多邊形內(nèi)角和說課稿(精選17篇)

格式:DOC 上傳日期:2023-12-02 04:52:22
多邊形內(nèi)角和說課稿(精選17篇)
時(shí)間:2023-12-02 04:52:22     小編:雅蕊

了解是拓寬知識面,提升自我素養(yǎng)的必不可少手段。了解總結(jié)的目的和重要性,做好充分準(zhǔn)備,才能寫出一篇較為完美的總結(jié)。在這里,我們?yōu)榇蠹揖臏?zhǔn)備了一些總結(jié)的樣例,希望能夠給大家提供一些寫作的思路。

多邊形內(nèi)角和說課稿篇一

從教材的編排上,本節(jié)課作為第八章的第三節(jié)是承上啟下的一節(jié),在內(nèi)容上,從三角形的內(nèi)角和到四邊形的內(nèi)角和到多邊形的內(nèi)角和環(huán)環(huán)相扣,前面的知識為后邊的知識做了鋪墊,知識聯(lián)系性比較強(qiáng),特別是教材中設(shè)計(jì)了一些"想一想""試一試""做一做"等內(nèi)容,體現(xiàn)了課改的精神。在編寫意圖上,編者有意從簡單的幾何圖形入手,讓學(xué)生經(jīng)歷探索,猜想,歸納等過程,發(fā)展了學(xué)生的合情推理能力。

學(xué)生上節(jié)課剛剛學(xué)完三角形的內(nèi)角和,對內(nèi)角和的問題有了一定的認(rèn)識,加上七年級的學(xué)生具有好奇心,求知欲強(qiáng),互相評價(jià)互相提問的積極性高。因此對于學(xué)習(xí)本節(jié)內(nèi)容的知識條件已經(jīng)成熟,學(xué)生參加探索活動的熱情已經(jīng)具備,因此把這節(jié)課設(shè)計(jì)成一節(jié)探索活動課是切實(shí)可行的。

【知識與技能】掌握多邊形內(nèi)角和與外角和定理,進(jìn)一步了解轉(zhuǎn)化的數(shù)學(xué)思想

【過程與方法】經(jīng)歷質(zhì)疑,猜想,歸納等活動,發(fā)展學(xué)生的合情推理能力,積累數(shù)學(xué)活動的經(jīng)驗(yàn),在探索中學(xué)會與人合作,學(xué)會交流自己的思想和方法。

【情感態(tài)度與價(jià)值觀】讓學(xué)生體驗(yàn)猜想得到證實(shí)的成功喜悅和成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿著探索和創(chuàng)造。

【教學(xué)重點(diǎn)】多邊形內(nèi)角和及外角和定理

【教學(xué)難點(diǎn)】轉(zhuǎn)化的數(shù)學(xué)思維方法

本次課改很大程度上借鑒了美國教育家杜威的"在做中學(xué)"的理論,突出學(xué)生獨(dú)立數(shù)學(xué)思考活動,希望通過活動使學(xué)生主動探索,實(shí)踐,交流,達(dá)到掌握知識的目的,尤其是本節(jié)課更是一節(jié)難得的探索活動課,按新的課程理論和葉圣陶先生所倡導(dǎo)的"解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時(shí)間"及初一學(xué)生的特點(diǎn),我確定如下教法和學(xué)法。

【課堂組織策略】利用學(xué)生的好奇心,設(shè)疑,解疑,組織活潑互動,有效的教學(xué)活動,鼓勵學(xué)生積極參與,大膽猜想,積極思考,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。

【學(xué)生學(xué)習(xí)策略】明確學(xué)習(xí)目標(biāo),在教師的組織,引導(dǎo),點(diǎn)撥下進(jìn)行主動探索,實(shí)踐,交流等活動。

【輔助策略】利用多媒體課件展示三角形內(nèi)角和向多邊形內(nèi)角和轉(zhuǎn)化,突破這一教學(xué)難點(diǎn),另外利用演示法,歸納法,討論法,分組竟賽法,使不同學(xué)生的知識水平得到恰當(dāng)?shù)陌l(fā)展和提高。

整個(gè)教學(xué)過程分五步完成。

1,創(chuàng)設(shè)情景,引入新課

首先解決四邊形內(nèi)角的問題,通過轉(zhuǎn)化為三角形問題來解決。

2,合作交流,探索新知。

更進(jìn)一步解決五邊形內(nèi)角和,乃至六邊形,七邊形直到n邊形的內(nèi)角和,都能用同樣的方法解決。學(xué)生分組討論。

3,歸納總結(jié),建構(gòu)體系。

多邊形內(nèi)角和已得出,對外角和更是水到渠成,這時(shí)要適當(dāng)?shù)目偨Y(jié),讓學(xué)生自己得到零散的知識體系。

4,實(shí)際應(yīng)用,提高能力。

5,分組競賽,升華情感

四組不同難度的電子試卷,既鞏固本節(jié)課所學(xué)的知識,又使學(xué)生本節(jié)課產(chǎn)生的激情得以釋放。

板書本節(jié)課學(xué)生所需掌握的知識目標(biāo):即多邊形內(nèi)角和與外角和定理

本節(jié)課在知識上由簡單到復(fù)雜,學(xué)生經(jīng)歷質(zhì)疑,猜想,驗(yàn)證的同時(shí),在情感上,由好奇到疑惑,由解決單個(gè)問題的一點(diǎn)點(diǎn)快感,到解決整個(gè)問題串的極大興奮,產(chǎn)生了強(qiáng)烈的學(xué)習(xí)激情。這時(shí),一次有效的教學(xué)競賽活動,使學(xué)生的學(xué)習(xí)激情得到釋放,學(xué)科個(gè)性得以張揚(yáng),教師稍加點(diǎn)撥,適可而止,把更多的思考空間留給學(xué)生。

多邊形內(nèi)角和說課稿篇二

從教材的編排上,本節(jié)課作為第八章的第三節(jié)是承上啟下的一節(jié),在內(nèi)容上,從三角形的內(nèi)角和到四邊形的內(nèi)角和到多邊形的內(nèi)角和環(huán)環(huán)相扣,前面的知識為后邊的知識做了鋪墊,知識聯(lián)系性比較強(qiáng),特別是教材中設(shè)計(jì)了一些“想一想”“試一試”“做一做”等內(nèi)容,體現(xiàn)了課改的精神。在編寫意圖上,編者有意從簡單的幾何圖形入手,讓學(xué)生經(jīng)歷探索,猜想,歸納等過程,發(fā)展了學(xué)生的合情推理能力。

二,學(xué)生情況。

學(xué)生上節(jié)課剛剛學(xué)完三角形的內(nèi)角和,對內(nèi)角和的問題有了一定的認(rèn)識,加上七年級的學(xué)生具有好奇心,求知欲強(qiáng),互相評價(jià)互相提問的積極性高。因此對于學(xué)習(xí)本節(jié)內(nèi)容的知識條件已經(jīng)成熟,學(xué)生參加探索活動的熱情已經(jīng)具備,因此把這節(jié)課設(shè)計(jì)成一節(jié)探索活動課是切實(shí)可行的。

三,教學(xué)目標(biāo)及重點(diǎn),難點(diǎn)的確定。

【知識與技能】掌握多邊形內(nèi)角和與外角和定理,進(jìn)一步了解轉(zhuǎn)化的數(shù)學(xué)思想。

【過程與方法】經(jīng)歷質(zhì)疑,猜想,歸納等活動,發(fā)展學(xué)生的合情推理能力,積累數(shù)學(xué)活動的經(jīng)驗(yàn),在探索中學(xué)會與人合作,學(xué)會交流自己的思想和方法。

【情感態(tài)度與價(jià)值觀】讓學(xué)生體驗(yàn)猜想得到證實(shí)的成功喜悅和成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿著探索和創(chuàng)造。

【教學(xué)難點(diǎn)】轉(zhuǎn)化的數(shù)學(xué)思維方法。

四,教法和學(xué)法。

本次課改很大程度上借鑒了美國教育家杜威的“在做中學(xué)”的理論,突出學(xué)生獨(dú)立數(shù)學(xué)思考活動,希望通過活動使學(xué)生主動探索,實(shí)踐,交流,達(dá)到掌握知識的目的,尤其是本節(jié)課更是一節(jié)難得的探索活動課,按新的課程理論和葉圣陶先生所倡導(dǎo)的“解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時(shí)間”及初一學(xué)生的特點(diǎn),我確定如下教法和學(xué)法。

【課堂組織策略】利用學(xué)生的'好奇心,設(shè)疑,解疑,組織活潑互動,有效的教學(xué)活動,鼓勵學(xué)生積極參與,大膽猜想,積極思考,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。

【學(xué)生學(xué)習(xí)策略】明確學(xué)習(xí)目標(biāo),在教師的組織,引導(dǎo),點(diǎn)撥下進(jìn)行主動探索,實(shí)踐,交流等活動。

【輔助策略】利用多媒體課件展示三角形內(nèi)角和向多邊形內(nèi)角和轉(zhuǎn)化,突破這一教學(xué)難點(diǎn),另外利用演示法,歸納法,討論法,分組竟賽法,使不同學(xué)生的知識水平得到恰當(dāng)?shù)陌l(fā)展和提高。

五,教學(xué)過程設(shè)計(jì)。

整個(gè)教學(xué)過程分五步完成。

1,創(chuàng)設(shè)情景,引入新課。

首先解決四邊形內(nèi)角的問題,通過轉(zhuǎn)化為三角形問題來解決。

2,合作交流,探索新知。

更進(jìn)一步解決五邊形內(nèi)角和,乃至六邊形,七邊形直到n邊形的內(nèi)角和,都能用同樣的方法解決。學(xué)生分組討論。

3,歸納總結(jié),建構(gòu)體系。

多邊形內(nèi)角和已得出,對外角和更是水到渠成,這時(shí)要適當(dāng)?shù)目偨Y(jié),讓學(xué)生自己得到零散的知識體系。

4,實(shí)際應(yīng)用,提高能力。

5,分組競賽,升華情感。

四組不同難度的電子試卷,既鞏固本節(jié)課所學(xué)的知識,又使學(xué)生本節(jié)課產(chǎn)生的激情得以釋放。

多邊形內(nèi)角和說課稿篇三

各位領(lǐng)導(dǎo),各位老師:

????大家下午好,很高興有機(jī)會參加這次教學(xué)研究活動。

我的教學(xué)設(shè)計(jì)是華師大版七年級數(shù)學(xué)(下)第八章第三節(jié)"多邊形的內(nèi)角和與外角和"。根據(jù)新的課程標(biāo)準(zhǔn),我從以下七個(gè)方面說一下本節(jié)課的教學(xué)設(shè)想:

從教材的編排上,本節(jié)課作為第八章的第三節(jié)是承上啟下的一節(jié),在內(nèi)容上,從三角形的內(nèi)角和到四邊形的內(nèi)角和到多邊形的內(nèi)角和環(huán)環(huán)相扣,前面的知識為后邊的知識做了鋪墊,知識聯(lián)系性比較強(qiáng),特別是教材中設(shè)計(jì)了一些"想一想""試一試""做一做"等內(nèi)容,體現(xiàn)了課改的精神。在編寫意圖上,編者有意從簡單的幾何圖形入手,讓學(xué)生經(jīng)歷探索,猜想,歸納等過程,發(fā)展了學(xué)生的合情推理能力。

學(xué)生上節(jié)課剛剛學(xué)完三角形的內(nèi)角和,對內(nèi)角和的問題有了一定的認(rèn)識,加上七年級的學(xué)生具有好奇心,求知欲強(qiáng),互相評價(jià)互相提問的積極性高。因此對于學(xué)習(xí)本節(jié)內(nèi)容的知識條件已經(jīng)成熟,學(xué)生參加探索活動的熱情已經(jīng)具備,因此把這節(jié)課設(shè)計(jì)成一節(jié)探索活動課是切實(shí)可行的。

新的課程標(biāo)準(zhǔn)注重學(xué)生所學(xué)內(nèi)容與現(xiàn)實(shí)生活的聯(lián)系,注重學(xué)生經(jīng)歷觀察,操作,推理,想象等探索過程。根據(jù)新課標(biāo)和本節(jié)課的內(nèi)容特點(diǎn)我確定以下教學(xué)目標(biāo)及重點(diǎn),難點(diǎn)。

【知識與技能】掌握多邊形內(nèi)角和與外角和定理,進(jìn)一步了解轉(zhuǎn)化的數(shù)學(xué)思想。

【過程與方法】經(jīng)歷質(zhì)疑,猜想,歸納等活動,發(fā)展學(xué)生的合情推理能力,積累數(shù)學(xué)活動的經(jīng)驗(yàn),在探索中學(xué)會與人合作,學(xué)會交流自己的思想和方法。

【情感態(tài)度與價(jià)值觀】讓學(xué)生體驗(yàn)猜想得到證實(shí)的成功喜悅和成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿著探索和創(chuàng)造。

【教學(xué)難點(diǎn)】轉(zhuǎn)化的數(shù)學(xué)思維方法。

本次課改很大程度上借鑒了美國教育家杜威的"在做中學(xué)"的理論,突出學(xué)生獨(dú)立數(shù)學(xué)思考活動,希望通過活動使學(xué)生主動探索,實(shí)踐,交流,達(dá)到掌握知識的目的,尤其是本節(jié)課更是一節(jié)難得的探索活動課,按新的課程理論和葉圣陶先生所倡導(dǎo)的"解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時(shí)間"及初一學(xué)生的特點(diǎn),我確定如下教法和學(xué)法。

【課堂組織策略】利用學(xué)生的好奇心,設(shè)疑,解疑,組織活潑互動,有效的教學(xué)活動,鼓勵學(xué)生積極參與,大膽猜想,積極思考,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。

【學(xué)生學(xué)習(xí)策略】明確學(xué)習(xí)目標(biāo),在教師的組織,引導(dǎo),點(diǎn)撥下進(jìn)行主動探索,實(shí)踐,交流等活動。

【輔助策略】利用多媒體課件展示三角形內(nèi)角和向多邊形內(nèi)角和轉(zhuǎn)化,突破這一教學(xué)難點(diǎn),另外利用演示法,歸納法,討論法,分組竟賽法,使不同學(xué)生的知識水平得到恰當(dāng)?shù)陌l(fā)展和提高。

整個(gè)教學(xué)過程分五步完成。

1,創(chuàng)設(shè)情景,引入新課。

首先解決四邊形內(nèi)角的問題,通過轉(zhuǎn)化為三角形問題來解決。

2,合作交流,探索新知。

更進(jìn)一步解決五邊形內(nèi)角和,乃至六邊形,七邊形直到n邊形的內(nèi)角和,都能用同樣的方法解決。學(xué)生分組討論。

3,歸納總結(jié),建構(gòu)體系。

多邊形內(nèi)角和已得出,對外角和更是水到渠成,這時(shí)要適當(dāng)?shù)目偨Y(jié),讓學(xué)生自己得到零散的知識體系。

4,實(shí)際應(yīng)用,提高能力。

"木工師傅可以用邊角余料鋪地板的原因是什么"這既是對本節(jié)所學(xué)知識在現(xiàn)實(shí)生活中的應(yīng)用,又是本章第一節(jié)的延伸,同時(shí)也為下節(jié)打下了一個(gè)鋪墊。

5,分組競賽,升華情感。

四組不同難度的電子試卷,既鞏固本節(jié)課所學(xué)的知識,又使學(xué)生本節(jié)課產(chǎn)生的激情得以釋放。

板書本節(jié)課學(xué)生所需掌握的知識目標(biāo):即多邊形內(nèi)角和與外角和定理。

本節(jié)課在知識上由簡單到復(fù)雜,學(xué)生經(jīng)歷質(zhì)疑,猜想,驗(yàn)證的同時(shí),在情感上,由好奇到疑惑,由解決單個(gè)問題的一點(diǎn)點(diǎn)快感,到解決整個(gè)問題串的極大興奮,產(chǎn)生了強(qiáng)烈的學(xué)習(xí)激情。這時(shí),一次有效的教學(xué)競賽活動,使學(xué)生的學(xué)習(xí)激情得到釋放,學(xué)科個(gè)性得以張揚(yáng),教師稍加點(diǎn)撥,適可而止,把更多的思考空間留給學(xué)生。

多邊形內(nèi)角和說課稿篇四

我說課的內(nèi)容是人教版七年級(下)冊第七章第三節(jié)《多邊形及其內(nèi)角和》的第二課時(shí)。我將在新課程理念的指導(dǎo)下從以下七個(gè)方面進(jìn)行說課。

多邊形的內(nèi)角和是在三角形內(nèi)角和知識基礎(chǔ)上的拓廣和發(fā)展,是從特殊到一般的深化,是后面學(xué)習(xí)多邊形鑲嵌的基礎(chǔ),也是今后學(xué)習(xí)空間幾何的基礎(chǔ),學(xué)好多邊形內(nèi)角和的內(nèi)容,為學(xué)生認(rèn)識探索客觀世界中不同形狀物體存在的一般規(guī)律打下基礎(chǔ),對發(fā)展學(xué)生的空間觀念和幾何直覺有很大的幫助。

1、我所任教的班級,大部分學(xué)生來自農(nóng)村,由于自小獨(dú)立性較強(qiáng),具有較強(qiáng)的理解能力和應(yīng)用能力,喜歡合作討論,對數(shù)學(xué)學(xué)習(xí)有較濃厚的興趣。大部分學(xué)生學(xué)習(xí)習(xí)慣和學(xué)習(xí)方式較好。

2、本節(jié)課讓學(xué)生通過實(shí)驗(yàn)探索多邊形內(nèi)角和公式。在此之前學(xué)生對三角形、特殊四邊形的內(nèi)角和已經(jīng)有了一定的理解和認(rèn)識。估計(jì)學(xué)生在探究任意四邊形內(nèi)角和時(shí)會想到量、拼、分的方法,但是分割“多邊形為三角形”這一過程會是學(xué)生學(xué)習(xí)的難點(diǎn),在探究的過程中教師要想辦法把難點(diǎn)分散,有利于學(xué)生對本課知識的學(xué)習(xí)和掌握。

新的課程標(biāo)準(zhǔn)注重學(xué)生經(jīng)歷觀察、操作、猜想、歸納等探索過程。根據(jù)新課標(biāo)和本節(jié)課的內(nèi)容特點(diǎn)我確定以下教學(xué)目標(biāo)及重點(diǎn)、難點(diǎn)。

【知識與技能】。

【數(shù)學(xué)思考】。

(1)通過測量,類比,推理等教學(xué)活動,探索多邊形的內(nèi)角和公式,感受數(shù)學(xué)思考過程的條理性,發(fā)展推理能力和語言表達(dá)能力。

(2)通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的運(yùn)用,同時(shí)讓學(xué)生體會從特殊到一般的認(rèn)識問題的方法。

【解決問題】。

通過探索多邊形內(nèi)角和公式,讓學(xué)生嘗試從不同的角度尋求解決問題的方法,并能有效的解決問題。

【情感態(tài)度】。

1、通過動手實(shí)踐、相互間的交流,進(jìn)一步激發(fā)學(xué)習(xí)熱情和求知欲望。

2、體驗(yàn)猜想得到證實(shí)的成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿探索。并在探索過程中激發(fā)、培養(yǎng)學(xué)生的愛國主義熱情。

基于以上教學(xué)目標(biāo),我確定以下教學(xué)重難點(diǎn):

【教學(xué)難點(diǎn)】探究多邊形內(nèi)角和時(shí),如何把多邊形轉(zhuǎn)化成三角形。

因此,本節(jié)課我借助課件輔助教學(xué),可以更好的突破重難點(diǎn),增強(qiáng)直觀效果,豐富學(xué)生的感性認(rèn)識,提高課堂效率。

本節(jié)課借鑒了美國教育家杜威的“在做中學(xué)”的理論和葉圣陶先生所倡導(dǎo)的“解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時(shí)間”的思想,我確定如下教法和學(xué)法:

1.教學(xué)方法:

根據(jù)本節(jié)課的教學(xué)目標(biāo)、教材內(nèi)容以及學(xué)生的認(rèn)知特點(diǎn),我采用啟發(fā)式、探索式教學(xué)方法,意在幫助學(xué)生通過觀察,自己動手,從實(shí)踐中獲得知識。整個(gè)探究學(xué)習(xí)的過程充滿了師生之間、學(xué)生之間的交流和互動,體現(xiàn)了教師是教學(xué)活動的組織者、引導(dǎo)者,而學(xué)生才是學(xué)習(xí)的主體。

2.學(xué)習(xí)方法:

利用學(xué)生的好奇心設(shè)疑,解疑,組織活潑互動、有效的教學(xué)活動,鼓勵學(xué)生積極參與,大膽猜想,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。

1、環(huán)節(jié)一:創(chuàng)設(shè)情景、引入新課。

情景:請學(xué)生觀察“上海世博園”的宣傳視頻。

從“情境認(rèn)知理論”得知:圖文加情境能有效提高課堂教學(xué)效率,而圖文和情境并用可使效率提高到300%。通過觀看上海世博園視頻,能激發(fā)學(xué)生的愛國主義熱情,并引導(dǎo)學(xué)生大膽提出問題,對建筑物的外觀抽象成已知的三角形、長方形、正方形等多邊形。提出問題:三角形的內(nèi)角和是多少?設(shè)計(jì)這個(gè)問題的目的是因?yàn)樘剿鞫噙呅蝺?nèi)角和與邊數(shù)關(guān)系的根本方法是把多邊形轉(zhuǎn)化為多個(gè)三角形,因此喚醒學(xué)生已有知識“三角形內(nèi)角和等于180°”有助于解決后面的問題。接下來提出問題,正方形、長方形的內(nèi)角和是多少?學(xué)生回答后進(jìn)入新課內(nèi)容,根據(jù)三角形的內(nèi)角和是個(gè)確定值,引導(dǎo)學(xué)生猜想任意四邊形的內(nèi)角和是多少?喚醒學(xué)生已有知識,將有助于本堂課問題的解決,也為后面習(xí)題作鋪墊。

2、環(huán)節(jié)二:合作交流、探索新知。

活動1:

猜一猜:圍繞“任意四邊形的內(nèi)角和等于多少度?”這一問題引導(dǎo)學(xué)生從正方形、長方形這兩個(gè)特殊的多邊形的內(nèi)角和,很容易猜測出四邊形的內(nèi)角和等于360度。

議一議:你是怎樣得到的?你能找到幾種方法?這個(gè)環(huán)節(jié)學(xué)生可能出現(xiàn)“度量”、“剪拼”、“作輔助線”等等甚至更多的方法。為此我又拋出問題:五、六、七邊形的內(nèi)角和怎么求?你發(fā)現(xiàn)了什么?通過這個(gè)問題讓學(xué)生自然過渡到用作輔助線的方法求多邊形的內(nèi)角和,同時(shí)也要告訴學(xué)生在測量和剪拼活動中可能會產(chǎn)生誤差,由此感受到作輔助線在解決幾何問題中的必要性。這一環(huán)節(jié)要給予學(xué)生充分的探究時(shí)間,鼓勵學(xué)生積極參與,合作交流,用自己的語言表達(dá)解決問題的方式方法,發(fā)展學(xué)生的語言表達(dá)能力與推理能力。

針對不同層次的學(xué)生,要適當(dāng)?shù)囊龑?dǎo)學(xué)生利用作輔助線的方法把多邊形轉(zhuǎn)化為三角形,鼓勵學(xué)生尋找多種分割形式,深入領(lǐng)會轉(zhuǎn)化的本質(zhì)——將四邊形轉(zhuǎn)化為三角形問題來解決。然后讓學(xué)生表達(dá)自己解決問題的方法,并用電腦演示四邊形分割成三角形的多種方法讓學(xué)生體驗(yàn)數(shù)學(xué)活動充滿探索,體驗(yàn)解決問題策略的多樣性。

想一想:這些分法有什么異同點(diǎn)?學(xué)生積極思考,大膽發(fā)言,教師給予適當(dāng)?shù)脑u價(jià)和鼓勵。教師在學(xué)生回答的基礎(chǔ)上小結(jié):借助輔助線把四邊形分割成幾個(gè)三角形分割的關(guān)鍵在于公共點(diǎn)的選取,并演示公共點(diǎn)在圖形內(nèi)、外、頂點(diǎn)處。利用三角形內(nèi)角和求得四邊形內(nèi)角和,這是數(shù)學(xué)學(xué)習(xí)中的一種常用轉(zhuǎn)化的思想方法。

活動2:

做一做:選一種你喜歡的上述分割的方法,類比求四邊形的內(nèi)角和方法求五邊形、六邊形、七邊形等的內(nèi)角和,讓學(xué)生再一次經(jīng)歷轉(zhuǎn)化的過程,加深對轉(zhuǎn)化思想的理解,通過增加圖形的復(fù)雜性,再一次經(jīng)歷轉(zhuǎn)化的過程,加深對轉(zhuǎn)化思想方法的理解,體會由簡單到復(fù)雜,由特殊到一般的思想方法。

議一議:

問題1:對比上面探究四邊形內(nèi)角和的過程,你能得出五邊形的內(nèi)角和?六邊形的內(nèi)角和?

問題2:能否采用不同的分割方法來解決這些問題?

活動3:

嘗試完成第五列n邊形的探究。

但是學(xué)生有可能出現(xiàn)其它的解決問題的辦法,比如:由四邊形內(nèi)角和求五邊形內(nèi)角和,由五邊形內(nèi)角和再求六邊形內(nèi)角和,依次類推,邊數(shù)每增加1條內(nèi)角和就增加180°。但是這種方法給活動3公式的得出帶來困難。所以教師要因勢利導(dǎo),給學(xué)生正確的評價(jià)。在探索的過程中再一次培養(yǎng)學(xué)生的推理能力和表達(dá)能力,以及選擇解決問題的最佳方法的能力。

練一練:為了使學(xué)生達(dá)到對知識的鞏固與應(yīng)用,我特地設(shè)計(jì)了一組(5個(gè))即時(shí)搶答題,通過這些題目學(xué)生當(dāng)堂訓(xùn)練、獨(dú)立計(jì)算,并根據(jù)學(xué)生都喜好競賽的特點(diǎn),采用搶答式完成。運(yùn)用所學(xué)公式解決問題并鞏固、理解、記憶公式。

搶答:

(1)過一個(gè)多邊形一個(gè)頂點(diǎn)有10條對角線,則這是邊形.

(2)過一個(gè)多邊形一個(gè)頂點(diǎn)的所有對角線將這個(gè)多邊形分成五個(gè)三角形,則這是邊形.

(3)多邊形的內(nèi)角和隨著邊數(shù)的增加而,邊數(shù)增加一條時(shí)它的內(nèi)角和增加度。

3、環(huán)節(jié)三:例題講解,知識鞏固。

在此,我設(shè)計(jì)了2個(gè)例題,并對教科書上的例題作了較小的改動,書上的例1簡略講解,這個(gè)例題就是對四邊形的內(nèi)角和的簡單應(yīng)用,對于學(xué)生來說比較簡單;對于例2我把書后面的85頁習(xí)題第9題變成例題,這一道題目具有較好的典型性,特別是知識間的融會貫通,主要要求學(xué)生掌握:三角形、五邊形的內(nèi)角和,正五邊形等相關(guān)知識。

4、環(huán)節(jié)四:分組競賽、情感升華。

(1)智慧大比拼。

內(nèi)容:p87的練習(xí)分成2類。

通過新穎的形式激發(fā)學(xué)生的競爭意識和主動參與活動的熱情。學(xué)生利用當(dāng)堂所學(xué)的知識解決問題,鞏固本節(jié)知識。

(2)拓展探究。

小組合作探究,引導(dǎo)學(xué)生分析可能的每一種截取情況,根據(jù)不同截法得出不同結(jié)論。鼓勵學(xué)生積極參與思考、大膽嘗試、主動探討、勇于創(chuàng)新。讓學(xué)生深刻的感受到合作交流的重要性,體會成功的喜悅。

(3)情系世博。

引導(dǎo)學(xué)生利用多邊形的內(nèi)角和公式解釋小明的設(shè)想能否實(shí)現(xiàn)。讓學(xué)生感受到數(shù)學(xué)的趣味性,以及與實(shí)際生活之間的密切聯(lián)系,并激發(fā)學(xué)生的愛國之情。

5、環(huán)節(jié)五:暢所欲言、分享成果。

請學(xué)生談自己學(xué)習(xí)過程中的收獲,并整理自己參與數(shù)學(xué)活動的經(jīng)驗(yàn),回味成功的喜悅,形成良好的學(xué)習(xí)習(xí)慣,同時(shí)也是給學(xué)生正確地評價(jià)自己和他人表現(xiàn)的機(jī)會,這也是給教者本身一個(gè)反思提高的機(jī)會。通過這個(gè)環(huán)節(jié)使學(xué)生這節(jié)課所學(xué)的知識系統(tǒng)化,從感性認(rèn)識上升為理性認(rèn)識。

6、環(huán)節(jié)六:布置作業(yè)、課后提升。

(1)習(xí)題7.3第2題、第4題。

(2)選做題:用另外兩種作輔助線的方法證明多邊形內(nèi)角和定理。

采用分層布置作業(yè),讓不同水平的學(xué)生得到不同的發(fā)展,培養(yǎng)學(xué)生的思維靈活性及成就感,從而貫徹因材施教的原則。

評價(jià)學(xué)生,不僅僅是一個(gè)手段和結(jié)果,它對學(xué)生的人格、個(gè)性的發(fā)展有著極其重要的作用。新課程對課程的評價(jià)應(yīng)把握形成性、發(fā)展性評價(jià)和終結(jié)性評價(jià)相結(jié)合,在實(shí)踐中我打算在課堂上從以下幾個(gè)方面進(jìn)行評價(jià):

1、評價(jià)在學(xué)習(xí)中各種能力〈如表達(dá)、想象、動手、思維、自學(xué)能力等〉的發(fā)展情況。

2、評價(jià)學(xué)習(xí)過程中的創(chuàng)新表現(xiàn)。

3、評價(jià)在學(xué)習(xí)過程中對身邊事物、社會現(xiàn)實(shí)的關(guān)注程度。

評價(jià)必須最大限度地考慮最終結(jié)果,要以培養(yǎng)學(xué)生的榮譽(yù)感、自尊心和進(jìn)取心為目的,使其產(chǎn)生獲取成功的動力。

最后,我的板書設(shè)計(jì)力求簡潔明了,便于學(xué)生觀察比較、歸納總結(jié),并體現(xiàn)教師的示范作用,突出本堂課的重難點(diǎn),及主要的思想方法。

多邊形內(nèi)角和說課稿篇五

今天我說課的題目《多邊形及其內(nèi)角和》,這是我在進(jìn)行完這節(jié)課的教學(xué)后結(jié)合著課堂進(jìn)行情況以及我對《新課程標(biāo)準(zhǔn)理》的理解從以下幾個(gè)方面進(jìn)行的反思。

《多邊形的內(nèi)角和》選自人教版八年級上冊的第十一章第三節(jié),《多邊形內(nèi)角和》是本章的一個(gè)重點(diǎn),是三角形有關(guān)知識的拓展,是以后學(xué)平面鑲嵌的基礎(chǔ),多邊形內(nèi)角和公式的運(yùn)用還充分體現(xiàn)了圖形與客觀世界的聯(lián)系。在內(nèi)容上,起著承上啟下的作用,是在學(xué)生學(xué)習(xí)了一元一次方程、三角形內(nèi)角和知識和多種平面幾何圖形的基礎(chǔ)上進(jìn)行的,目的是使學(xué)生進(jìn)一步了解多邊形的性質(zhì),感受圖形世界的現(xiàn)實(shí)性和豐富多彩,同時(shí)在教學(xué)中滲透類比,轉(zhuǎn)化等思想方法培養(yǎng)學(xué)生用聯(lián)系的變換的觀點(diǎn)思考問題。

1、我所任教的班級,大部分學(xué)生來自農(nóng)村,基礎(chǔ)知識參差不齊,但從小獨(dú)立性較強(qiáng),性格活潑,喜歡合作討論,對數(shù)學(xué)學(xué)習(xí)有較濃厚的興趣。經(jīng)過了一年的小組合作方式的磨合,大部分學(xué)生已經(jīng)養(yǎng)成了良好的學(xué)習(xí)習(xí)慣,具有一定的理解能力和歸納能力。

2、學(xué)生已經(jīng)學(xué)習(xí)了三角形的內(nèi)角和,這為本節(jié)課的學(xué)習(xí)打下了一定的基礎(chǔ)。八年級學(xué)生好奇心比較強(qiáng),觀察能力、動手能力、自主探究能力都得到一定的訓(xùn)練,所以在探究任意四邊形內(nèi)角和時(shí)學(xué)生采用了測量、拼圖、折紙、分割的方法,但是把多邊形轉(zhuǎn)化為三角形這一過程是學(xué)生學(xué)習(xí)的難點(diǎn),所以在探究的過程中注重了把難點(diǎn)分散,有利于學(xué)生對本課知識的學(xué)習(xí)和掌握。

根據(jù)《新課程標(biāo)準(zhǔn)》的要求,本節(jié)內(nèi)容的特點(diǎn)以及學(xué)生的情況,我確定以下教學(xué)目標(biāo)和重、難點(diǎn)。

【知識與技能】。

認(rèn)識多邊形,了解多邊形的定義,多邊形的頂點(diǎn)、邊、對角線、內(nèi)角及外角等概念;探索并掌握多邊形內(nèi)角和定理與外角和公式,在理解的基礎(chǔ)上運(yùn)用其解決簡單的實(shí)際問題。

【數(shù)學(xué)思考】。

學(xué)生通過猜想、動手實(shí)踐、合作交流,歸納等活動探索多邊形的內(nèi)角和公式與外角和公式,激發(fā)學(xué)生興趣、調(diào)動學(xué)生積極性、鼓勵學(xué)生的的創(chuàng)造性思維,感受數(shù)學(xué)思考過程的條理性。

【問題解決】。

通過探索多邊形的內(nèi)角和獲得分析問題和解決問題的一些基本方法,并體驗(yàn)解決問題方法的多樣性,發(fā)展創(chuàng)新意識,滲透轉(zhuǎn)化思想在數(shù)學(xué)學(xué)習(xí)中的應(yīng)用。

【情感態(tài)度】。

在數(shù)學(xué)學(xué)習(xí)過程中,體驗(yàn)學(xué)習(xí)的快樂、獲得成功的喜悅,激發(fā)對圖形學(xué)習(xí)的好奇心,形成積極參與數(shù)學(xué)活動、主動與他人交流合作的意識。

【教學(xué)難點(diǎn)】探究多邊形內(nèi)角和時(shí),如何把多邊形轉(zhuǎn)化成三角形。

在這節(jié)課的教學(xué)中我結(jié)合了學(xué)生的實(shí)際情況和教學(xué)目標(biāo),借鑒了美國教育學(xué)家杜威的“做中學(xué)”的教育理論,運(yùn)用了如下的教學(xué)方法。

1.教學(xué)方法:

根據(jù)新課成標(biāo)準(zhǔn),教師教學(xué)應(yīng)該以學(xué)生的認(rèn)知發(fā)展水平和已有的經(jīng)驗(yàn)為基礎(chǔ)、面向全體學(xué)生,注重啟發(fā)式和因材施教。教師要發(fā)揮主導(dǎo)作用,處理好講授與學(xué)生自主學(xué)習(xí)的關(guān)系,引導(dǎo)學(xué)生獨(dú)立思考、主動探索、合作交流,使學(xué)生理解和掌握基本的數(shù)學(xué)知識與技能,體會和運(yùn)用數(shù)學(xué)思想和方法,獲得基本的數(shù)學(xué)活動經(jīng)驗(yàn)。整個(gè)探究學(xué)習(xí)的過程充滿了師生之間、學(xué)生之間的交流和互動,體現(xiàn)了教師是教學(xué)活動的組織者、引導(dǎo)者,合作者,而學(xué)生才是學(xué)習(xí)的主體。

2.學(xué)習(xí)方法:

學(xué)生的學(xué)習(xí)應(yīng)當(dāng)是一個(gè)生動活潑的、主動的和富有個(gè)性的過程。所以利用學(xué)生的好奇心設(shè)疑,組織活潑互動、有效的教學(xué)活動,鼓勵學(xué)生積極參與,在學(xué)生在經(jīng)歷觀察、實(shí)驗(yàn)、猜測、推理、驗(yàn)證等活動過程中,體會了數(shù)學(xué)學(xué)習(xí)方法,體驗(yàn)到了自主探索和合作交流快樂,更好更準(zhǔn)確的理解和掌握了本節(jié)課的內(nèi)容。

環(huán)節(jié)一:創(chuàng)設(shè)情景、引入新課。

問題情景:將一張正方形卡片剪一刀,剩下的卡片是什么圖形呢?

做一做:讓學(xué)生拿出準(zhǔn)備好的紙片和剪刀動手操作,并讓學(xué)生展示自己剪出的圖形。學(xué)生展示以下幾種圖形?(圖)同時(shí)老師指出這些圖形就是我們今天要研究的多邊形。(意圖是:通過動手操作,激發(fā)了學(xué)生的興趣,學(xué)生體會到了圖形之間具有一定的聯(lián)系,順理成章引出本節(jié)課的學(xué)習(xí)內(nèi)容,符合學(xué)生的心里特征和認(rèn)知規(guī)律,調(diào)動學(xué)生積極性,發(fā)展學(xué)生的創(chuàng)新意識。為整堂課的學(xué)習(xí)打下了基礎(chǔ))然后讓學(xué)生自學(xué)多邊形的定義,邊,[x10]頂點(diǎn),對角線,和內(nèi)角,外角的概念以及凸多形的知識。

問題:三角形內(nèi)角和是多少?(設(shè)計(jì)這個(gè)問題的目的是:因?yàn)樘剿鞫噙呅蝺?nèi)角和的根本方法是把多邊形轉(zhuǎn)化為多個(gè)三角形,因此喚醒學(xué)生已有知識“三角形內(nèi)角和等于180°”有助于解決后面的問題。),那么我們剪出的圖形內(nèi)角和是多少呢?與三角形有什么聯(lián)系呢?(設(shè)計(jì)這個(gè)問題的目的是:使學(xué)生的興趣轉(zhuǎn)化為期待,進(jìn)入下一個(gè)環(huán)節(jié)。)。

環(huán)節(jié)二、動手操作、激發(fā)欲望。

活動1:做一做:讓學(xué)生用剪出的多邊形紙片探四邊形內(nèi)角和。

(這一個(gè)環(huán)節(jié)我采取了小組合作的方式,給了學(xué)生充分的探究時(shí)間,鼓勵學(xué)生積極參與,合作交流,學(xué)生在探究過程中采用了測量、拼圖、折紙和做輔助線等多種方法,同時(shí)告訴學(xué)生測量、剪拼等活動可能會產(chǎn)生誤差,由此讓學(xué)生感覺到做輔助線在解決幾何問題中的必要性。)。

針對不同層次的學(xué)生,,適當(dāng)?shù)囊龑?dǎo)學(xué)生利用作輔助線的方法把多邊形轉(zhuǎn)化為三角形,鼓勵學(xué)生尋找多種分割方法,深入領(lǐng)會轉(zhuǎn)化的本質(zhì)——將四邊形轉(zhuǎn)化為三角形問題來解決。然后讓學(xué)生自己到黑板上展示自己的解決辦法[x14]。

想一想:這些分法有什么異同點(diǎn)?學(xué)生積極思考,大膽發(fā)言,教師給予適當(dāng)?shù)脑u價(jià)和鼓勵。教師在學(xué)生回答的基礎(chǔ)上小結(jié):借助輔助線把四邊形分割成幾個(gè)三角形分割的關(guān)鍵在于公共點(diǎn)的選取,并演示公共點(diǎn)在圖形內(nèi)、邊上、頂點(diǎn)處。同時(shí)指出求多邊形的內(nèi)角和的方法[x15]是一樣的,都是把多邊形轉(zhuǎn)化為三角形。

(這些活動的設(shè)計(jì)意圖是:讓學(xué)生通過猜想、動手操作、合作交流等數(shù)學(xué)活動獲得知識,真正體會“做中學(xué)”的快樂,激發(fā)學(xué)生的學(xué)習(xí)興趣、調(diào)動學(xué)生積極性、引發(fā)學(xué)生的數(shù)學(xué)思考,鼓勵學(xué)生的的創(chuàng)造性思維,培養(yǎng)學(xué)生良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣,并讓學(xué)生在學(xué)習(xí)過程中,體驗(yàn)獲得成功的樂趣,激發(fā)對圖形學(xué)習(xí)的好奇心,形成積極參與數(shù)學(xué)活動、主動與他人交流合作的意識。)。

活動2:讓學(xué)生利用方法1填表:

圖形。

能分成三角形的個(gè)數(shù)。

(在教學(xué)過程中并沒有告訴學(xué)生結(jié)論,而是采用讓學(xué)生探索歸納、化未知為已知,自己去嘗試從而培養(yǎng)學(xué)生的創(chuàng)新能力。)。

環(huán)節(jié)三:鞏固新知、知識共享。

例題展示:

例2:一個(gè)正多邊形的一個(gè)內(nèi)角為150°,你知道它是幾邊形嗎?

例3:一個(gè)多邊形的內(nèi)角和等于它的外角和的3倍,它是幾邊形?(設(shè)計(jì)這些例題的目的是鞏固和應(yīng)用內(nèi)角和與外角和公式)。

小試牛刀(這里利用學(xué)生喜歡競賽的特征,我采用了分組展示,分組計(jì)分的形式,這樣能夠激發(fā)學(xué)生的學(xué)習(xí)興趣,并能培養(yǎng)學(xué)生的合作意識和團(tuán)隊(duì)精神)。

(3)一個(gè)多邊形的每個(gè)外角都等于60°,它是邊形。

環(huán)節(jié)四:回歸情景、能力提升。

將一個(gè)六邊形截去一個(gè)三角形后,內(nèi)角和是多少呢?這一環(huán)節(jié)我仍然采用的小組合作的形式,讓學(xué)生動手畫圖,合作交流,分組展示。

(學(xué)生通過課前的動手活動對問題情景中的問題已經(jīng)得到解決辦法,類比四邊形學(xué)生通過動手操作,合作交流,互相驗(yàn)證得出六邊形的解決方法,設(shè)計(jì)這道題的意圖是:滲透類比思想在數(shù)學(xué)學(xué)習(xí)中的運(yùn)用,體會數(shù)學(xué)學(xué)習(xí)方法的重要性。)。

環(huán)節(jié)五:暢所欲言、分享成果。

請學(xué)生談?wù)勛约簩W(xué)習(xí)過程中的收獲,并整理自己參與數(shù)學(xué)活動的經(jīng)驗(yàn),回味成功的喜悅,形成良好的學(xué)習(xí)習(xí)慣,通過這個(gè)環(huán)節(jié)使學(xué)生這節(jié)課所學(xué)的知識系統(tǒng)化。

最后用多媒體展示多邊形圖片結(jié)束本節(jié)課。(目的是讓學(xué)生感受現(xiàn)實(shí)中多邊形的豐富多彩和給我們的生活帶來的美感)。

多邊形內(nèi)角和說課稿篇六

各位評委、各位老師:

大家好!我是來自錢場中學(xué)的陳芬老師。我說課的內(nèi)容是人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書,七年級數(shù)學(xué)(下)第七章第三節(jié)《多邊形的內(nèi)角和》。

下面,我從以下幾個(gè)方面對本節(jié)課的教學(xué)設(shè)計(jì)進(jìn)行說明。

一、教材分析。

1、教材的地位和作用。

本節(jié)課作為第七章第三節(jié),起著承上啟下的作用。在內(nèi)容上,從三角形的.內(nèi)角和到多邊形的內(nèi)角和,再將內(nèi)角和公式應(yīng)用于平面鑲嵌,環(huán)環(huán)相扣,層層遞進(jìn),這樣編排易于激發(fā)學(xué)生的學(xué)習(xí)興趣,很適合學(xué)生的認(rèn)知特點(diǎn)。通過這節(jié)課的學(xué)習(xí),可以培養(yǎng)學(xué)生探索與歸納能力,體會從簡單到復(fù)雜,從特殊到一般和轉(zhuǎn)化等重要的思想方法。

2、教學(xué)重點(diǎn)和難點(diǎn)。

二、教學(xué)目標(biāo)分析。

2、數(shù)學(xué)思考:能感受數(shù)學(xué)思考過程的條理性,發(fā)展能力推理和語言表達(dá)能力,并體會從特殊到一般的認(rèn)識問題的方法。

3、解決問題:讓學(xué)生嘗試從不同的角度尋求解決問題的方法,并能有效地解決問題。

4、情感態(tài)度:讓學(xué)生體驗(yàn)猜想得到證實(shí)的成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿探索和創(chuàng)造。

三、教法和學(xué)法分析。

本節(jié)課借鑒了美國教育家杜威的“在做中學(xué)”的理論和葉圣陶先生所倡導(dǎo)的“解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時(shí)間”的思想,我確定如下教法和學(xué)法:

1、教學(xué)方法的設(shè)計(jì)。

我采用了探究式教學(xué)方法,整個(gè)探究學(xué)習(xí)的過程充滿了師生之間,生生之間的交流和互動,體現(xiàn)了教師是教學(xué)活動的組織者、引導(dǎo)者、合作者,學(xué)生才是學(xué)習(xí)的主體。

2、活動的開展。

利用學(xué)生的好奇心設(shè)疑、解疑,組織活潑互動、有效的教學(xué)活動,鼓勵學(xué)生積極參與,大膽猜想,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。

3、現(xiàn)代教育技術(shù)的應(yīng)用。

我利用課件輔助教學(xué),適時(shí)呈現(xiàn)問題情景,以豐富學(xué)生的感性認(rèn)識,增強(qiáng)直觀效果,提高課堂效率。

多邊形內(nèi)角和說課稿篇七

學(xué)生已經(jīng)學(xué)完三角形的內(nèi)角和,對內(nèi)角和的問題有了一定的認(rèn)識,加上八年級的學(xué)生好奇心、求知欲強(qiáng),互相評價(jià)、互相提問的積極性高、因此對于學(xué)習(xí)本節(jié)內(nèi)容的知識條件已經(jīng)成熟,學(xué)生參加探索活動的熱情已經(jīng)具備,所以把這節(jié)課設(shè)計(jì)成一節(jié)探索活動課是切實(shí)可行的。

本節(jié)課是《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書》北師大版八年級上冊第四章第六節(jié)《探索多邊形內(nèi)角和與外角和》的第一課時(shí)、本節(jié)內(nèi)容是七年級上冊多邊形相關(guān)知識的延展和升華,并且在探索學(xué)習(xí)過程中又與三角形相聯(lián)系,從三角形的內(nèi)角和到多邊形的內(nèi)角和環(huán)環(huán)相扣,前面的知識為后邊的知識做了鋪墊,聯(lián)系性比較強(qiáng),特別是教材中設(shè)計(jì)了現(xiàn)實(shí)情境,“想一想”,“議一議”等內(nèi)容,體現(xiàn)了課改的精神、在編寫意圖上,編者強(qiáng)調(diào)使學(xué)生經(jīng)歷探索、猜想、歸納等過程,回歸多邊形的幾何特征,而不是硬背公式,發(fā)展了學(xué)生的合情推理能力。

【知識與技能】掌握多邊形內(nèi)角和定理,進(jìn)一步了解轉(zhuǎn)化的數(shù)學(xué)思想。

【過程與方法】經(jīng)歷質(zhì)疑、猜想、歸納等活動,發(fā)展學(xué)生的合情推理能力,積累數(shù)學(xué)活動的經(jīng)驗(yàn),在探索中學(xué)會與人合作,學(xué)會交流自己的思想和方法。

【情感態(tài)度與價(jià)值觀】讓學(xué)生體驗(yàn)猜想得到證實(shí)的成功喜悅和成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿著探索和創(chuàng)造。

【教學(xué)難點(diǎn)】多邊形定義的理解。多邊形內(nèi)角和公式的推導(dǎo)。轉(zhuǎn)化的數(shù)學(xué)思維方法的滲透。

本節(jié)課分成七個(gè)環(huán)節(jié):

第一環(huán)節(jié):創(chuàng)設(shè)現(xiàn)實(shí)情境,提出問題,引入新課。

第二環(huán)節(jié):概念形成。

第三環(huán)節(jié):實(shí)驗(yàn)探究。

第四環(huán)節(jié):思維升華。

第五環(huán)節(jié):能力拓展。

第六環(huán)節(jié):課時(shí)小結(jié)。

第七環(huán)節(jié):布置作業(yè)。

1、多媒體展示蜂窩,教師結(jié)合圖片讓學(xué)生發(fā)現(xiàn)生活中無處不在的多邊形。

2、工人師傅鋸桌面:一個(gè)四邊形的桌面,用鋸子鋸掉一個(gè)角,還剩幾個(gè)角?

1、通過現(xiàn)實(shí)情境的展示,調(diào)動學(xué)生的情緒,激發(fā)起進(jìn)一步學(xué)習(xí)的興趣。

2、把學(xué)生的注意力自然的引入研究方向,為課題的研究做鋪墊。

1、借助多媒體顯示一多邊形,學(xué)生類比三角形的有關(guān)知識對多邊形定義、并表示出相應(yīng)的元素。

2、教師再給出嚴(yán)格規(guī)范的定義,特別借助學(xué)具說明“在平面內(nèi)”的必要性、此外,說明正多邊形的定義以及多邊形可分為凸多邊形和凹多邊形。

1、對于邊角這些能在圖形中識別而又不要求學(xué)生掌握的描述性定義,采取學(xué)生類比三角形的表示方法來歸納,滲透類比的數(shù)學(xué)思想。

2、借助于自制的直觀教具,說明多邊形定義中“在平面內(nèi)”這一條件,易于學(xué)生理解,化解了難點(diǎn)。

(以四人小組為單位展開探究活動)。

提出問題:三角形的內(nèi)角和為180°,那么多邊形的內(nèi)角和是多少度呢?從四邊形開始研究。

要求:先獨(dú)立思考再小組合作交流完成)。

(師巡視,了解學(xué)生探索進(jìn)程并適當(dāng)點(diǎn)撥)。

(生思考后交流,把不同的方案在紙上完成)。

多邊形內(nèi)角和說課稿篇八

我說課的內(nèi)容是人教版七年級(下)冊第七章第三節(jié)《多邊形及其內(nèi)角和》的第二課時(shí)。我將在新課程理念的指導(dǎo)下從以下七個(gè)方面進(jìn)行說課。

多邊形的內(nèi)角和是在三角形內(nèi)角和知識基礎(chǔ)上的拓廣和發(fā)展,是從特殊到一般的深化,是后面學(xué)習(xí)多邊形鑲嵌的基礎(chǔ),也是今后學(xué)習(xí)空間幾何的基礎(chǔ),學(xué)好多邊形內(nèi)角和的內(nèi)容,為學(xué)生認(rèn)識探索客觀世界中不同形狀物體存在的一般規(guī)律打下基礎(chǔ),對發(fā)展學(xué)生的空間觀念和幾何直覺有很大的幫助。

1、我所任教的班級,大部分學(xué)生來自農(nóng)村,由于自小獨(dú)立性較強(qiáng),具有較強(qiáng)的理解能力和應(yīng)用能力,喜歡合作討論,對數(shù)學(xué)學(xué)習(xí)有較濃厚的興趣。大部分學(xué)生學(xué)習(xí)習(xí)慣和學(xué)習(xí)方式較好。

2、本節(jié)課讓學(xué)生通過實(shí)驗(yàn)探索多邊形內(nèi)角和公式。在此之前學(xué)生對三角形、特殊四邊形的內(nèi)角和已經(jīng)有了一定的理解和認(rèn)識。估計(jì)學(xué)生在探究任意四邊形內(nèi)角和時(shí)會想到量、拼、分的方法,但是分割“多邊形為三角形”這一過程會是學(xué)生學(xué)習(xí)的難點(diǎn),在探究的過程中教師要想辦法把難點(diǎn)分散,有利于學(xué)生對本課知識的學(xué)習(xí)和掌握。

新的課程標(biāo)準(zhǔn)注重學(xué)生經(jīng)歷觀察、操作、猜想、歸納等探索過程。根據(jù)新課標(biāo)和本節(jié)課的內(nèi)容特點(diǎn)我確定以下教學(xué)目標(biāo)及重點(diǎn)、難點(diǎn)。

【知識與技能】。

【數(shù)學(xué)思考】。

(1)通過測量,類比,推理等教學(xué)活動,探索多邊形的內(nèi)角和公式,感受數(shù)學(xué)思考過程的條理性,發(fā)展推理能力和語言表達(dá)能力。

(2)通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的運(yùn)用,同時(shí)讓學(xué)生體會從特殊到一般的認(rèn)識問題的方法。

【解決問題】。

通過探索多邊形內(nèi)角和公式,讓學(xué)生嘗試從不同的角度尋求解決問題的方法,并能有效的解決問題。

【情感態(tài)度】。

1、通過動手實(shí)踐、相互間的交流,進(jìn)一步激發(fā)學(xué)習(xí)熱情和求知欲望。

2、體驗(yàn)猜想得到證實(shí)的成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿探索。并在探索過程中激發(fā)、培養(yǎng)學(xué)生的愛國主義熱情。

基于以上教學(xué)目標(biāo),我確定以下教學(xué)重難點(diǎn):

【教學(xué)重點(diǎn)】。

【教學(xué)難點(diǎn)】。

探究多邊形內(nèi)角和時(shí),如何把多邊形轉(zhuǎn)化成三角形。

因此,本節(jié)課我借助課件輔助教學(xué),可以更好的突破重難點(diǎn),增強(qiáng)直觀效果,豐富學(xué)生的感性認(rèn)識,提高課堂效率。

本節(jié)課借鑒了美國教育家杜威的“在做中學(xué)”的理論和葉圣陶先生所倡導(dǎo)的“解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時(shí)間”的思想,我確定如下教法和學(xué)法:

1、教學(xué)方法:

根據(jù)本節(jié)課的教學(xué)目標(biāo)、教材內(nèi)容以及學(xué)生的認(rèn)知特點(diǎn),我采用啟發(fā)式、探索式教學(xué)方法,意在幫助學(xué)生通過觀察,自己動手,從實(shí)踐中獲得知識。整個(gè)探究學(xué)習(xí)的過程充滿了師生之間、學(xué)生之間的交流和互動,體現(xiàn)了教師是教學(xué)活動的組織者、引導(dǎo)者,而學(xué)生才是學(xué)習(xí)的主體。

2、學(xué)習(xí)方法:

利用學(xué)生的好奇心設(shè)疑,解疑,組織活潑互動、有效的教學(xué)活動,鼓勵學(xué)生積極參與,大膽猜想,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。

1、環(huán)節(jié)一:創(chuàng)設(shè)情景、引入新課。

情景:請學(xué)生觀察“上海世博園”的宣傳視頻。

從“情境認(rèn)知理論”得知:圖文加情境能有效提高課堂教學(xué)效率,而圖文和情境并用可使效率提高到300%。通過觀看上海世博園視頻,能激發(fā)學(xué)生的愛國主義熱情,并引導(dǎo)學(xué)生大膽提出問題,對建筑物的外觀抽象成已知的三角形、長方形、正方形等多邊形。提出問題:三角形的內(nèi)角和是多少?設(shè)計(jì)這個(gè)問題的目的是因?yàn)樘剿鞫噙呅蝺?nèi)角和與邊數(shù)關(guān)系的根本方法是把多邊形轉(zhuǎn)化為多個(gè)三角形,因此喚醒學(xué)生已有知識“三角形內(nèi)角和等于180°”有助于解決后面的問題。接下來提出問題,正方形、長方形的內(nèi)角和是多少?學(xué)生回答后進(jìn)入新課內(nèi)容,根據(jù)三角形的內(nèi)角和是個(gè)確定值,引導(dǎo)學(xué)生猜想任意四邊形的內(nèi)角和是多少?喚醒學(xué)生已有知識,將有助于本堂課問題的解決,也為后面習(xí)題作鋪墊。

2、環(huán)節(jié)二:合作交流、探索新知。

活動1:

猜一猜:圍繞“任意四邊形的內(nèi)角和等于多少度?”這一問題引導(dǎo)學(xué)生從正方形、長方形這兩個(gè)特殊的多邊形的內(nèi)角和,很容易猜測出四邊形的內(nèi)角和等于360度。

議一議:你是怎樣得到的?你能找到幾種方法?這個(gè)環(huán)節(jié)學(xué)生可能出現(xiàn)“度量”、“剪拼”、“作輔助線”等等甚至更多的方法。為此我又拋出問題:五、六、七邊形的內(nèi)角和怎么求?你發(fā)現(xiàn)了什么?通過這個(gè)問題讓學(xué)生自然過渡到用作輔助線的方法求多邊形的內(nèi)角和,同時(shí)也要告訴學(xué)生在測量和剪拼活動中可能會產(chǎn)生誤差,由此感受到作輔助線在解決幾何問題中的必要性。這一環(huán)節(jié)要給予學(xué)生充分的探究時(shí)間,鼓勵學(xué)生積極參與,合作交流,用自己的語言表達(dá)解決問題的方式方法,發(fā)展學(xué)生的語言表達(dá)能力與推理能力。

針對不同層次的學(xué)生,要適當(dāng)?shù)囊龑?dǎo)學(xué)生利用作輔助線的方法把多邊形轉(zhuǎn)化為三角形,鼓勵學(xué)生尋找多種分割形式,深入領(lǐng)會轉(zhuǎn)化的本質(zhì)——將四邊形轉(zhuǎn)化為三角形問題來解決。然后讓學(xué)生表達(dá)自己解決問題的方法,并用電腦演示四邊形分割成三角形的多種方法讓學(xué)生體驗(yàn)數(shù)學(xué)活動充滿探索,體驗(yàn)解決問題策略的多樣性。

想一想:這些分法有什么異同點(diǎn)?學(xué)生積極思考,大膽發(fā)言,教師給予適當(dāng)?shù)脑u價(jià)和鼓勵。教師在學(xué)生回答的基礎(chǔ)上小結(jié):借助輔助線把四邊形分割成幾個(gè)三角形分割的關(guān)鍵在于公共點(diǎn)的選取,并演示公共點(diǎn)在圖形內(nèi)、外、頂點(diǎn)處。利用三角形內(nèi)角和求得四邊形內(nèi)角和,這是數(shù)學(xué)學(xué)習(xí)中的一種常用轉(zhuǎn)化的思想方法。

活動2:

做一做:選一種你喜歡的上述分割的方法,類比求四邊形的內(nèi)角和方法求五邊形、六邊形、七邊形等的內(nèi)角和,讓學(xué)生再一次經(jīng)歷轉(zhuǎn)化的過程,加深對轉(zhuǎn)化思想的理解,通過增加圖形的復(fù)雜性,再一次經(jīng)歷轉(zhuǎn)化的過程,加深對轉(zhuǎn)化思想方法的.理解,體會由簡單到復(fù)雜,由特殊到一般的思想方法。

議一議:

問題1:對比上面探究四邊形內(nèi)角和的過程,你能得出五邊形的內(nèi)角和?六邊形的內(nèi)角和?

問題2:能否采用不同的分割方法來解決這些問題?

活動3:

嘗試完成第五列n邊形的探究。

但是學(xué)生有可能出現(xiàn)其它的解決問題的辦法,比如:由四邊形內(nèi)角和求五邊形內(nèi)角和,由五邊形內(nèi)角和再求六邊形內(nèi)角和,依次類推,邊數(shù)每增加1條內(nèi)角和就增加180°。但是這種方法給活動3公式的得出帶來困難。所以教師要因勢利導(dǎo),給學(xué)生正確的評價(jià)。在探索的過程中再一次培養(yǎng)學(xué)生的推理能力和表達(dá)能力,以及選擇解決問題的最佳方法的能力。

練一練:為了使學(xué)生達(dá)到對知識的鞏固與應(yīng)用,我特地設(shè)計(jì)了一組(5個(gè))即時(shí)搶答題,通過這些題目學(xué)生當(dāng)堂訓(xùn)練、獨(dú)立計(jì)算,并根據(jù)學(xué)生都喜好競賽的特點(diǎn),采用搶答式完成。運(yùn)用所學(xué)公式解決問題并鞏固、理解、記憶公式。

搶答:

(1)過一個(gè)多邊形一個(gè)頂點(diǎn)有10條對角線,則這是邊形。

(2)過一個(gè)多邊形一個(gè)頂點(diǎn)的所有對角線將這個(gè)多邊形分成五個(gè)三角形,則這是邊形。

(5)一個(gè)多邊形的內(nèi)角和等于720度,那么這個(gè)多邊形是邊形。

3、環(huán)節(jié)三:例題講解,知識鞏固。

在此,我設(shè)計(jì)了2個(gè)例題,并對教科書上的例題作了較小的改動,書上的例1簡略講解,這個(gè)例題就是對四邊形的內(nèi)角和的簡單應(yīng)用,對于學(xué)生來說比較簡單;對于例2我把書后面的85頁習(xí)題第9題變成例題,這一道題目具有較好的典型性,特別是知識間的融會貫通,主要要求學(xué)生掌握:三角形、五邊形的內(nèi)角和,正五邊形等相關(guān)知識。

4、環(huán)節(jié)四:分組競賽、情感升華。

(1)智慧大比拼。

內(nèi)容:p87的練習(xí)分成2類。

通過新穎的形式激發(fā)學(xué)生的競爭意識和主動參與活動的熱情。學(xué)生利用當(dāng)堂所學(xué)的知識解決問題,鞏固本節(jié)知識。

(2)拓展探究。

小組合作探究,引導(dǎo)學(xué)生分析可能的每一種截取情況,根據(jù)不同截法得出不同結(jié)論。鼓勵學(xué)生積極參與思考、大膽嘗試、主動探討、勇于創(chuàng)新。讓學(xué)生深刻的感受到合作交流的重要性,體會成功的喜悅。

(3)情系世博。

引導(dǎo)學(xué)生利用多邊形的內(nèi)角和公式解釋小明的設(shè)想能否實(shí)現(xiàn)。讓學(xué)生感受到數(shù)學(xué)的趣味性,以及與實(shí)際生活之間的密切聯(lián)系,并激發(fā)學(xué)生的愛國之情。

5、環(huán)節(jié)五:暢所欲言、分享成果。

請學(xué)生談自己學(xué)習(xí)過程中的收獲,并整理自己參與數(shù)學(xué)活動的經(jīng)驗(yàn),回味成功的喜悅,形成良好的學(xué)習(xí)習(xí)慣,同時(shí)也是給學(xué)生正確地評價(jià)自己和他人表現(xiàn)的機(jī)會,這也是給教者本身一個(gè)反思提高的機(jī)會。通過這個(gè)環(huán)節(jié)使學(xué)生這節(jié)課所學(xué)的知識系統(tǒng)化,從感性認(rèn)識上升為理性認(rèn)識。

6、環(huán)節(jié)六:布置作業(yè)、課后提升。

(1)習(xí)題7。3第2題、第4題。

(2)選做題:用另外兩種作輔助線的方法證明多邊形內(nèi)角和定理。

采用分層布置作業(yè),讓不同水平的學(xué)生得到不同的發(fā)展,培養(yǎng)學(xué)生的思維靈活性及成就感,從而貫徹因材施教的原則。

評價(jià)學(xué)生,不僅僅是一個(gè)手段和結(jié)果,它對學(xué)生的人格、個(gè)性的發(fā)展有著極其重要的作用。新課程對課程的評價(jià)應(yīng)把握形成性、發(fā)展性評價(jià)和終結(jié)性評價(jià)相結(jié)合,在實(shí)踐中我打算在課堂上從以下幾個(gè)方面進(jìn)行評價(jià):

1、評價(jià)在學(xué)習(xí)中各種能力〈如表達(dá)、想象、動手、思維、自學(xué)能力等〉的發(fā)展情況。

2、評價(jià)學(xué)習(xí)過程中的創(chuàng)新表現(xiàn)。

3、評價(jià)在學(xué)習(xí)過程中對身邊事物、社會現(xiàn)實(shí)的關(guān)注程度。

評價(jià)必須最大限度地考慮最終結(jié)果,要以培養(yǎng)學(xué)生的榮譽(yù)感、自尊心和進(jìn)取心為目的,使其產(chǎn)生獲取成功的動力。

最后,我的板書設(shè)計(jì)力求簡潔明了,便于學(xué)生觀察比較、歸納總結(jié),并體現(xiàn)教師的示范作用,突出本堂課的重難點(diǎn),及主要的思想方法。

板書設(shè)計(jì):

以上是我對本節(jié)課的設(shè)計(jì)說明,從說教材、說學(xué)情、說教法、說學(xué)法、說教學(xué)程序上說明這節(jié)課“教什么”和“怎么教”,并且闡明了“為什么要這樣教。我的說課到此結(jié)束,謝謝大家。

多邊形內(nèi)角和說課稿篇九

各位評委、各位老師:

大家好!我是來自錢場中學(xué)的陳芬老師。我說課的內(nèi)容是人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書,七年級數(shù)學(xué)(下)第七章第三節(jié)《多邊形的內(nèi)角和》。

下面,我從以下幾個(gè)方面對本節(jié)課的教學(xué)設(shè)計(jì)進(jìn)行說明。

一、教材分析。

1、教材的地位和作用。

本節(jié)課作為第七章第三節(jié),起著承上啟下的作用。在內(nèi)容上,從三角形的內(nèi)角和到多邊形的內(nèi)角和,再將內(nèi)角和公式應(yīng)用于平面鑲嵌,環(huán)環(huán)相扣,層層遞進(jìn),這樣編排易于激發(fā)學(xué)生的學(xué)習(xí)興趣,很適合學(xué)生的認(rèn)知特點(diǎn)。通過這節(jié)課的學(xué)習(xí),可以培養(yǎng)學(xué)生探索與歸納能力,體會從簡單到復(fù)雜,從特殊到一般和轉(zhuǎn)化等重要的思想方法。

2、教學(xué)重點(diǎn)和難點(diǎn)。

二、教學(xué)目標(biāo)分析。

2、數(shù)學(xué)思考:能感受數(shù)學(xué)思考過程的條理性,發(fā)展能力推理和語言表達(dá)能力,并體會從特殊到一般的認(rèn)識問題的方法。

3、解決問題:讓學(xué)生嘗試從不同的角度尋求解決問題的方法,并能有效地解決問題。

4、情感態(tài)度:讓學(xué)生體驗(yàn)猜想得到證實(shí)的.成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿探索和創(chuàng)造。

三、教法和學(xué)法分析。

本節(jié)課借鑒了美國教育家杜威的“在做中學(xué)”的理論和葉圣陶先生所倡導(dǎo)的“解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時(shí)間”的思想,我確定如下教法和學(xué)法:

1、教學(xué)方法的設(shè)計(jì)。

我采用了探究式教學(xué)方法,整個(gè)探究學(xué)習(xí)的過程充滿了師生之間,生生之間的交流和互動,體現(xiàn)了教師是教學(xué)活動的組織者、引導(dǎo)者、合作者,學(xué)生才是學(xué)習(xí)的主體。

2、活動的開展。

利用學(xué)生的好奇心設(shè)疑、解疑,組織活潑互動、有效的教學(xué)活動,鼓勵學(xué)生積極參與,大膽猜想,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。

3、現(xiàn)代教育技術(shù)的應(yīng)用。

我利用課件輔助教學(xué),適時(shí)呈現(xiàn)問題情景,以豐富學(xué)生的感性認(rèn)識,增強(qiáng)直觀效果,提高課堂效率。

四、教學(xué)過程分析。

1、本節(jié)教學(xué)將按以下六個(gè)流程展開。

多邊形內(nèi)角和說課稿篇十

把活動2和3中的結(jié)論寫下來,進(jìn)行對比分析,進(jìn)一步猜想和推導(dǎo)任意多邊形的內(nèi)角和,教師作總結(jié)性的結(jié)論,并且用動畫演示多邊形隨著邊數(shù)的增加其內(nèi)角和的變化過程。

活動5、畫一個(gè)邊長為3cm的八邊形。

讓學(xué)生在練習(xí)本上畫一個(gè)邊長為3cm的八邊形,教師進(jìn)行評價(jià)和展示。

活動6、小結(jié)和布置作業(yè)。

師生共同回顧本節(jié)所學(xué)過的內(nèi)容。

多邊形內(nèi)角和說課稿篇十一

教學(xué)手段。

利用學(xué)生剪紙、投影儀進(jìn)行教學(xué)。

教學(xué)過程:

一、引入:

1、出示多媒體投影片或出示事物圖:正方形石英鐘、五邊形(廣場圖)、六變形螺母、八邊形。

2、給出多邊形概念:多邊形的頂點(diǎn)、邊、內(nèi)角和、對角線及其有關(guān)概念。

2、學(xué)生討論:在剪紙及畫圖活動中充分的探索、交流、體會,先獨(dú)立思考,然后小組討論、交流,發(fā)表不同見解。探索五邊形內(nèi)角和的不同方法:(學(xué)生可能得出如圖一、圖二、圖三中的不同方法)。

(1)量出每個(gè)內(nèi)角度數(shù)然后相加為540°;

(5)六邊形可怎樣剪成三角形求內(nèi)角和?n邊形呢?

2、多邊形定義:在平面內(nèi),內(nèi)角都相等,邊也相等的多邊形是正多邊形。

3、填表:

3

4

5

6

8

n

多邊形內(nèi)角和說課稿篇十二

通過用不同方法分割四邊形為三角形,探索四邊形的內(nèi)角和。

通過類比四邊形內(nèi)角和的得出方法,探索其他多邊形的內(nèi)角和,發(fā)展學(xué)生的推理能力。

梳理所學(xué)知識,達(dá)到鞏固發(fā)展和提高的目的。

教學(xué)過程設(shè)計(jì)。

問題與情景。

師生行為。

設(shè)計(jì)意圖。

設(shè)計(jì)情景:什么是正多邊形?

正八邊形有什么特點(diǎn)?

你會畫邊長為3cm的正八邊形嗎?

學(xué)生思考并回答問題。

學(xué)生不會畫八邊形,畫八邊形需要知道它的每一個(gè)內(nèi)角,怎么就能知道八邊形的每一個(gè)內(nèi)角,就是今天要解決的.問題,以此來激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲。

活動1、

在練習(xí)本畫出任意四邊形,五邊星,六邊形,七邊形。

分組讓學(xué)生量出每一個(gè)多邊形的內(nèi)角并求出他們的內(nèi)角和,教師在黑板上畫這四個(gè)四邊形。

活動2(重點(diǎn))(難點(diǎn))。

多邊形內(nèi)角和說課稿篇十三

4、培養(yǎng)學(xué)生合作、表達(dá)等能力情感。

教學(xué)重點(diǎn)與難點(diǎn):多邊形內(nèi)角和與外角和特點(diǎn)是重點(diǎn)。

利用化歸思想歸納多邊形內(nèi)角和與外角和特點(diǎn)是難點(diǎn)。

教學(xué)過程:

一、創(chuàng)設(shè)情境。

師出示一個(gè)三角形,問:這是什么圖形?它是怎樣定義的?

生:三條線段首尾順次連接而成的圖形。

師:以次類推,你能告訴我什么樣的圖形叫做四邊形?五邊形?……n邊形呢?

這些圖形我們都叫做多邊形。

師:屏幕上的這一類多邊形我們稱為凸多邊形,還有一類如:

我們叫做凹多邊形,不在我們今天的研究范圍之內(nèi)。

二、探究新知。

1、?確立研究范圍。

生1:它的角。

師:那么今天我們不妨先來研究一下多邊形的角。(出示課題:多邊形的內(nèi)角和與外角和)。

多邊形內(nèi)角和說課稿篇十四

二、教學(xué)目標(biāo)。

2、數(shù)學(xué)思考:通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的運(yùn)用,同時(shí)讓學(xué)生體會從特殊到一般的認(rèn)識問題的方法。

3、解決問題:通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。

4、情感態(tài)度目標(biāo):通過猜想、推理活動感受數(shù)學(xué)活動充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生學(xué)習(xí)熱情。

三、教學(xué)重、難點(diǎn)。

難點(diǎn):探索多邊形內(nèi)角和時(shí),如何把多邊形轉(zhuǎn)化成三角形。

四、教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、討論法。

五、教具、學(xué)具。

教具:多媒體課件。

學(xué)具:三角板、量角器。

六、教學(xué)媒體:大屏幕、實(shí)物投影。

七、教學(xué)過程:

(一)創(chuàng)設(shè)情境,設(shè)疑激思。

師:大家都知道三角形的內(nèi)角和是180o,那么四邊形的內(nèi)角和,你知道嗎?

在獨(dú)立探索的基礎(chǔ)上,學(xué)生分組交流與研討,并匯總解決問題的方法。

方法一:用量角器量出四個(gè)角的度數(shù),然后把四個(gè)角加起來,發(fā)現(xiàn)內(nèi)角和是360o。

方法二:把兩個(gè)三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個(gè)三角形內(nèi)角和相加是360o。

接下來,教師在方法二的基礎(chǔ)上引導(dǎo)學(xué)生利用作輔助線的方法,連結(jié)四邊形的對角線,把一個(gè)四邊形轉(zhuǎn)化成兩個(gè)三角形。

師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?

學(xué)生先獨(dú)立思考每個(gè)問題再分組討論。

關(guān)注:(1)學(xué)生能否類比四邊形的方式解決問題得出正確的結(jié)論。

(2)學(xué)生能否采用不同的方法。

方法1:把五邊形分成三個(gè)三角形,3個(gè)180o的和是540o。

方法2:從五邊形內(nèi)部一點(diǎn)出發(fā),把五邊形分成五個(gè)三角形,然后用5個(gè)180o的和減去一個(gè)周角360o。結(jié)果得540o。

方法3:從五邊形一邊上任意一點(diǎn)出發(fā)把五邊形分成四個(gè)三角形,然后用4個(gè)180o的和減去一個(gè)平角180o,結(jié)果得540o。

方法4:把五邊形分成一個(gè)三角形和一個(gè)四邊形,然后用180o加上360o,結(jié)果得540o。

交流后,學(xué)生運(yùn)用幾何畫板演示并驗(yàn)證得到的方法。

得到五邊形的內(nèi)角和之后,同學(xué)們又認(rèn)真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720o,十邊形內(nèi)角和是1440o。

(二)引申思考,培養(yǎng)創(chuàng)新。

師:通過前面的討論,你能知道多邊形內(nèi)角和嗎?

思考:(1)多邊形內(nèi)角和與三角形內(nèi)角和的關(guān)系?

(3)從多邊形一個(gè)頂點(diǎn)引的對角線分三角形的個(gè)數(shù)與多邊形邊數(shù)的關(guān)系?

學(xué)生結(jié)合思考題進(jìn)行討論,并把討論后的結(jié)果進(jìn)行交流。

發(fā)現(xiàn)1:四邊形內(nèi)角和是2個(gè)180o的和,五邊形內(nèi)角和是3個(gè)180o的和,六邊形內(nèi)角和是4個(gè)180o的和,十邊形內(nèi)角和是8個(gè)180o的和。

發(fā)現(xiàn)3:一個(gè)n邊形從一個(gè)頂點(diǎn)引出的對角線分三角形的個(gè)數(shù)與邊數(shù)n存在(n-2)的關(guān)系。

(三)實(shí)際應(yīng)用,優(yōu)勢互補(bǔ)。

(2)一個(gè)多邊形的內(nèi)角和是1440o,且每個(gè)內(nèi)角都相等,則每個(gè)內(nèi)角的度數(shù)是()。

(四)概括存儲。

學(xué)生自己歸納總結(jié):

2、運(yùn)用轉(zhuǎn)化思想解決數(shù)學(xué)問題。

3、用數(shù)形結(jié)合的思想解決問題。

(五)作業(yè):練習(xí)冊第93頁1、2、3。

多邊形內(nèi)角和說課稿篇十五

有幸聆聽了宋老師執(zhí)教的《簡單多邊形的面積》一課,聽課后讓我感覺自己要學(xué)的還很多。簡單多邊形的面積計(jì)算概念比較抽象,是對學(xué)過的基本平面圖形面積的整合。本節(jié)課宋老師為學(xué)生提供了充足的自主學(xué)習(xí)的空間和時(shí)間,設(shè)置了“平面圖形面積復(fù)習(xí)”、“組合圖形面積學(xué)習(xí)”、“知識的應(yīng)用與拓展”三個(gè)板塊,從學(xué)生實(shí)際出發(fā),創(chuàng)造性地使用教材,注重發(fā)展學(xué)生的個(gè)性,培養(yǎng)學(xué)生的能動性。在我們?nèi)A杰學(xué)校新課改背景下,在“學(xué)生是課堂的主人”的課堂教學(xué)中,本課教學(xué)中,宋老師更多地體現(xiàn)為:引導(dǎo)者——給學(xué)生的學(xué)習(xí)提供明確的導(dǎo)航目標(biāo),組織者——為學(xué)生提供各種便利與支持,使學(xué)生能夠比較輕松地完成學(xué)習(xí)任務(wù)。聽課后我個(gè)人認(rèn)為主要有以下幾方面的亮點(diǎn):

組合多邊形的面積計(jì)算,需要在長方形、正方形、平行四邊形、三角形和梯形面積計(jì)算的基礎(chǔ)上進(jìn)行。宋老師在學(xué)習(xí)新知之前,放手讓學(xué)生引領(lǐng)復(fù)習(xí),這樣的設(shè)計(jì),既激發(fā)了學(xué)生的學(xué)習(xí)興趣,又能體現(xiàn)從學(xué)生的已有經(jīng)驗(yàn)和知識背景,找準(zhǔn)新知的最佳切入點(diǎn),為知識的遷移做好鋪墊。

各個(gè)小組的展示使學(xué)生主動參與學(xué)習(xí)活動,不但能使學(xué)生主動獲取知識,促進(jìn)知識的意義建構(gòu),更能培養(yǎng)學(xué)生的參與意識和創(chuàng)新精神。在教學(xué)“簡單多邊形的面積計(jì)算”時(shí),宋老師先留給學(xué)生充分的時(shí)間和空間,讓學(xué)生在自己動手、動腦的基礎(chǔ)上,再引導(dǎo)學(xué)生交流、驗(yàn)證自己的想法,看看自己沒想到的方法有哪些,根據(jù)自己的能力有選擇地學(xué)習(xí)其它方法,一步步激發(fā)學(xué)生創(chuàng)造的欲望:我有不同的分割法。這樣有序的學(xué)習(xí),不僅發(fā)展了學(xué)生的智能,而且提高了學(xué)生的素質(zhì)。

宋老師讓學(xué)生自主選擇求組合圖形的面積,自主選擇圖形的分割法或拼補(bǔ)法,讓學(xué)生經(jīng)歷組合圖形面積計(jì)算的探究過程,通過宋老師的點(diǎn)撥概括,培養(yǎng)了學(xué)生分析、解決實(shí)際問題的能力,學(xué)生的學(xué)習(xí)過程積極主動。

數(shù)學(xué)與人類的生活息息相關(guān),它來源于生活,又應(yīng)用于生活。本節(jié)課中,宋老師緊密聯(lián)系學(xué)生的實(shí)際經(jīng)驗(yàn),通過讓學(xué)生計(jì)算學(xué)校的草坪和所住的小區(qū)平面圖的面積,激發(fā)了學(xué)生對數(shù)學(xué)學(xué)習(xí)的興趣,幫助學(xué)生更好地應(yīng)用所學(xué)的知識。這樣,不僅使學(xué)生感受到數(shù)學(xué)就在身邊,激發(fā)學(xué)生從生活中尋找數(shù)學(xué)問題的興趣,也培養(yǎng)了學(xué)生提出問題,解決問題的能力。

思考:

1.全課宋老師都沒有引導(dǎo)學(xué)生比較分割圖形越簡潔,其解題方法也將越簡單的,同時(shí)又要考慮分割的圖形與所給的條件的關(guān)系,有些分割后的圖形難于找到相關(guān)的條件,那么這樣的分割方法就是失敗的。其實(shí)這就是在交給學(xué)生解決問題的方法和策略怎樣是簡潔高效的。

2.新課例題與拓展題區(qū)別不大,是不是應(yīng)該讓學(xué)生采用自己喜歡的方法求組合圖多邊形的面積,一節(jié)課就2道題目是不是有些不合適。

多邊形內(nèi)角和說課稿篇十六

教學(xué)目標(biāo)。

知識與技能。

掌握多邊形內(nèi)角和公式及外角和定理,并能應(yīng)用.

過程與方法。

2.經(jīng)歷探索多邊形內(nèi)角和公式的過程,嘗試從不同角度尋求解決問題的方法.訓(xùn)練學(xué)生的發(fā)散性思維,培養(yǎng)學(xué)生的創(chuàng)新精神.

情感態(tài)度價(jià)值觀。

通過猜想、推理等數(shù)學(xué)活動,感受數(shù)學(xué)充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情.

重點(diǎn)。

多邊形內(nèi)角和說課稿篇十七

今天聽了蔡老師的一堂課給我?guī)砹松羁痰挠∠?,下面我就蔡老師的?.1多邊形(1)》談?wù)勛约郝犝n的幾點(diǎn)感受:

在整個(gè)教學(xué)過程中,蔡老師注重學(xué)生問題意識的挖掘,做到以生為本,師生關(guān)系融洽,整個(gè)課堂非?;钴S。

我們知道,學(xué)生的數(shù)學(xué)的學(xué)習(xí)過程就是問題解決的過程。數(shù)學(xué)問題解決在一定的問題情境引入中開始,這就要求教師提供有價(jià)值的材料,創(chuàng)造一種激發(fā)學(xué)生數(shù)學(xué)問題意識的情境,以引起學(xué)生內(nèi)部的認(rèn)知矛盾沖突,激發(fā)起學(xué)生積極、主動的思維活動,再經(jīng)過教師啟發(fā)和幫助,通過學(xué)生主動地分析、探索并提出解決問題方法、檢驗(yàn)這種方法等思維活動,從而達(dá)到掌握知識、發(fā)展能力的教學(xué)目標(biāo)。首先,蔡老師讓學(xué)生類比三角形定義、概念、表示法等得出四邊形的定義以及邊、角的概念、表示法等,遵循學(xué)生數(shù)學(xué)學(xué)習(xí)的認(rèn)知規(guī)律,讓學(xué)生在熟悉的情境中挖掘出未知的數(shù)學(xué)學(xué)習(xí)內(nèi)容,讓學(xué)生經(jīng)歷幾何圖形學(xué)習(xí)的方法,找出問題解決的共同點(diǎn),以此讓學(xué)生在以后多邊形概念學(xué)習(xí)找到模型。

在課堂教學(xué)中,挖掘數(shù)學(xué)教學(xué)的核心知識,讓我們教師創(chuàng)設(shè)的問題有探討的空間以及延伸的方向,這樣才會使學(xué)生的數(shù)學(xué)問題意識的得到提升,對數(shù)學(xué)課堂教學(xué)的實(shí)效起到事半功倍的良好效果。本課教學(xué)中,蔡老師讓學(xué)生類比三角形內(nèi)角和1800猜想得出四邊形內(nèi)角和3600,再讓學(xué)生探究四邊形內(nèi)角和定理,讓不同的學(xué)生嘗試用不同的證明方法進(jìn)行問題解決,這樣做符合我們幾何教學(xué)的一般過程:從猜想到證明。同時(shí),蔡老師還對四邊形內(nèi)角和定理的應(yīng)用進(jìn)行了適度挖掘。

從以上教學(xué)過程中,我們可以看到蔡老師擁有熟練現(xiàn)代化教學(xué)技術(shù)應(yīng)用能力,非常直觀地把我們所需要的教學(xué)情境創(chuàng)設(shè)出來了。青年教師的對教材的挖掘、對課堂的掌控非常好,但在聽課過程中,本人有一點(diǎn)不成熟的做法想與大家商榷:

對四邊形內(nèi)角和定理的證明內(nèi)涵挖掘能否再次深入。蔡老師和學(xué)生都在課堂中展示了四邊形內(nèi)角和3600的三種常見證明方法,本人認(rèn)為能否在此處停留教學(xué)腳步,放開手腳讓學(xué)生再多幾種證明方法,最主要的是提煉這些證明方法的統(tǒng)一性,可以讓學(xué)生對各種證明方法進(jìn)行分類、歸納、提升,比如把3600進(jìn)行各種分解,這樣課堂教學(xué)的內(nèi)涵是不是更加精彩一些。如果時(shí)間不夠,也可以延伸到課后讓學(xué)生來比拼和交流,這樣數(shù)學(xué)的學(xué)習(xí)味道更加強(qiáng)烈一點(diǎn)。以上是本人對蔡老師課的一點(diǎn)不成熟想法,歡迎大家批評指正。

【本文地址:http://m.aiweibaby.com/zuowen/16907260.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔