教案能夠規(guī)范教學行為,提高教師的教學效果。編寫教案前,教師需要充分調(diào)研和了解學生的學情和學習需求。推薦給大家一些優(yōu)秀的教案范文,以便教師在教學過程中參考借鑒。
八年級數(shù)學下勾股定理的證明二教案篇一
在教學中努力推進九年義務教育,落實新課改,體現(xiàn)新理念,培養(yǎng)創(chuàng)新精神。
通過數(shù)學課的教學,使學生切實學好從事現(xiàn)代化建設和進一步學習現(xiàn)代化科學技術所必需的數(shù)學基本知識和基本技能;努力培養(yǎng)學生的運算能力、邏輯思維能力,以及分析問題和解決問題的能力。
二、學情分析
八年級是初中學習過程中的關鍵時期,學生基礎的好壞,直接影響到將來是否能升學。優(yōu)生不多,思想不夠活躍,有少數(shù)學生不上進,思維跟不上。要在本期獲得理想成績,老師和學生都要付出努力,充分發(fā)揮學生是學習的主體,教師是教的主體作用,注重方法,培養(yǎng)能力。
三、本學期教學內(nèi)容分析
本學期教學內(nèi)容共計六章。
第一章《三角形的證明》
本章將證明與等腰三角形和直角三角形的性質(zhì)及判定有關的一些結(jié)論,證明線段垂直平分線和角平分線的有關性質(zhì),將研究直角三角形全等的判定,進一步體會證明的必要性。
第二章《一元一次不等式和一元一次不等式組》
本章通過具體實例建立不等式,探索不等式的基本性質(zhì),了解一般不等式的解、解集、解集在數(shù)軸上的表示,一元一次不等式的解法及應用;通過具體實例滲透一元一次不等式、一元一次方程和一次函數(shù)的內(nèi)在聯(lián)系.最后研究一元一次不等式組的解集和應。
第三章《圖形的平移與旋轉(zhuǎn)》
本章將在小學學習的基礎上進一步認識平面圖形的平移與旋轉(zhuǎn),探索平移,旋轉(zhuǎn)的性質(zhì),認識并欣賞平移,中心對稱在自然界和現(xiàn)實生活中的應用。
第四章《分解因式》
本章通過具體實例分析分解因式與整式的乘法之間的關系揭示分解因式的實質(zhì),最后學習分解因式的幾種基本方法。
第五章《分式與分式方程》
本章通過分數(shù)的有關性質(zhì)的回顧建立了分式的概念、性質(zhì)和運算法則,并在此基礎上學習分式的化簡求值、解分式方程及列分式方程解應用題,能解決簡單的實際應用問題。
第六章《平行四邊形》
本章將研究平行四邊形的性質(zhì)與判定,以及三角形中位線的性質(zhì),還將探索多邊形的內(nèi)角和,外角和的規(guī)律;經(jīng)歷操作,實驗等幾何發(fā)現(xiàn)之旅,享受證明之美。
四、主要措施
1、面向全體學生。
由于學生在知識、技能方面的發(fā)展和興趣、特長等不盡相同,所以要因材施教。在組織教學時,應從大多數(shù)學生的實際出發(fā),并兼顧學習有困難的和學有余力的學生。對學習有困難的學生,要特別予以關心,及時采取有效措施,激發(fā)他們學習數(shù)學的興趣,指導他們改進學習方法。幫助他們解決學習中的困難,使他們經(jīng)過努力,能夠達到大綱中規(guī)定的基本要求,對學有余力的學生,要通過講授選學內(nèi)容和組織課外活動等多種形式,滿足他們的學習愿望,發(fā)展他們的數(shù)學才能。
2、重視改進教學方法,堅持啟發(fā)式,反對注入式。
教師在課前先布置學生預習,同時要指導學生預習,提出預習要求,并布置與課本內(nèi)容相關、難度適中的嘗試題材由學生課前完成,教學中教師應幫助學生梳理新課知識,指出重點和易錯點,解答學生預習時遇到的問題,再設計提高題由學生進行嘗試,使學生在學習中體會成功,調(diào)動學習積極性,同時也可激勵學生自我編題。努力培養(yǎng)學生發(fā)現(xiàn)、得出、分析、解決問題的能力,包括將實際問題上升為數(shù)學模型的能力,注意激勵學生的創(chuàng)新意識。
3、 改革作業(yè)結(jié)構(gòu)減輕學生負擔。將學生按學習能力分成幾個層次,分別布置難、中、淺三個層次作業(yè),使每類學生都能在原有基礎上提高。
4、課后輔導實行流動分層。
5、運用新課程標準的理念指導教學,積極更新自己腦海中固有的教育理念,不同的教育理念將帶來不同的教育效果。
6、培養(yǎng)學生良好的學習習慣,陶行知說:教育就是培養(yǎng)習慣,有助于學生穩(wěn)步提高學習成績,發(fā)展學生的'非智力因素,彌補智力上的不足。
7、開展課題的研究,課外調(diào)查,操作實踐,帶動班級學生學習數(shù)學,同時發(fā)展這一部分學生的特長。
8、進行個別輔導,優(yōu)生提升能力,扎實打牢基礎知識;對學困生,一些關鍵知識,輔導他們過關,為他們以后的發(fā)展鋪平道路。
9、培養(yǎng)學生學習數(shù)學的良好習慣。
四、教學進度
第一章《三角形的證明》13課時
1.1等腰三角形 4課時
1.2直角三角形 2課時
1.3線段的垂直平分線 2課時
1.4角平分線 2課時
復習小節(jié)與檢測 3課時
第二章《一元一次不等式和一元一次不等式組》 12課時
2.1 不等關系 1課時
2.2 不等式的基本性質(zhì) 1課時
2.3 不等式的解集 1課時
2.4 一元一次不等式2課時
2.5 一元一次不等式與一次函數(shù)2課時
2.6 一元一次不等式組 2課時
復習小節(jié) 與檢測 3課時
第三章《圖形的平移與旋轉(zhuǎn)》 10課時
3.1圖形的平移 3課時
3.2圖形的旋轉(zhuǎn) 2 課時
3.3中心對稱 1課時
3.4簡單的圖形設計 1 課時
復習小節(jié)與檢測 3課時
期中考試復習2 課時
第四章《分解因式》7課時
4.1分解因式1課時
4.2提公因式法 2課時
4.3公式法 2課時
4.4重心 2課時
復習小節(jié)與檢測 2課時
第五章《分式與分式方程》 11課時
5.1認識分式 2課時
5.2 分式的乘除法 1課時
5.3分式的加減法 3課時
5.4分式方程 3課時
復習小節(jié)與檢測 2課時
第六章《平行四邊形》 10課時
4.1平行四邊形的性質(zhì) 2課時
4.2特殊的平行四邊形的判定 3課時
4.3三角形的中位線 1課時
4.4多邊形的內(nèi)角和外角和 2課時
復習小節(jié)與檢測 2課時
八年級數(shù)學下勾股定理的證明二教案篇二
今天聽了馬牧池中學吉老師的一節(jié)課和薛校長的報告學到了很多東西,特別是在小組合作學習方面。吉老師的這節(jié)課勾股定理是節(jié)很難講的一節(jié)課,吉老師從知識的形成過程讓學生知道了勾股定理是怎么來的`,從而鍛煉了學生的思維能力。在平時的學習過程中吉老師也很注意及時的總結(jié)規(guī)律性的東西。特別是在小組方面的問題比如有的學生之間的差異比較大,他們會對同步進行分布置任務。每節(jié)課他們都會有課堂達標的小測驗,學校也會進行抽測。
薛校長的報告從很多的實際介紹了他們的經(jīng)驗。要夯實自主學習,給學生自主學習的時間。我們要把臺階難度要都設的小一點,讓學生都能參入進來從而讓他們體會到學習的樂趣。我們還要給學生充分的自主學習的時間和空間。只有他們把問題討論清楚了以后再遇到他們才能找到頭緒。我們在課堂上要注重追問,注重互助,探究結(jié)論的形成過程。
通過這次的學習以后在自己的課堂中要注意這些問題,真正培養(yǎng)起學生的邏輯思維能力來。
八年級數(shù)學下勾股定理的證明二教案篇三
教學目標:
〔知識與技能〕。
1.在生活實例中認識軸對稱圖.
2.分析軸對稱圖形,理解軸對稱的概念.軸對稱圖形的概念。
〔過程與方法〕。
2、在靈活運用知識解決有關問題的過程中,體驗并掌握探索、歸納圖形性質(zhì)的推理方法,進一步培說理和進行簡單推理的能力。
〔情感、態(tài)度與價值觀〕。
辯證唯物主義觀點。
教學重點:.
理解軸對稱的概念。
教學難點。
能夠識別軸對稱圖形并找出它的對稱軸.
教具準備:三角尺。
教學過程。
一.創(chuàng)設情境,引入新課。
1.舉實例說明對稱的重要性和生活充滿著對稱。
2.對稱給我們帶來多少美的感受!初步掌握對稱的奧秒,不僅可以幫助我們發(fā)現(xiàn)一些圖形的特征,還可以使我們感受到自然界的美與和諧.
3.軸對稱是對稱中重要的一種,讓我們一起走進軸對稱世界,探索它的秘密吧!
二.導入新課。
1.觀察:幾幅圖片(出示圖片),觀察它們都有些什么共同特征.
強調(diào):對稱現(xiàn)象無處不在,從自然景觀到分子結(jié)構(gòu),從建筑物到藝術作品,?甚至日常生活用品,人們都可以找到對稱的例子.
練習:從學生生活周圍的事物中來找一些具有對稱特征的例子.
3.如果一個圖形沿一直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形,這條直線就是它的對稱軸.我們也說這個圖形關于這條直線(成軸)?對稱.
4.動手操作:取一張質(zhì)地較硬的紙,將紙對折,并用小刀在紙的中央隨意。
刻出一個圖案,將紙打開后鋪平,你得到兩個成軸對稱的圖案了嗎?
歸納小結(jié):由此我們進一步了解了軸對稱圖形的特征:一個圖形沿一條直線折疊后,折痕兩側(cè)的圖形完全重合.
5.練習:你能找出它們的對稱軸嗎?分小組討論.
思考:大家想一想,你發(fā)現(xiàn)了什么?
小結(jié)得出:.像這樣,?把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這條直線對稱,?這條直線叫做對稱軸,折疊后重合的點是對應點,叫做對稱點.
三.隨堂練習。
1、課本60練習1、2。
四.課時小結(jié)。
分了軸對稱圖形和兩個圖形成軸對稱.
五.課后作業(yè)。
習題13.1.1、2、6題.
六.教后記。
八年級數(shù)學下勾股定理的證明二教案篇四
教學目標:
1、知道一次函數(shù)與正比例函數(shù)的意義.
2、能寫出實際問題中正比例關系與一次函數(shù)關系的解析式.
3、滲透數(shù)學建模的思想,使學生體會到數(shù)學的抽象性和廣泛的應用性.
4、激發(fā)學生學習數(shù)學的興趣,培養(yǎng)學生分析問題、解決問題的能力.
教學重點:對于一次函數(shù)與正比例函數(shù)概念的理解.
教學難點:根據(jù)具體條件求一次函數(shù)與正比例函數(shù)的解析式.
教學方法:結(jié)構(gòu)教學法、以學生“再創(chuàng)造”為主的教學方法。
教學過程:
1、復習舊課。
前面我們學習了函數(shù)的相關知識,(教師在黑板上畫出本章結(jié)構(gòu)并讓學生說出前三。
2、引入新課。
就象以前我們學習方程、一元一次方程;不等式、一元一次不等式的內(nèi)容時一樣,我們在學習了函數(shù)這個概念以后,要學習一些具體的函數(shù),今天我們要學習的是一次函數(shù).顧名思義,誰能根據(jù)一次函數(shù)這個名字,類比一元一次方程、一元一次不等式的概念能舉出一些一次函數(shù)的例子?(學生完全具備這種類比的能力,所以要快、不要耽誤太多時間叫幾個同學回答就可以了.教師將學生的正確的例子寫在黑板上)。
這些函數(shù)有什么共同特點呢?(注意根據(jù)學生情況適當引導,看能否歸納出一般結(jié)果.)不難看出函數(shù)都是用自變量的一次式表示的,可以寫成()的形式.一般地,如果(是常數(shù),)(括號內(nèi)用紅字強調(diào))那么y叫做x的一次函數(shù).特別地,當b=0時,一次函數(shù)就成為(是常數(shù),)。
3、例題講解。
例1、某油管因地震破裂,導致每分鐘漏出原油30公升。
(1)如果x分鐘共漏出y公升,寫出y與x之間的函數(shù)關系式。
(2)破裂3.5小時后,共漏出原油多少公升。
分析:y與x成正比例。
解:(1)(2)(升)。
例2、小丸子的存折上已經(jīng)有500元存款了,從現(xiàn)在開始她每個月可以得到150元的零用錢,小丸子計劃每月將零用錢的60%存入銀行,用以購買她期盼已久的cd隨身聽(價值1680元)。
(1)列出小丸子的銀行存款(不計利息)y與月數(shù)x的函數(shù)關系式;。
(2)多長時間以后,小丸子的銀行存款才能買隨身聽?
分析:銀行存款數(shù)由兩部分構(gòu)成:原有的存款500元,后存入的零用錢。
例3、已知函數(shù)是正比例函數(shù),求的值。
分析:本題考察的是正比例函數(shù)的概念。
解:
4、小結(jié)。
由學生對本節(jié)課知識進行總結(jié),教師板書即可.
5、布置作業(yè)。
書面作業(yè):1、書后習題2、自己寫出一個實際中的一次函數(shù)的例子并進行討論。
八年級數(shù)學下勾股定理的證明二教案篇五
一、學情分析:
知識技能基礎:學生在小學已經(jīng)學過分數(shù)的乘除法,掌握了分數(shù)的乘除法法則,在學習分式的乘除法法則時可通過與分數(shù)的乘除法法則進行類比學習。在前面學習了整式乘法和因式分解,為分式的運算和結(jié)果的化簡奠定基礎。
能力基礎:在過去的數(shù)學學習過程中,學生已初步具備觀察、分析、歸納的能力和類比的學習方法。
二、教學目標:
知識目標:1、分式的乘除運算法則。
2、會進行簡單的分式的乘除法運算。
能力目標:1、類比分數(shù)的乘除運算法則,探索分式的乘除運算法則。
2、能解決一些與分式有關的簡單的實際問題。
情感目標:1、通過師生討論、交流,培養(yǎng)學生合作探究的意識和能力。
2、培養(yǎng)學生的創(chuàng)新意識和應用意識。
三、教學重點、難點。
重點:分式乘除法的法則及應用。
難點:分子、分母是多項式的分式的乘除法的運算。
三、教學過程:
第一環(huán)節(jié)復習舊知識。
復習小學學的分數(shù)乘除法法則,
活動目的:
復習小學學過的分數(shù)的乘除法運算,為學習分式乘除法的法則做準備。
第二環(huán)節(jié)引入新課。
活動內(nèi)容。
你能總結(jié)分式乘除法的法則嗎?與同伴交流。
分式的乘除法的法則:。
兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;。
兩個分式相除,把除式的分子和分母顛倒位置后再與被除式相乘.
活動目的:
讓學生觀察運算,通過小組討論交流,并與分數(shù)的乘除法的法則類比,讓學生自己總結(jié)出分式的乘除法的法則。
第三環(huán)節(jié)知識運用。
活動內(nèi)容。
例題1:。
(1)(2)例題2。
(1)(2)活動目的:
通過例題講解,使學生會根據(jù)法則,理解每一步的算理,從而進行簡單的分式的乘除法運算,并能解決一些與分式有關的簡單的實際問題,增強學生代數(shù)推理的能力與應用意識。需要給學生強調(diào)的是分式運算的結(jié)果通常要化成最簡分式或整式,對于這一點,很多學生在開始學習分式計算時往往沒有注意到結(jié)果要化簡。
第四環(huán)節(jié)走進中考。
(2012.漳州)第五環(huán)節(jié)課時小結(jié)。
活動內(nèi)容:
1.分式的乘除法的法則。
2.分式運算的結(jié)果通常要化成最簡分式或整式.
3.學會類比的數(shù)學方法。
第六環(huán)節(jié)當堂檢測。
八年級數(shù)學下勾股定理的證明二教案篇六
1.在探索平行四邊形的判別條件中,理解并掌握用邊、對角線來判定平行四邊形的方法.
2.會綜合運用平行四邊形的判定方法和性質(zhì)來解決問題。
平行四邊形的判定方法及應用。
閱讀教材p44至p45。
利用手中的學具——硬紙板條,通過觀察、測量、猜想、驗證、探索構(gòu)成平行四邊形的條件,思考并探討:
(1)你能適當選擇手中的硬紙板條搭建一個平行四邊形嗎?
(2)你怎樣驗證你搭建的四邊形一定是平行四邊形?
(3)你能說出你的做法及其道理嗎?
(5)你還能找出其他方法嗎?
平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。
平行四邊形判定方法2對角線互相平分的四邊形是平行四邊形。
平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。
證明:(畫出圖形)。
平行四邊形判定方法2一組對邊平行且相等的四邊形是平行四邊形。
八年級數(shù)學下勾股定理的證明二教案篇七
教學目標:
1、知識目標:
(1)掌握解分式方程的步驟。
(2)理解解分式方程時驗根的必要性。
2、能力目標:
會按照解分式方程的步驟解分式方程。
3、情感與價值觀:
(1)培養(yǎng)學生自覺反思求解過程和自覺檢驗的良好習慣,培養(yǎng)嚴謹?shù)闹螌W態(tài)度。
(2)運用“轉(zhuǎn)化”的思想,將分式方程轉(zhuǎn)化為整式方程,從而獲得成就感和學習數(shù)學的自信。
老師引導學生自主探索分式方程的解法,將分式方程轉(zhuǎn)化為整式方程,在解題中親身體驗“轉(zhuǎn)化”思想。弄清了“轉(zhuǎn)化”的方向,也就明白了解分式方程的步驟,解題思路自然清晰,能力隨之形成。
重點:
1、探索解分式方程的步驟,熟練掌握分式方程的解法。
2、體會解分式方程驗根的必要性。
難點:如何將分式方程轉(zhuǎn)化為整式方程;體會分式方程驗根的必要性。
學情與教材分析:我所任教的學生大多頭腦聰明,在老師適當?shù)囊龑拢幸欢ǖ奶角笮轮R的能力。但基礎不夠扎實,如計算容易出錯、考慮問題不夠嚴謹?shù)?。另外在學習本節(jié)課之前,已經(jīng)學習過《解一元一次方程》。對于《解一元一次方程》大部分同學已經(jīng)掌握,但由于是在七年級學習,有一定的時間間隔,部分同學可能已經(jīng)遺忘,給上本節(jié)課留下少許的困難。但估計絕大部分同學稍加回憶,應能接近以前的水平。本節(jié)課的內(nèi)容處在《分式》這章的后半部?!斗质健愤@章內(nèi)容安排如下的:首先介紹分式及分式的基本性質(zhì),接著進行分式的加、減、乘、除的運算,之后是根據(jù)實際問題列出分式方程(但未求解)。緊跟其后的是本節(jié)課內(nèi)容――解分式方程,最后一節(jié)是根據(jù)實際問題列出分式方程并求解。由此可見《解分式方程》涵蓋了本章前面的內(nèi)容,是本章知識的綜合與提高。學習好這部分內(nèi)容,不但掌握了初二階段有關分式方程的內(nèi)容,也為初三學習可化為一元二次的分式方程打下了良好的基礎。通過將分式方程轉(zhuǎn)化為整式方程(一元一次方程)滲透了一種重要的數(shù)學思想――轉(zhuǎn)化思想,即將原問題進行變形,使之轉(zhuǎn)化為我們所熟悉的或已解決的或易于解決的問題。
八年級數(shù)學下勾股定理的證明二教案篇八
如果三角形三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形,其中c為斜邊。
說明:
(2)定理中a,b,c及a2+b2=c2只是一種表現(xiàn)形式,不可認為是唯一的,如若三角形三邊長a,b,c滿足a2+b2=c,那么以a,b,c為三邊的三角形是直角三角形,但此時的斜邊是b。
(1)確定最大邊;
(2)算出最大邊的平方與另兩邊的平方和;
(3)比較最大邊的平方與別兩邊的平方和是否相等,若相等,則說明是直角三角形。
能夠構(gòu)成直角三角形的三邊長的三個正整數(shù)稱為勾股數(shù)。
由直角三角形三邊為邊長所構(gòu)成的三個正方形滿足“兩個較小面積和等于較大面積”。
解決圓柱側(cè)面兩點間的距離問題、航海問題,折疊問題、梯子下滑問題等,常直接間接運用勾股定理及其逆定理的應用。
有了上文梳理的勾股定理的逆定理知識點整理,相信大家對考試充滿了信心,同時預祝大家考試取得好成績。
八年級數(shù)學下勾股定理的證明二教案篇九
3、情感態(tài)度與價值觀:通過剪紙等活動,培養(yǎng)學生的實驗意識和探索精神,使學生進一步認識到數(shù)學與現(xiàn)實生活的密切聯(lián)系,感受數(shù)學的嚴謹性以及結(jié)果的確定性。
三、教學重、難點。
1、重點:等腰三角形的性質(zhì)。
2、難點:“等邊對等角”的證明。
四、教學方法。
動手體驗、小組、討論、合作、交流、探究驗證師生互動。
五、教、學具。
1、教具:長方形紙,剪刀,幻燈片。
2、學具:長方形紙,剪刀。
八年級數(shù)學下勾股定理的證明二教案篇十
1.知識與技能目標:會用勾股定理及直角三角形的判定條件解決實際問題。
2.過程與方法目標:經(jīng)歷勾股定理的應用過程,熟練掌握其應用方法,明確應用的條件。
3.情感態(tài)度與價值觀目標:通過自主學習的發(fā)展體驗獲取數(shù)學知識的感受;通過有關勾股定理的歷史講解,對學生進行德育教育。
一、知識點講解。
知識點1:(已知兩邊求第三邊)。
1.在直角三角形中,若兩直角邊的長分別為1cm,2cm,則斜邊長為_____________。
2.已知直角三角形的兩邊長為3、4,則另一條邊長是______________。
3.三角形abc中,ab=10,ac=17,bc邊上的高線ad=8,求bc的長?
知識點2:
利用方程求線段長。
(1)使得c,d兩村到e站的距離相等,e站建在離a站多少km處?
(2)de與ce的位置關系。
(3)使得c,d兩村到e站的距離最短,e站建在離a站多少km處?
利用方程解決翻折問題。
3、在矩形紙片abcd中,ad=4cm,ab=10cm,按圖所示方式折疊,使點b與點d重合,折痕為ef,求de的長。
5、折疊矩形abcd的一邊ad,折痕為ae,且使點d落在bc邊上的點f處,已知ab=8cm,bc=10cm,以b點為原點,bc為x軸,ba為y軸建立平面直角坐標系。求點f和點e坐標。
6、邊長為8和4的矩形oabc的兩邊分別在直角坐標系的x軸和y軸上,若沿對角線ac折疊后,點b落在第四象限b1處,設b1c交x軸于點d,求(1)三角形adc的面積,(2)點b1的坐標,(3)ab1所在的直線解析式.
知識點3:判斷一個三角形是否為直角三角形間接給出三邊的長度或比例關系。
1.(1).若一個三角形的周長12cm,一邊長為3cm,其他兩邊之差為1cm,則這個三角形是___________。
(2).將直角三角形的三邊擴大相同的倍數(shù)后,得到的三角形是____________。
(3)在abc中,a:b:c=1:1:,那么abc的確切形狀是_____________。
二、課堂小結(jié)。
談一談你這節(jié)課都有哪些收獲?
三、課堂練習以上習題。
四、課后作業(yè)卷子。
本節(jié)課是人教版數(shù)學八年級下冊第十七章第一節(jié)第二課時的內(nèi)容,是學生在學習了三角形的有關知識,了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個三角形是直角三角形的條件的基礎上學習勾股定理,加深對勾股定理的理解,提高學生對數(shù)形結(jié)合的應用與理解。本節(jié)第一課時安排了對勾股定理的觀察、計算、猜想、證明及簡單應用的過程;第二課時是通過例題分析與講解,讓學生感受勾股定理在實際生活中的應用,通過從實際問題中抽象出直角三角形這一模型,強化轉(zhuǎn)化思想,培養(yǎng)學生解決問題的意識和應用能力。
針對本班學生的特點,學生知識水平、學習能力的差距,本節(jié)課安排了如下幾個環(huán)節(jié):
一、復習引入。
對上節(jié)課勾股定理內(nèi)容進行回顧,強調(diào)易錯點。由于學生的注意力集中時間較短,學生知識水平低,引入內(nèi)容簡短明了,花費時間短。
二、例題講解,鞏固練習,總結(jié)數(shù)學思想方法。
活動一:用對媒體展示搬運工搬木板的問題,讓學生以小組交流合作,如何將木板運進門內(nèi)?需要知道們的寬、高,還是其他的條件?學生展示交流結(jié)果,之后教師引導學生書寫板書。整個活動以學生為主體,教師及時的引導和強調(diào)。
活動二:解決例二梯子滑落的問題。學生自主討論解決問題,書寫過程,之后投影學生書寫過程,教師與學生一起合作修改解題過程。
活動三:學生討論總結(jié)如何將實際生活中的問題轉(zhuǎn)化為數(shù)學問題,然后利用勾股定理解決問題。利用勾股定理的前提是什么?如何作輔助線構(gòu)造這一前提條件?在數(shù)學活動中發(fā)展了學生的探究意識和合作交流的習慣;體會勾股定理的應用價值,讓學生體會到數(shù)學來源于生活,又應用到生活中去,在學習的過程中體會獲得成功的喜悅,提高了學生學習數(shù)學的興趣和信心。
二、鞏固練習,熟練新知。
通過測量旗桿活動,發(fā)展學生的探究意識,培養(yǎng)學生動手操作的能力,增加學生應用數(shù)學知識解決實際問題的經(jīng)驗和感受。
在教學設計的實施中,也存在著一些問題:
1.由于本班學生能力的差距,本想著通過學生幫帶活動,使學困生充分參與課堂,但在學生合作交流是由于學習能力強的學生,對問題的分析解決所用時間短,而在整個環(huán)節(jié)設計中轉(zhuǎn)接的快,未給學困生充分的時間,導致部分學生未能真正的參與到課堂中來。
2.課堂上質(zhì)疑追問要起到好處,不要增加學生展示的難度,影響展示進程出現(xiàn)中斷或偏離主題的現(xiàn)象。
3.對學生課堂展示的評價方式應體現(xiàn)生評生,師評生,及評價的針對性和及時性。
八年級數(shù)學下勾股定理的證明二教案篇十一
在講解勾股定理的結(jié)論時,為了讓學生更好地理解和掌握勾股定理的探索過程,先讓學生自己進行探索,然后同學進行討論,最后上臺演示。這樣可以加深學生的參與,也讓師生間、生生間有了互動。然后老師再利用電腦演示直角三角形中勾股定理的探索過程。反復演示幾遍,讓學生自己感覺并最后體會到勾股定理的結(jié)論。通過動畫演示體會到解決問題的方法是多種多樣,使得這課的重難點輕易地突破,大大提高了教學效率,培養(yǎng)了學生的解決問題的能力和創(chuàng)新能力。學生在這一過程中各顯神通,都得到了解決問題的滿足感和自豪感。
在教學應用勾股定理時,老是運用公式計算,學生感覺比較厭倦,為了吸引學生注意力,活躍課堂氣氛,拓寬學生思路,運用多媒體出示了一道“智慧爺爺”出的思考題:即折竹抵地問題。同學們一看,興趣來了。最后讓學生互相討論,就這樣讓學生在開放自由的情況下解決了該題,同時培養(yǎng)了學生的想像力。
最后介紹了勾股定理的歷史,并且推薦了一些網(wǎng)站,讓學生下課之后進行查閱、了解。只是為了方便學生到更廣闊的知識海洋中去尋找知識寶藏,利用網(wǎng)絡檢索相關信息,充實、豐富、拓展課堂學習資源,提供各種學習方式,讓學生學會選擇、整理、重組、再用這些更廣泛的資源。這種對網(wǎng)絡資源的重新組織,使學生對知識的需求由窄到寬,有力的促進了自主學習。這樣學生不僅能在課堂上學習到知識,還讓他們有了怎樣學習知識的方法。這就達到了新課標新理念的預定目標。
八年級數(shù)學下勾股定理的證明二教案篇十二
1.經(jīng)歷分式方程的概念,能將實際問題中的等量關系用分式方程 表示,體會分式方程的模型作用.
2.經(jīng)歷實際問題-分式方程方程模型的過程,發(fā)展學生分析問題、解決問題的能力,滲透數(shù)學的轉(zhuǎn)化思想人體,培養(yǎng)學生的應用意識。
3.在活動中培養(yǎng)學生樂于探究、合作學習的習慣,培養(yǎng)學 生努力尋找 解決問題的進取心,體會數(shù)學的應用價值.
將實際問題中的等量 關系用分式方程表示
找實際問題中的等量關系
有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產(chǎn)量。你能找出這一問題中的所有等量關系嗎?(分組交流)
如果設第一塊試驗田 每公頃的產(chǎn)量為 kg,那么第二塊試驗田每公頃的產(chǎn)量是________kg。
根據(jù)題意,可得方程___________________
從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。
這 一問題中有哪些等量關系?
如果設客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。
根據(jù)題意,可得方程_ _____________________。
學生分組探討、交流,列出方程.
上面所得到的方程有什么共同特點?
分母中含有未知數(shù)的方程叫做分式方程
分式方程與整式方程有什么區(qū)別?
(3)根據(jù)分式方程 編一道應用題,然后同組交流,看誰編得好
本節(jié)課你學到了哪些知識?有什么感想?
八年級數(shù)學下勾股定理的證明二教案篇十三
1.了解算術平方根的概念,會用根號表示正數(shù)的算術平方根,并了解算術平方根的非負性。
2.了解開方與乘方互為逆運算,會用平方運算求某些非負數(shù)的算術平方根。
算術平方根的概念。
根據(jù)算術平方根的概念正確求出非負數(shù)的算術平方根。
這就要用到平方根的概念,也就是本章的主要學習內(nèi)容.這節(jié)課我們先學習有關算術平方根的概念.
1、提出問題:(書p68頁的問題)
你是怎樣算出畫框的邊長等于5dm的呢?(學生思考并交流解法)
這個問題相當于在等式擴=25中求出正數(shù)x的值.
一般地,如果一個正數(shù)x的平方等于a,即=a,那么這個正數(shù)x叫做a的算術平方根.a的算術平方根記為,讀作根號a,a叫做被開方數(shù).規(guī)定:0的算術平方根是0.
也就是,在等式=a (x0)中,規(guī)定x = .
2、試一試:你能根據(jù)等式:=144說出144的算術平方根是多少嗎?并用等式表示出來.
3、想一想:下列式子表示什么意思?你能求出它們的值嗎?
建議:求值時,要按照算術平方根的意義,寫出應該滿足的關系式,然后按照算術平方根的記法寫出對應的值.例如表示25的算術平方根。
4、例1求下列各數(shù)的算術平方根:
(1)100;(2)1;(3) ;(4)0.0001
p69練習1、2
怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?
方法1:課本中的方法,略;
方法2:
可還有其他方法,鼓勵學生探究。
問題:這個大正方形的邊長應該是多少呢?
大正方形的邊長是,表示2的算術平方根,它到底是個多大的數(shù)?你能求出它的值嗎?
建議學生觀察圖形感受的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節(jié)課探究.
1、這節(jié)課學習了什么呢?
2、算術平方根的具體意義是怎么樣的?
3、怎樣求一個正數(shù)的算術平方根
p75習題13.1活動第1、2、3題
八年級數(shù)學下勾股定理的證明二教案篇十四
今后的教學中:
(1)立足教材,鉆研教學大綱的要求;試卷中較多題目是根據(jù)課本的題目改編而來,從學生的考試情況來看課本的題目掌握不理想,這說明在平時的教學中對書本的重視不夠,過多地追求課外題目的訓練,但忽略學生實實在在地理解課本知識,提高思維能力。課堂上盡量把課堂還給學生,讓學生積極參與到課堂中,多機會給學生展示,表演,講題,把思路和方法講出來,使學生更清淅地理解題目,提升自己對數(shù)學的理解。多點讓學生獨立思考,發(fā)現(xiàn)問題,解決問題。
(2)注重培養(yǎng)學生良好的學習習慣。
(3)加強例題示范教學,培養(yǎng)學生解題書寫表達。
(4)多一些數(shù)學方法、數(shù)學思想的滲透,少一些知識的生搬硬套。
(5)在數(shù)學教學過程中,課堂上系統(tǒng)地對數(shù)學知識進行整理、歸納、溝通知識間的內(nèi)在聯(lián)系,形成縱向、橫向知識鏈,從知識的聯(lián)系和整體上把握基礎知識。
(6)針對學生的兩極分化,加強課外作業(yè)布置的針對性。讓每個學生課外有適合的作業(yè)做,對不同層次的學生布置不同難度的作業(yè),提高課外學習的效率,減輕學生課外作業(yè)的負擔。正確看待學生學習數(shù)學的差異,克服兩極分化。數(shù)學課堂上多考慮、關照中下生,讓他們在數(shù)學課堂上聽得進,肯用手。
(7)教師在平時的課堂教學中必須致力于改變教師的教學行為和學生的學習方式,加強學法指導,提高學生的閱讀能力,平時培養(yǎng)學生的自學能力,使學生實實在在地理解課本知識,提高思維能力。平時要關注課本、關注運算能力、關注教學中的薄弱環(huán)節(jié)。
八年級數(shù)學下勾股定理的證明二教案篇十五
《基礎教育課程改革綱要(試行)》指出:“大力推進多媒體信息技術在教學過程中的普遍應用,促進信息技術與學科課程的整合,逐步實現(xiàn)教學內(nèi)容的呈現(xiàn)方式、學生的學習方式、教師的教學方式和師生互動方式的變革,充分發(fā)揮信息技術的優(yōu)勢,為學生的學習和發(fā)展提供豐富多彩的教育環(huán)境和有力的學習工具?!苯處熯\用現(xiàn)代多媒體信息技術對教學活動進行創(chuàng)造性設計,發(fā)揮計算機輔助教學的特有功能,把信息技術和數(shù)學教學的學科特點結(jié)合起來,可以使教學的表現(xiàn)形式更加形象化、多樣化、視覺化,有利于充分揭示數(shù)學概念的形成與發(fā)展,數(shù)學思維的過程和實質(zhì),展示數(shù)學思維的形成過程,使數(shù)學課堂教學收到事半功倍的效果。
本節(jié)課內(nèi)容是學生在小學階段初步了解特殊四邊形以及學過《三角形》這章的基礎上進行的,在知識結(jié)構(gòu)上打破了教材的編寫順序,從整體的角度探究特殊四邊形性質(zhì)。運用多媒體教學體現(xiàn)出直觀、課容量大、容易接受的特點,為進一步的理論證明及應用起著提供數(shù)據(jù)和宏觀指導作用,使學生學習本章具體內(nèi)容時知道身在何處,使知識體系更加系統(tǒng)。本節(jié)課內(nèi)容是四邊形這章的理論基礎,在該章占有非常重要的地位。
本班經(jīng)歷了一年多課改實踐,學生對運用現(xiàn)代多媒體信息技術的教學方式有濃厚的興趣,能運用《幾何畫板》這一工具進行簡單的操作,形成自主探索和合作交流的學風,從而樂于在教師的指導下主動與同學探索、發(fā)現(xiàn)、歸納、經(jīng)歷數(shù)學知識于實踐的過程。
本節(jié)課充分利用現(xiàn)有的先進教學設備(兩名學生一臺電腦),利用筆者自制,借助《幾何畫板》把學生帶入數(shù)學模擬實驗室,以研究電動門的機械原理為切入點,從學生已有的生活經(jīng)驗出發(fā),讓學生親身經(jīng)歷數(shù)學知識的形成并進行解釋與應用過程。組員相互配合分別測量、搜集、分析、整理特殊四邊形的邊長、角度、對角線長度等數(shù)據(jù),并總結(jié)其性質(zhì),通過人機對話方式把靜態(tài)、抽象的幾何圖形變?yōu)閯討B(tài)、直觀地演示出來。在此過程中教師當好課堂教學的組織者、決策者、創(chuàng)造者和參與者,教給學生自覺主動地探究新知識的方法,激發(fā)學生的思維,培養(yǎng)學生的科學精神和創(chuàng)新思維習慣,使學生獲得對數(shù)學理解的同時,在思維能力、情感態(tài)度與價值觀等多方面得到發(fā)展。
1、初步理解特殊四邊形性質(zhì);
2、培養(yǎng)學生自主收集、描述和分析數(shù)據(jù)的能力;
1、了解特殊四邊形性質(zhì)的形成過程;
2、初步了解探究新知識的一些方法;
1、了解特殊四邊形在日常生活中的應用;
2、學生在觀察、歸納、類比及實驗教學活動中,體會成功后的喜悅;
3、初步具有感性認識上升到理性認識的辯證唯物主義思想。
教學環(huán)境:
多媒體計算機網(wǎng)絡教室。
教學課型:
試驗探究式。
教學重點:
特殊四邊形性質(zhì)。
教學難點:
特殊四邊形性質(zhì)的發(fā)現(xiàn)。
一、設置情景,提出問題。
提出問題:
1、電動門的網(wǎng)格和結(jié)點能組成哪些四邊形?
2、在開(關)門過程中這些四邊形是如何變化的?
3、你還發(fā)現(xiàn)了什么?
解決問題:
學生猜想:包括平行四邊形、矩形、菱形、等腰梯形、直角梯形……;
當我們學習完本節(jié)知識后,其他問題就容易解決了。
(意圖:用《幾何畫板》的動態(tài)演示生活事例,充分展示了數(shù)學的美妙,可以使學生容易進入情境和保持積極學習狀態(tài),激起學生探究解決問題的求知欲望。)。
二、整體了解,形成系統(tǒng)。
本節(jié)課從整體角度研究特殊四邊形性質(zhì),為今后的個體研究打下良好的基礎。我們先研究四邊形中的特殊與一般的關系。
提出問題:
1、本章主要研究哪些特殊四邊形?
2、從哪幾方面研究這些特殊四邊形?
解決問題:
學生操作電腦(用幾何畫板),了解本章研究的主要圖形;教師個別指導。
1、包括:平行四邊形、矩形、菱形、梯形、等腰梯形、直角梯形。
3、等腰梯形和直角梯形后面應該是矩形,但不符合梯形定義,所以沒有圖形。
(意圖:學生自主觀察、分組討論了解本章知識結(jié)構(gòu),從而形成系統(tǒng);通過假設、猜想、推理、論證、否定假設獲得新知識)。
三、個體研究、總結(jié)性質(zhì)。
1、平行四邊形性質(zhì)。
提出問題:
在平行四邊形的形狀、位置、大小變化過程中,請觀察數(shù)據(jù)并找出邊長、角度、對角線長度相對不變的性質(zhì)。
解決問題:
教師引導學生拖動b點(學生操作電腦),改變平行四邊形的形狀、位置、大小,并觀察數(shù)據(jù)的變化,從中找出相對不變的要素。
在圖形變化過程中,
(1)對邊相等;
(2)對角相等;
(3)通過ao=co、bo=do,可得對角線互相平分;
(4)通過鄰角互補,可得對邊平行;
(5)內(nèi)外角和都等于360度;
(6)鄰角互補;
……。
指導學生填表:
平行四邊形性質(zhì)矩形性質(zhì)正方形性質(zhì)。
菱形性質(zhì)。
梯形性質(zhì)等腰梯形性質(zhì)。
直角梯形性質(zhì)。
(既屬于平行四邊形性質(zhì)又屬于矩形性質(zhì)可以畫箭頭)。
按照平行四邊形性質(zhì)的探索思路,分別研究:
2、矩形性質(zhì);
3、菱形性質(zhì);
4、正方形性質(zhì);
5、梯形性質(zhì);
6、等腰梯形性質(zhì);
7、直角梯形的性質(zhì)。
(意圖:學生運用電腦自主收集、描述、分析數(shù)據(jù),把抽象的性質(zhì)變?yōu)橹庇^化、形象化,培養(yǎng)獨立探究,自主自信,使學生體驗到科學探索的樂趣。)。
教師總結(jié):
(意圖:掌握畫箭頭的方法,使學生了解事物個體既有該事物一般性質(zhì),又有自己的特點。既清楚地表達,又節(jié)省時間。)。
四、聯(lián)系生活,解決問題。
解決問題:
學生操作電腦,觀察圖形、分組討論,教師個別指導。
學生在分別演示開(關)門過程中,觀察數(shù)據(jù)并總結(jié):邊長、角度、對角線長度的變化引起四邊形的形狀、大小、位置的變化。
四邊形具有不穩(wěn)定性,而三角形沒有這個特點……。
(意圖:使學生體會到數(shù)學于生活、又服務于生活,更重要的是培養(yǎng)學生應用知識解決實際問題的能力,體會成功后的喜悅。)。
五、小結(jié)。
1.研究問題從整體到局部的方法;
2.主要從邊長、角度、對角線長度三方面研究特殊四邊形性質(zhì)。
六、作業(yè)。
1.平行四邊形內(nèi)角中,既有兩個相鄰的角相等,又有一組鄰邊相等,試判斷它是什么圖形。
2.觀察實際生活中的電動門,在開(關)門過程中特殊四邊形的變化。
針對教學內(nèi)容、學生特點及設計方案,預計下列學習效果:
利用多媒體信息技術圖文并茂、形象直觀的特點,通過學生自主測量、分析、整理數(shù)據(jù)并總結(jié)其性質(zhì),培養(yǎng)學生收集、描述和分析數(shù)據(jù)的能力,并達到初步理解特殊四邊形性質(zhì)的目標。
在問題引入、了解整體、測量個體、總結(jié)性質(zhì)的過程中,符合事物的認識規(guī)律及探究新知識的一般方法,初步形成感性認識上升到理性認識的辯證唯物主義思想。
由于個體差異,針對教學目標難以達到的個別學生,根據(jù)教學的進展,通過師生之間、學生之間的對話交流及時指導,使教學目標得以實現(xiàn)。
八年級數(shù)學下勾股定理的證明二教案篇十六
2、范例講解。
(學生嘗試練習后,教師講評)。
例1:解方程例2:解方程例3:解方程講評時強調(diào):
1、怎樣確定最簡公分母?(先將各分母因式分解)。
2、解分式方程的步驟、
鞏固練習:p1471t,2t、
課堂小結(jié):解分式方程的一般步驟。
布置作業(yè):見作業(yè)本。
八年級數(shù)學下勾股定理的證明二教案篇十七
一、本節(jié)課的成功之處:。
本節(jié)課以活動為主線,通過從估算到實驗活動結(jié)果的產(chǎn)生讓學生總結(jié)過程,最后回到解決生活中實際問題,思路清晰,脈絡明了。
例如:活動1問題:據(jù)說古埃及人用下圖的方法畫直角:把一根長蠅打上等距離的13個結(jié),然后以3個結(jié),4個結(jié)、5個結(jié)的長度為邊長,用木樁釘成一個三角形,其中一個角便是直角.
這個問題意味著,如果圍成的三角形的三邊分別為3、4、5.有下面的`關系“32+42=52”.那么圍成的三角形是直角三角形.
2、體現(xiàn)了“數(shù)學源于生活,寓于生活,用于生活”的教育思想;突出了“特征讓學生觀察,思路讓學生探索,方法讓學生思考意義讓學生概括,結(jié)論讓學生驗證,難點讓學生突破,以學生為主體”的教學思路。例如:命題2如果三角形的三邊長a,b,c滿足a2+b2=c2那么這個三角形是直角三角形.
如下圖,欲過基線mn上的一點c作它的垂線,可由三名工人操作:一人手拿布尺或測繩的0和12尺處,固定在c點;另一人拿4尺處,把尺拉直,在mn上定出a點,再由一人拿9尺處,把尺拉直,定出b點,于是連結(jié)bc,就是mn的垂線.
建筑工人用了3,4,5作出了一個直角,能不能用其他的整數(shù)組作出直角呢?
生:可以,例如7,24,25;8,15,17等.
3、在本節(jié)教學活動過程中,我經(jīng)常走下講臺,到學生中去,以學生身份和學生一起探討問題。用一切可能的方式,激勵回答問題的學生,激發(fā)學生的求知欲,使師生在和諧的教學環(huán)境中零距離的接觸。課堂上學生們的思維空前活躍,發(fā)言的人數(shù)不斷增多,學生能從多角度認識問題,爭先恐后地交流不同的意見和方法,收到比較好的效果。這是本節(jié)課的特色。
二、本節(jié)課的不足之處及改進方法:。
1、本節(jié)課我沒有利用多媒體輔助教學,如學習目標的發(fā)展、習題訓練內(nèi)容的展示、學生活動的要求、作業(yè)布置等,這些內(nèi)容都是為教學服務的。如果用多媒體課件的展示,可以增大了教學密度,使學生的雙基訓練得到了加強,使傳統(tǒng)的課堂走向了開放,使學生真正感受到學習方式在發(fā)生變化。在以后的教學中我應加強。
八年級數(shù)學下勾股定理的證明二教案篇十八
1.理解分式的基本性質(zhì).
2.會用分式的基本性質(zhì)將分式變形.
二、重點、難點。
1.重點:理解分式的基本性質(zhì).
2.難點:靈活應用分式的基本性質(zhì)將分式變形.
3.認知難點與突破方法。
教學難點是靈活應用分式的基本性質(zhì)將分式變形.突破的方法是通過復習分數(shù)的通分、約分總結(jié)出分數(shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì).應用分式的基本性質(zhì)導出通分、約分的概念,使學生在理解的基礎上靈活地將分式變形。
三、例、習題的意圖分析。
1.p7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應用分式的基本性質(zhì),相應地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。
2.p9的例3、例4地目的是進一步運用分式的基本性質(zhì)進行約分、通分.值得注意的是:約分是要找準分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。
教師要講清方法,還要及時地糾正學生做題時出現(xiàn)的錯誤,使學生在做提示加深對相應概念及方法的理解。
3.p11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號.這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。
“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質(zhì)的應用之一,所以補充例5。
四、課堂引入。
1.請同學們考慮:與相等嗎?與相等嗎?為什么?
2.說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?
3.提問分數(shù)的基本性質(zhì),讓學生類比猜想出分式的基本性質(zhì).
五、例題講解。
p7例2.填空:
[分析]應用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變.
p11例3.約分:
[分析]約分是應用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變.所以要找準分子和分母的公因式,約分的結(jié)果要是最簡分式.
p11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母.
(補充)例5.不改變分式的值,使下列分式的分子和分母都不含“-”號.
[分析]每個分式的分子、分母和分式本身都有自己的符號,其中兩個符號同時改變,分式的值不變.
解:=,=,=,=,=。
六、隨堂練習。
1.填空:
(1)=(2)=。
(3)=(4)=。
2.約分:
3.通分:
(1)和(2)和。
(3)和(4)和。
4.不改變分式的值,使下列分式的分子和分母都不含“-”號.
七、課后練習。
1.判斷下列約分是否正確:
(1)=(2)=。
(3)=0。
2.通分:
(1)和(2)和。
3.不改變分式的值,使分子第一項系數(shù)為正,分式本身不帶“-”號.
八、答案:
六、1.(1)2x(2)4b(3)bn+n(4)x+y。
2.(1)(2)(3)(4)-2(x-y)2。
3.通分:
(1)=,=。
(2)=,=。
(3)==。
(4)==。
【本文地址:http://m.aiweibaby.com/zuowen/17168891.html】