀察力和勤于思考的作風,不斷提高自己的數(shù)學素養(yǎng),適時對大家進行思想教育。

通過本節(jié)課的教學,讓我更深刻地認識到:

3.要相信學生的能力,為學生創(chuàng)造自我學習和創(chuàng)造的機會。我相信:只要堅持不懈地這樣去做,不但能很好地實施新課改,實現(xiàn)教育的本來目標,而且也一定能讓學生“考出”好的成績。

探索勾股定理教學設(shè)計篇十五

這節(jié)課是九年制義務(wù)教育課程標準實驗教科書八年級第一章第一節(jié)探索勾股定理第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎(chǔ)上對直角三角形有進一步的認識和理解。

2、會初步運用勾股定理進行簡單的計算和實際運用。

3、在探索勾股定理的過程中,讓學生經(jīng)歷“觀察—猜想—歸納—驗證”的數(shù)學思想,并體會數(shù)形結(jié)合和特殊到一般的思想方法。

4、通過介紹勾股定理在中國古代的研究,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發(fā)奮學習。

本課的教學難點:以直角三角形為邊的正方形面積的計算。

教法分析:針對初二年級學生的知識結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導探索法,由淺入深,由特殊到一般地提出問題。引導學生自主探索,合作交流,這種教學理念反映了時代精神,有利于提高學生的思維能力,能有效地激發(fā)學生的思維積極性,基本教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結(jié)—布置作業(yè)六部分。

學法分析:在教師的組織引導下,采用自主探索、合作交流的研討式學習方式,讓學生思考問題,獲取知識,掌握方法,借此培養(yǎng)學生動手、動腦、動口的能力,使學生真正成為學習的主體。

首先創(chuàng)設(shè)這樣一個問題情境:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?問題設(shè)計具有一定的挑戰(zhàn)性,目的是激發(fā)學生的探究欲望,教師引導學生將實際問題轉(zhuǎn)化成數(shù)學問題,也就是“已知一直角三角形的兩邊,如何求第三邊?”的問題。學生會感到困難,從而教師指出學習了今天這一課后就有辦法解決了。這種以實際問題為切入點引入新課,不僅自然,而且反映了數(shù)學來源于實際生活,數(shù)學是從人的需要中產(chǎn)生這一認識的基本觀點,同時也體現(xiàn)了知識的發(fā)生過程,而且解決問題的過程也是一個“數(shù)學化”的過程。

1、投影課本圖1—1,圖1—2的有關(guān)直角三角形問題,讓學生計算正方形a,b,c的面積,學生可能有不同的方法,不管是通過直接數(shù)小方格的個數(shù),還是將c劃分為4個全等的等腰直角三角形來求等等,各種方法都應(yīng)予于肯定,并鼓勵學生用語言進行表達,引導學生發(fā)現(xiàn)正方形a,b,c的面積之間的數(shù)量關(guān)系,從而學生通過正方形面積之間的關(guān)系容易發(fā)現(xiàn)對于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學生參與探索,感受數(shù)學學習的過程,也有利于培養(yǎng)學生的語言表達能力,體會數(shù)形結(jié)合的思想。

2、接著讓學生思考:如果是其它一般的直角三角形,是否也具備這一結(jié)論呢?于是投影圖1—3,圖1—4,同樣讓學生計算正方形的面積,但正方形c的面積不易求出,可讓學生在預先準備的方格紙上畫出圖形,在剪一剪,拼一拼后學生也不難發(fā)現(xiàn)對于一般的以整數(shù)為邊長的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設(shè)計不僅有利于突破難點,而且為歸納結(jié)論打下了基礎(chǔ),讓學生體會到觀察、猜想、歸納的思想,也讓學生的分析問題和解決問題的能力在無形中得到了提高,這對后面的學習及有幫助。

3、給出一個邊長為0.5,1.2,1.3,這種含小數(shù)的直角三角形,讓學生計算是否也滿足這個結(jié)論,設(shè)計的目的是讓學生體會到結(jié)論更具有一般性。

1、歸納通過對邊長為整數(shù)的等腰直角三角形到一般直角三角形再到邊長含小數(shù)的直角三角形三邊關(guān)系的研究,讓學生用數(shù)學語言概括出一般的結(jié)論,盡管學生可能講的不完全正確,但對于培養(yǎng)學生運用數(shù)學語言進行抽象、概括的能力是有益的,同時發(fā)揮了學生的主體作用,也便于記憶和理解,這比教師直接教給學生一個結(jié)論要好的多。

2、驗證為了讓學生確信結(jié)論的正確性,引導學生在紙上任意作一個直角三角形,通過測量、計算來驗證結(jié)論的正確性。這一過程有利于培養(yǎng)學生嚴謹、科學的學習態(tài)度。然后引導學生用符號語言表示,因為將文字語言轉(zhuǎn)化為數(shù)學語言是學習數(shù)學學習的一項基本能力。接著教師向?qū)W生介紹“勾,股,弦”的含義、勾股定理,進行點題,并指出勾股定理只適用于直角三角形。最后向?qū)W生介紹古今中外對勾股定理的研究,對學生進行愛國主義教育。

讓學生解決開頭的實際問題,前后呼應(yīng),學生從中能體會到成功的喜悅。完成課本“想一想”進一步體會勾股定理在實際生活中的應(yīng)用,數(shù)學是與實際生活緊密相連的。

主要通過學生回憶本節(jié)課所學內(nèi)容,從內(nèi)容、應(yīng)用、數(shù)學思想方法、獲取新知的途徑方面先進行小結(jié),后由教師總結(jié)。

課本p6習題1.11,2,3,4一方面鞏固勾股定理,另一方面進一步體會定理與實際生活的聯(lián)系。另外,補充一道開放題。

1、本節(jié)課是公式課,根據(jù)學生的知識結(jié)構(gòu),我采用的教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結(jié)—布置作業(yè)六部分,這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結(jié)合的思想。

2、探索定理采用了面積法,引導學生利用實驗由特殊到一般再到更一般的對直角三角形三邊關(guān)系的研究,得出結(jié)論。這種方法是認識事物規(guī)律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好思維品質(zhì)的形成有重要作用,對學生的終身發(fā)展也有一定的作用。

3、關(guān)于練習的設(shè)計,除兩個實際問題和課本習題以外,我準備設(shè)計一道開放題,大致思路是在已畫出斜邊上的高的直角三角形中讓學生盡量地找出線段之間的關(guān)系。

4、本課小結(jié)從內(nèi)容,應(yīng)用,數(shù)學思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結(jié),又有方法的提煉,這樣對于學生學知識,用知識的意識是有很大的促進的。

探索勾股定理教學設(shè)計篇十六

知識與技能:

了解勾股定理的一些證明方法,會簡單應(yīng)用勾股定理解決問題。

在充分觀察、歸納、猜想的基礎(chǔ)上,探究勾股定理,在探究的過程中,發(fā)展合情推理,體會數(shù)形結(jié)合、從特殊到一般等數(shù)學思想。

通過對我國古代研究勾股定理的成就介紹,培養(yǎng)學生的民族自豪感。

1、創(chuàng)設(shè)情境。

師生活動:教師引導學生尋找圖形中的直角三角形和正方形等,并引導學生發(fā)現(xiàn)直角三角形的全等關(guān)系,指出通過今天的學習,就能理解會徽圖案的含義。

設(shè)計意圖:本節(jié)課是本章的起始課,重視引言教學,從國際數(shù)學家大會的會徽說起,設(shè)置懸念,引入課題。

觀看洋蔥數(shù)學中關(guān)于勾股定理引入的視頻,讓我們一起走進神奇的數(shù)學世界。

追問:由這三個正方形的邊長構(gòu)成的等腰直角三角形三條邊長之間又有怎么樣的關(guān)系?

師生活動:教師引導學生發(fā)現(xiàn)正方形的面積等于邊長的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。

設(shè)計意圖:從最特殊的等腰直角三角形入手,便于學生觀察得到結(jié)論。

問題3:數(shù)學研究遵循從特殊到一般的數(shù)學思想,既然我們得到了等腰直角三角形三邊的這種特殊的數(shù)量關(guān)系,那我們不妨大膽猜測在一般的直角三角形(在下圖的方格紙中,每個方格的面積是1)中,這種特殊的數(shù)量關(guān)系也同樣成立。

師生活動:學生獨立思考后小組討論,難點是如何證明求以斜邊為邊長的正方形的面積,可由師生共同總結(jié)得出可以通過割、補兩種方法,求出其面積。

探索勾股定理教學設(shè)計篇十七

教材分析:勾股定理是直角三角形的重要性質(zhì),它把三角形有一個直角的“形”的特點,轉(zhuǎn)化為三邊之間的“數(shù)”的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計算問題,它是直角三角形特有的性質(zhì),是初中數(shù)學教學內(nèi)容重點之一。本節(jié)課的重點是發(fā)現(xiàn)勾股定理,難點是說明勾股定理的正確性。

學生分析:

1、考慮到三角尺學生天天在用,較為熟悉,但真正能仔細研究過三角尺的同學并不多,通過這樣的情景設(shè)計,能非常簡單地將學生的注意力引向本節(jié)課的本質(zhì)。

2、以與勾股定理有關(guān)的人文歷史知識為背景展開對直角三角形三邊關(guān)系的討論,能激發(fā)學生的學習興趣。

設(shè)計理念:本教案以學生手中舞動的三角尺為知識背景展開,以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學生對勾股定理的發(fā)展過程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗勾股定理的探索和運用過程,激發(fā)學生學習數(shù)學的興趣,特別是通過向?qū)W生介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想感情,培養(yǎng)他們的自豪感和探究創(chuàng)新的精神。

教學目標:

1、經(jīng)歷用面積割、補法探索勾股定理的過程,培養(yǎng)學生主動探究意識,發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。

2、經(jīng)歷用多種割、補圖形的方法驗證勾股定理的過程,發(fā)展用數(shù)學的眼光觀察現(xiàn)實世界和有條理地思考能力以及語言表達能力等,感受勾股定理的'文化價值。

3、培養(yǎng)學生學習數(shù)學的興趣和愛國熱情。

4、欣賞設(shè)計圖形美。

教學準備階段:

學生準備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。

老師準備:畢達哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。

(一)引入

同學們,當你每天手握三角尺繪制自己的宏偉藍圖時,你是否想過:他們的邊有什么關(guān)系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關(guān)系)

(二)實驗探究

設(shè)網(wǎng)格正方形的邊長為1,直角三角形的直角邊分別為a、b,斜邊為c,觀察并計算每個正方形的面積,以四人小組為單位填寫下表:

(討論難點:以斜邊為邊的正方形的面積找法)

交流后得出一般結(jié)論:(用關(guān)于a、b、c的式子表示)

(三)探索所得結(jié)論的正確性

當直角三角形的直角邊分別為a、b,斜邊為c時,是否一定成立?

1、指導學生運用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計合理分割(或補全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進行)

在學生所創(chuàng)作圖形中選擇有代表性的割、補圖,展示出來交流講解,并引導學生進行說理:

如圖2(用補的方法說明)

師介紹:(出示圖片)畢達哥拉斯,公元前約500年左右,古西臘一位哲學家、數(shù)學家。一天,他應(yīng)邀到一位朋友家做客,他一進朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對角線為邊向形外作正方形的面積。于是他回到家里立刻對他的這一發(fā)現(xiàn)進行了探究證明……,終獲成功。后來西方人們?yōu)榱思o念他的這一發(fā)現(xiàn),將這一定理命名為“畢達哥拉斯定理”。1952年,希臘政府為了紀念這位偉大的數(shù)學家,特別選用他設(shè)計的這種圖形為主圖發(fā)行了一枚紀念郵票。(見課本52頁彩圖2―1,欣賞圖片)

如圖3(用割的方法去探索)

師介紹:(出示圖片)中國古代數(shù)學家們很早就發(fā)現(xiàn)并運用這個結(jié)論。早在公元前20xx年左右,大禹治水時期,就曾經(jīng)用過此方法測量土地的等高差,公元前1100年左右,西周的數(shù)學家商高就曾用“勾三、股四、弦五”測量土地,他們對這一結(jié)論的運用至少比古希臘人早500多年。公元200年左右,三國時期吳國數(shù)學家趙爽曾構(gòu)造此圖驗證了這一結(jié)論的正確性。他的這個證明,可謂別具匠心,極富創(chuàng)新意識,他用幾何圖形的割、來證明代數(shù)式之間的相等關(guān)系,既嚴密,又直觀,為中國古代以“形”證“數(shù)”,形、數(shù)統(tǒng)一的獨特風格樹立了一個典范。他是我國有記載以來第一個證明這一結(jié)論的數(shù)學家。我國數(shù)學家們?yōu)榱思o念我國在這方面的數(shù)學成就,將這一結(jié)論命名為“勾股定理”。(點題)

20xx年,世界數(shù)學家大會在中國北京召開,當時選用這個圖案作為會場主圖,它標志著我國古代數(shù)學的輝煌成就。(見課本50頁彩圖,欣賞圖片)

如圖4(構(gòu)造新圖形的方法去探索)

本節(jié)課學習的勾股定理用語言敘說為:

1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問題并交流。

2、探索勾股定理的運用。

【本文地址:http://m.aiweibaby.com/zuowen/16770695.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔