函數(shù)的教案范文(23篇)

格式:DOC 上傳日期:2023-12-04 05:58:17
函數(shù)的教案范文(23篇)
時間:2023-12-04 05:58:17     小編:LZ文人

教案的編制需要緊密結(jié)合課程標(biāo)準(zhǔn)和教材內(nèi)容,突出重點(diǎn)、難點(diǎn)和關(guān)鍵問題的教學(xué)設(shè)計。教師在編寫教案時,還應(yīng)注意培養(yǎng)學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)主動性。以下是小編為大家整理的一些優(yōu)秀教案范例,供大家參考。希望通過這些范例,大家能夠更好地理解教案的編寫思路和方法,進(jìn)一步提升自己的教學(xué)水平。在教育教學(xué)的道路上,讓我們一起努力,不斷探索和創(chuàng)新,為學(xué)生的成長和未來貢獻(xiàn)自己的力量??偨Y(jié)起來,編寫教案不僅僅是一種任務(wù),更是一種責(zé)任和使命。讓我們共同努力,打造出更優(yōu)秀的教案,為教育事業(yè)添磚加瓦。

函數(shù)的教案篇一

學(xué)習(xí)目標(biāo):

1、能夠分析和表示變量間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。

2、用三種方式表示變量間二次函數(shù)關(guān)系,從不同側(cè)面對函數(shù)性質(zhì)進(jìn)行研究。

3、通過解決用二次函數(shù)所表示的問題,培養(yǎng)學(xué)生的運(yùn)用能力。

學(xué)習(xí)重點(diǎn):

能夠分析和表示變量之間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。

能夠根據(jù)二次函數(shù)的不同表示方式,從不同的側(cè)面對函數(shù)性質(zhì)進(jìn)行研究。

學(xué)習(xí)難點(diǎn):

能夠分析和表示變量之間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。

學(xué)習(xí)過程:

一、學(xué)前準(zhǔn)備。

函數(shù)的三種表示方式,即表格、表達(dá)式、圖象法,我們都不陌生,比如在商店的廣告牌上這樣寫著:一種豆子的售價與購買數(shù)量之間的關(guān)系如下:

x(千克)00。511。522。53。

y(元)0123456。

二、探究活動。

(一)合作探究:

交流完成:

(1)一邊長為xcm,則另一邊長為cm,所以面積為:用函數(shù)表達(dá)式表示:=________________________________。

(2)表格表示:

123456789。

10—。

(3)畫出圖象。

(二)議一議。

(1)在上述問題中,自變量x的取值范圍是什么?

(2)當(dāng)x取何值時,長方形的面積最大?它的最大面積是多少?你是怎樣得到的?請你描述一下y隨x的變化而變化的情況。

點(diǎn)撥:自變量x的取值范圍即是使函數(shù)有意義的自變量的取值范圍。請大家互相交流。

(1)因?yàn)閤是邊長,所以x應(yīng)取數(shù),即x0,又另一邊長(10—x)也應(yīng)大于,即10—x0,所以x10,這兩個條件應(yīng)該同時滿足,所以x的取值范圍是。

(2)當(dāng)x取何值時,長方形的面積最大,就是求自變量取何值時,函數(shù)有最大值,所以要把二次函數(shù)y=—x2+10x化成頂點(diǎn)式。當(dāng)x=—時,函數(shù)y有最大值y最大=。當(dāng)x=時,長方形的面積最大,最大面積是25cm2。

可以通過觀察圖象得知。也可以代入頂點(diǎn)坐標(biāo)公式中求得。。

(三)做一做:學(xué)生獨(dú)立思考完成p62,p63的函數(shù)表達(dá)式,表格,圖象問題。

(1)用函數(shù)表達(dá)式表示:y=________。

(2)用表格表示:

(3)用圖象表示:

三、學(xué)習(xí)體會。

本節(jié)課你有哪些收獲?你還有哪些疑問?

四、自我測試。

1、把長1。6米的鐵絲圍成長方形abcd,設(shè)寬為x(m),面積為y(m2)。則當(dāng)最大時,所取的值是()。

a0。5b0。4c0。3d0。6。

2、兩個數(shù)的和為6,這兩個數(shù)的積最大可能達(dá)到多少?利用圖象描述乘積與因數(shù)之間的關(guān)系。

函數(shù)的教案篇二

教學(xué)目標(biāo):

1、能夠用熱情、歡快的聲音演唱《木瓜恰恰恰》,感受歌曲的歡快情緒和喜悅心情。

2、能夠用打擊樂器為歌曲伴奏。

3、用叫賣的演唱形式表達(dá)歌曲,了解一些相關(guān)文化以及“叫賣”的藝術(shù)形式。

教學(xué)重點(diǎn)及難點(diǎn):

1、用熱情、歡快的聲音演唱《木瓜恰恰恰》。

2、正確地演唱《木瓜恰恰恰》的弱起小節(jié)及切分節(jié)奏。教學(xué)準(zhǔn)備:多媒體(ppt)、flash動畫、歌曲(mp3)、打擊樂器(沙錘、雙響筒、碰鈴等)。

教學(xué)過程:

一、播放《賣湯圓》和《冰糖葫蘆》,學(xué)生走進(jìn)教室。讓學(xué)生感受叫賣調(diào)(歡快、活潑、幽默、詼諧)。

導(dǎo)課:師:同學(xué)們,剛才聽的歌曲你們熟悉嗎?你們知道是賣什么的?像這種類型的歌曲叫什么歌?介紹叫賣歌。今天,咱們學(xué)習(xí)一首印尼叫賣歌曲《木瓜恰恰恰》板書課題。

二、走入印尼國家。

1、師:印尼是哪個國家?知道嗎?(印度尼西亞)。你們想去看看嗎?師:印度尼西亞,是“水中島國”,是由許多大小島嶼組成的群島國家,又稱“千島之國”。這里火山活躍,又被稱為“火山之國”。該國家盛產(chǎn)水果。它的首都是雅加達(dá),有“歌舞之邦”的美稱,生活在各島上的100多個民族都有自己獨(dú)特的民歌、舞蹈和樂器,各族人民都非常熱愛音樂,尤其在印度尼西亞的著名旅游勝地——巴厘島,舞蹈已成為人民生活的一部分。

師:你們感受到印尼美嗎?(學(xué)生答)。

2、出示印尼水果市場。

師:我們又來到了哪里?(水果市場)印度尼西亞的水果特別多,集市上到處都有各種各樣的水果,可真是琳瑯滿目。到處都有吆喝聲叫賣水果聲。咱們有沒有興趣來學(xué)學(xué)各種叫賣聲,看誰的叫賣聲最能吸引顧客來光顧。

二、感受歌曲,解決重難點(diǎn)。

1、播放《木瓜恰恰恰》flash動畫。

師:歌曲給你帶來什么感受?(歡快、活潑、高興等)。

2、范唱歌曲。

師:你聽出來歌曲中唱到哪些水果?(番石榴、菠蘿等)。

3、介紹弱起小節(jié)和切分音。

4、跟老師一起讀有節(jié)奏的.叫賣聲,雙手拍腿。

師:這個恰恰恰是輕快的還是笨重的?出現(xiàn)在每個樂句的前面還是末尾?(師生一起說“恰恰恰”。)。

4、師生一起隨著歌聲唱唱輕快的“恰恰恰”。(“恰恰恰”聲音要求輕巧、有彈性)。

5.如果讓你給這段歌聲加上伴奏的話,你覺得在哪兒加比較合適?(生略)讓我們拿起自己制作的沙錘或其他打擊樂器為音樂加上伴奏。

6、師:除了用樂器還可以用什么來表現(xiàn)恰恰恰韻律(扭胯)。

7、我們一起邊說邊做,看誰的動作既能合上音樂的感覺又和別人都不一樣(師生共同扭胯)。(發(fā)現(xiàn)較好學(xué)生,請她上臺帶領(lǐng)同學(xué)們再來一次。)。

8、師:剛才我們又唱又跳,真開心!師:下面我們來學(xué)唱這首歌。

四、學(xué)唱歌曲。

1、讓學(xué)生用“啦”哼唱歌曲。

2、跟琴學(xué)唱歌譜。

3、完整演唱歌譜。

4、按節(jié)奏讀歌詞。

5、教唱歌詞。

6、完整演唱歌曲。

五、用多種形式表演歌曲。

分組唱:一組唱,另一組打節(jié)奏。

師生合作:跟伴奏,邊唱邊表演打節(jié)奏。

教師小結(jié)。

師:今天,我們通過對叫賣歌曲的學(xué)習(xí),了解了叫賣歌曲的特點(diǎn),這些極富情趣的演唱給了我們極大的藝術(shù)享受。其實(shí)啊,這些音樂都來源于我們的生活,只要你多做有心人,你也一定可以創(chuàng)作出動聽有趣的音樂。好,今天的音樂課我們就上到這里,下課。

函數(shù)的教案篇三

我們前面學(xué)習(xí)了指數(shù)運(yùn)算,在此基礎(chǔ)上,今天我們要來研究一類新的常見函數(shù)-------.

1.6.(板書)。

這類函數(shù)之所以重點(diǎn)介紹的原因就是它是實(shí)際生活中的一種需要.比如我們看下面的問題:。

由學(xué)生回答:與之間的關(guān)系式,可以表示為.

問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了次后繩子剩余的長度為米,試寫出與之間的函數(shù)關(guān)系.

由學(xué)生回答:.

在以上兩個實(shí)例中我們可以看到這兩個函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為.

一.的概念(板書)。

1.定義:形如的函數(shù)稱為.(板書)教師在給出定義之后再對定義作幾點(diǎn)說明.

2.幾點(diǎn)說明(板書)。

(1)關(guān)于對的規(guī)定:。

教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學(xué)生感到有困難,可將問題分解為若會有什么問題?如,此時,等在實(shí)數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在.

若對于都無意義,若則無論取何值,它總是1,對它沒有研究的必要.為了避免上述各種情況的發(fā)生,所以規(guī)定且.

(2)關(guān)于的定義域(板書)。

教師引導(dǎo)學(xué)生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù).此時教師可指出,其實(shí)當(dāng)指數(shù)為無理數(shù)時,也是一個確定的實(shí)數(shù),對于無理指數(shù)冪,學(xué)過的有理指數(shù)冪的性質(zhì)和運(yùn)算法則它都適用,所以將指數(shù)范圍擴(kuò)充為實(shí)數(shù)范圍,所以的定義域?yàn)?擴(kuò)充的另一個原因是因?yàn)槭顾叽砀袘?yīng)用價值.

(3)關(guān)于是否是的判斷(板書)。

剛才分別認(rèn)識了中底數(shù),指數(shù)的要求,下面我們從整體的角度來認(rèn)識一下,根據(jù)定義我們知道什么樣的函數(shù)是,請看下面函數(shù)是否是.

學(xué)生回答并說明理由,教師根據(jù)情況作點(diǎn)評,指出只有(1)和(3)是,其中(3)可以寫成,也是指數(shù)圖象.

最后提醒學(xué)生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時研究的關(guān)鍵在于畫出它的圖象,再細(xì)致歸納性質(zhì).

3.歸納性質(zhì)。

作圖的用什么方法.用列表描點(diǎn)發(fā)現(xiàn),教師準(zhǔn)備明確性質(zhì),再由學(xué)生回答.

函數(shù)。

1.定義域:。

2.值域:。

3.奇偶性:既不是奇函數(shù)也不是偶函數(shù)。

4.截距:在軸上沒有,在軸上為1.

對于性質(zhì)1和2可以兩條合在一起說,并追問起什么作用.(確定圖象存在的大致位置)對第3條還應(yīng)會證明.對于單調(diào)性,我建議找一些特殊點(diǎn).,先看一看,再下定論.對最后一條也是指導(dǎo)函數(shù)圖象畫圖的依據(jù).(圖象位于軸上方,且與軸不相交.)。

在此基礎(chǔ)上,教師可指導(dǎo)學(xué)生列表,描點(diǎn)了.取點(diǎn)時還要提醒學(xué)生由于不具備對稱性,故的值應(yīng)有正有負(fù),且由于單調(diào)性不清,所取點(diǎn)的個數(shù)不能太少.

此處教師可利用計算機(jī)列表描點(diǎn),給出十組數(shù)據(jù),而學(xué)生自己列表描點(diǎn),至少六組數(shù)據(jù).連點(diǎn)成線時,一定提醒學(xué)生圖象的變化趨勢(當(dāng)越小,圖象越靠近軸,越大,圖象上升的越快),并連出光滑曲線.

二.圖象與性質(zhì)(板書)。

1.圖象的畫法:性質(zhì)指導(dǎo)下的列表描點(diǎn)法.

2.草圖:。

當(dāng)畫完第一個圖象之后,可問學(xué)生是否需要再畫第二個?它是否具有代表性?(教師可提示底數(shù)的條件是且,取值可分為兩段)讓學(xué)生明白需再畫第二個,不妨取為例.

此時畫它的圖象的方法應(yīng)讓學(xué)生來選擇,應(yīng)讓學(xué)生意識到列表描點(diǎn)不是唯一的方法,而圖象變換的方法更為簡單.即=與圖象之間關(guān)于軸對稱,而此時的圖象已經(jīng)有了,具備了變換的條件.讓學(xué)生自己做對稱,教師借助計算機(jī)畫圖,在同一坐標(biāo)系下得到的圖象.

最后問學(xué)生是否需要再畫.(可能有兩種可能性,若學(xué)生認(rèn)為無需再畫,則追問其原因并要求其說出性質(zhì),若認(rèn)為還需畫,則教師可利用計算機(jī)再畫出如的圖象一起比較,再找共性)。

由于圖象是形的特征,所以先從幾何角度看它們有什么特征.教師可列一個表,如下:。

以上內(nèi)容學(xué)生說不齊的,教師可適當(dāng)提出觀察角度讓學(xué)生去描述,然后再讓學(xué)生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿.

填好后,讓學(xué)生仿照此例再列一個的表,將相應(yīng)的內(nèi)容填好.為進(jìn)一步整理性質(zhì),教師可提出從另一個角度來分類,整理函數(shù)的性質(zhì).

3.性質(zhì).

(1)無論為何值,都有定義域?yàn)?值域?yàn)?都過點(diǎn).

(2)時,在定義域內(nèi)為增函數(shù),時,為減函數(shù).

(3)時,,時,.

總結(jié)之后,特別提醒學(xué)生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì).

三.簡單應(yīng)用(板書)。

1.利用單調(diào)性比大小.(板書)。

一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡單的問題.首先我們來看下面的問題.

例1.比較下列各組數(shù)的大小。

(1)與;(2)與;(3)與1.(板書)。

首先讓學(xué)生觀察兩個數(shù)的特點(diǎn),有什么相同?由學(xué)生指出它們底數(shù)相同,指數(shù)不同.再追問根據(jù)這個特點(diǎn),用什么方法來比較它們的大小呢?讓學(xué)生聯(lián)想,提出構(gòu)造函數(shù)的方法,即把這兩個數(shù)看作某個函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小.然后以第(1)題為例,給出解答過程.

解:在上是增函數(shù),且.(板書)教師最后再強(qiáng)調(diào)過程必須寫清三句話:。

(1)構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性.

(2)自變量的大小比較.

(3)函數(shù)值的大小比較.

后兩個題的過程略.要求學(xué)生仿照第(1)題敘述過程.

例2.比較下列各組數(shù)的大小(1)與;(2)與;(3)與.(板書)。

先讓學(xué)生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法.引導(dǎo)學(xué)生發(fā)現(xiàn)對(1)來說可以寫成,這樣就可以轉(zhuǎn)化成同底的問題,再用例1的方法解決,對(2)來說可以寫成,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學(xué)生思考解決.(教師可提示學(xué)生的函數(shù)值與1有關(guān),可以用1來起橋梁作用)。

最后由學(xué)生說出1,1,.

解決后由教師小結(jié)比較大小的方法。

(1)構(gòu)造函數(shù)的方法:數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)。

(2)搭橋比較法:用特殊的數(shù)1或0.

函數(shù)的教案篇四

2、內(nèi)容解析:教材的地位和作用:本節(jié)課主要是在學(xué)生學(xué)習(xí)了函數(shù)圖象的基礎(chǔ)上,通過動手操作接受一次函數(shù)圖象是直線這一事實(shí),在實(shí)踐中體會兩點(diǎn)法的簡便,向?qū)W生滲透數(shù)形結(jié)合的數(shù)學(xué)思想,以使學(xué)生借助直觀的圖形,生動形象的變化來發(fā)現(xiàn)兩個一次函數(shù)圖象在直角坐標(biāo)系中的位置關(guān)系。培養(yǎng)學(xué)生主動學(xué)習(xí)、主動探索、合作學(xué)習(xí)的能力。本節(jié)課為探索一次函數(shù)性質(zhì)作準(zhǔn)備。

1、教學(xué)目標(biāo)的確定。

教學(xué)目標(biāo)是教學(xué)的.出發(fā)點(diǎn)和歸宿。因此,我根據(jù)新課標(biāo)的知識、能力和德育目標(biāo)的要求,以學(xué)生的認(rèn)知點(diǎn),心理特點(diǎn)和本課的特點(diǎn)來制定教學(xué)目標(biāo)。

知識目標(biāo)。

(1)能用兩點(diǎn)法畫出一次函數(shù)的圖象。

(2)結(jié)合圖象,理解直線y=kx+b(k、b是常數(shù),k0)常數(shù)k和b的取值對于直線的位置的影響。

能力目標(biāo)。

(1)通過操作、觀察,培養(yǎng)學(xué)生動手和歸納的能力。

(2)結(jié)合具體情境向?qū)W生滲透數(shù)形結(jié)合的數(shù)學(xué)思想。

情感目標(biāo)。

(1)通過動手操作,觀察探索一次函數(shù)的特征,體驗(yàn)數(shù)學(xué)研究和發(fā)現(xiàn)的過程,逐步培養(yǎng)學(xué)生在教學(xué)活動中的主動探索的意識和合作交流的習(xí)慣。

(2)讓學(xué)生通過直觀感知、動手操作去經(jīng)歷、體會規(guī)律形成的過程。

2、教學(xué)重點(diǎn)、難點(diǎn)。

用兩點(diǎn)法畫出一次函數(shù)的圖象是研究一次函數(shù)的性質(zhì)的基礎(chǔ),是本節(jié)課的重點(diǎn)。直線y=kx+b(k、b是常數(shù),k0)常數(shù)k和b的取值對于直線的位置的影響,是本節(jié)課的難點(diǎn)。關(guān)鍵是通過學(xué)生的直觀感知、動手操作、合作交流歸納其規(guī)律。

1、由用描點(diǎn)法畫函數(shù)的圖象的認(rèn)識,學(xué)生能接受一次函數(shù)的圖象是直線,結(jié)合兩點(diǎn)確定一條直線,學(xué)生能畫出一次函數(shù)圖象。

2、根據(jù)學(xué)生抽象歸納能力較差,學(xué)習(xí)直線y=kx+b(k、b是常數(shù),k0)常數(shù)k和b的取值對于直線的位置的影響有難度。所以教學(xué)中應(yīng)盡可能多地讓學(xué)生動手操作,突出圖象變化特征的探索過程,自主探索出其規(guī)律。

3、抓住初中學(xué)生的心理特征,運(yùn)用直觀生動的形象,引發(fā)學(xué)生的興趣,吸引他們的注意力;另一方面積極創(chuàng)造條件和機(jī)會,讓學(xué)生發(fā)表見解,發(fā)揮學(xué)生學(xué)習(xí)的主動性。

恰當(dāng)運(yùn)用現(xiàn)代教育技術(shù)手段,采用自主探究合作交流式教學(xué),讓學(xué)生動手操作,主動去探索,小組合作交流。而互動式教學(xué)將顧及到全體學(xué)生,讓全體學(xué)生都參與,達(dá)到優(yōu)生得到培養(yǎng),后進(jìn)生也有所收獲的效果。

(一)、設(shè)疑,導(dǎo)入新課(2分鐘)。

通過前面的學(xué)習(xí)我們可以發(fā)現(xiàn),一次函數(shù)是一種特殊的函數(shù),那么一次函數(shù)的圖象是什么形狀呢?一次函數(shù)的圖象。(板書課題)。

函數(shù)的教案篇五

1.掌握對數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進(jìn)行初步的應(yīng)用。

(1)能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個函數(shù)圖象間的關(guān)系正確描繪對數(shù)函數(shù)的圖象。

(2)能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實(shí)質(zhì)去研究認(rèn)識對數(shù)函數(shù)的性質(zhì),初步學(xué)會用對數(shù)函數(shù)的性質(zhì)解決簡單的問題。

2.通過對數(shù)函數(shù)概念的學(xué)習(xí),樹立相互聯(lián)系相互轉(zhuǎn)化的觀點(diǎn),通過對數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力。

3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質(zhì)上的對比,對學(xué)生進(jìn)行對稱美,簡潔美等審美教育,調(diào)動學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。

(1)對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的。故是對上述知識的應(yīng)用,也是對函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識與理解。對數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸。它是解決有關(guān)自然科學(xué)領(lǐng)域中實(shí)際問題的重要工具,是學(xué)生今后學(xué)習(xí)對數(shù)方程,對數(shù)不等式的基礎(chǔ)。

(2)本節(jié)的教學(xué)重點(diǎn)是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì)。難點(diǎn)是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì)。由于對數(shù)函數(shù)的概念是一個抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點(diǎn)。

(3)本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開。而通過互為反函數(shù)的兩個函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點(diǎn)。

(1)對數(shù)函數(shù)在引入時,就應(yīng)從學(xué)生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。

(2)在本節(jié)課中結(jié)合對數(shù)函數(shù)教學(xué)的特點(diǎn),一定要讓學(xué)生動手做,動腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向。這樣既增強(qiáng)了學(xué)生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣。

函數(shù)的教案篇六

數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境——提出數(shù)學(xué)問題——嘗試解決問題——驗(yàn)證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。

三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教a版)數(shù)學(xué)必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導(dǎo)公式中的公式(二)至公式(六).本節(jié)是第一課時,教學(xué)內(nèi)容為公式(二)、(三)、(四).教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導(dǎo)公式(一)的基礎(chǔ)上,利用對稱思想發(fā)現(xiàn)任意角與終邊的對稱關(guān)系,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導(dǎo)公式公式(二)、(三)、(四).同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求.為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.

本節(jié)課的授課對象是本校高一(1)班全體同學(xué),本班學(xué)生水平處于中等偏下,但本班學(xué)生具有善于動手的良好學(xué)習(xí)習(xí)慣,所以采用發(fā)現(xiàn)的教學(xué)方法應(yīng)該能輕松的完成本節(jié)課的教學(xué)內(nèi)容.

(1).基礎(chǔ)知識目標(biāo):理解誘導(dǎo)公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導(dǎo)公式;。

(4).個性品質(zhì)目標(biāo):通過誘導(dǎo)公式的學(xué)習(xí)和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運(yùn)用化歸等數(shù)學(xué)思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學(xué)生的唯物史觀.

理解并掌握誘導(dǎo)公式.

正確運(yùn)用誘導(dǎo)公式,求三角函數(shù)值,化簡三角函數(shù)式.

“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學(xué)生數(shù)學(xué)知識,更重要的是傳授給學(xué)生數(shù)學(xué)思想方法,如何實(shí)現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認(rèn)真探究.下面我從教法、學(xué)法、預(yù)期效果等三個方面做如下分析.

數(shù)學(xué)教學(xué)是數(shù)學(xué)思維活動的教學(xué),而不僅僅是數(shù)學(xué)活動的結(jié)果,數(shù)學(xué)學(xué)習(xí)的目的不僅僅是為了獲得數(shù)學(xué)知識,更主要作用是為了訓(xùn)練人的思維技能,提高人的思維品質(zhì).

在本節(jié)課的教學(xué)過程中,本人以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式,還給學(xué)生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學(xué)習(xí)環(huán)境,讓學(xué)生體味學(xué)習(xí)的快樂和成功的喜悅.

“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的人”,很多課堂教學(xué)常常以高起點(diǎn)、大容量、快推進(jìn)的做法,以便教給學(xué)生更多的知識點(diǎn),卻忽略了學(xué)生接受知識需要時間消化,進(jìn)而泯滅了學(xué)生學(xué)習(xí)的興趣與熱情.如何能讓學(xué)生最大程度的消化知識,提高學(xué)習(xí)熱情是教者必須思考的問題.

在本節(jié)課的教學(xué)過程中,本人引導(dǎo)學(xué)生的學(xué)法為思考問題共同探討解決問題簡單應(yīng)用重現(xiàn)探索過程練習(xí)鞏固.讓學(xué)生參與探索的全部過程,讓學(xué)生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學(xué)習(xí)轉(zhuǎn)化為主動的自主學(xué)習(xí).

1.復(fù)習(xí)銳角300,450,600的三角函數(shù)值;。

2.復(fù)習(xí)任意角的三角函數(shù)定義;。

3.問題:由,你能否知道sin2100的值嗎?引如新課.

自信的鼓勵是增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的自信,簡單易做的題加強(qiáng)了每個學(xué)生學(xué)習(xí)的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學(xué)生既有好像會做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機(jī)會證明我能行,從而思考解決的辦法.

1.讓學(xué)生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關(guān)系;。

2100與sin300之間有什么關(guān)系.

由特殊問題的引入,使學(xué)生容易了解,實(shí)現(xiàn)教學(xué)過程的平淡過度,為同學(xué)們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系做好鋪墊.

函數(shù)的教案篇七

1.能從二倍角的正弦、余弦、正切公式導(dǎo)出半角公式,了解它們的內(nèi)在聯(lián)系;揭示知識背景,引發(fā)學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生分析、探求的學(xué)習(xí)態(tài)度,強(qiáng)化學(xué)生的參與意識.并培養(yǎng)學(xué)生綜合分析能力.

2.掌握公式及其推導(dǎo)過程,會用公式進(jìn)行化簡、求值和證明。

3.通過公式推導(dǎo),掌握半角與倍角之間及半角公式與倍角公式之間的聯(lián)系,培養(yǎng)邏輯推理能力。

二、過程與方法。

2.通過例題講解,總結(jié)方法.通過做練習(xí),鞏固所學(xué)知識.

三、情感、態(tài)度與價值觀。

1.通過公式的推導(dǎo),了解半角公式和倍角公式之間的內(nèi)在聯(lián)系,從而培養(yǎng)邏輯推理能力和辯證唯物主義觀點(diǎn)。

2.培養(yǎng)用聯(lián)系的觀點(diǎn)看問題的觀點(diǎn)。

【教學(xué)重點(diǎn)與難點(diǎn)】:

重點(diǎn):半角公式的推導(dǎo)與應(yīng)用(求值、化簡、證明)。

難點(diǎn):半角公式與倍角公式之間的內(nèi)在聯(lián)系,以及運(yùn)用公式時正負(fù)號的選取。

【學(xué)法與教學(xué)用具】:

1.學(xué)法:

(1)自主+探究性學(xué)習(xí):讓學(xué)生自己由和角公式導(dǎo)出倍角公式,領(lǐng)會從一般化歸為特殊的數(shù)學(xué)思想,體會公式所蘊(yùn)涵的和諧美,激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣。

(2)反饋練習(xí)法:以練習(xí)來檢驗(yàn)知識的應(yīng)用情況,找出未掌握的內(nèi)容及其存在的差距.

2.教學(xué)方法:觀察、歸納、啟發(fā)、探究相結(jié)合的教學(xué)方法。

引導(dǎo)學(xué)生復(fù)習(xí)二倍角公式,按課本知識結(jié)構(gòu)設(shè)置提問引導(dǎo)學(xué)生動手推導(dǎo)出半角公式,課堂上在老師引導(dǎo)下,以學(xué)生為主體,分析公式的結(jié)構(gòu)特征,會根據(jù)公式特點(diǎn)得出公式的應(yīng)用,用公式來進(jìn)行化簡證明和求值,老師為學(xué)生創(chuàng)設(shè)問題情景,鼓勵學(xué)生積極探究。

3.教學(xué)用具:多媒體、實(shí)物投影儀.

【授課類型】:新授課。

【課時安排】:1課時。

【教學(xué)思路】:

一、創(chuàng)設(shè)情景,揭示課題。

二、研探新知。

四、鞏固深化,反饋矯正。

五、歸納整理,整體認(rèn)識。

1.鞏固倍角公式,會推導(dǎo)半角公式、和差化積及積化和差公式。

2.熟悉"倍角"與"二次"的關(guān)系(升角--降次,降角--升次).

3.特別注意公式的三角表達(dá)形式,且要善于變形:

4.半角公式左邊是平方形式,只要知道角終邊所在象限,就可以開平方;公式的"本質(zhì)"是用?角的余弦表示角的正弦、余弦、正切.

5.注意公式的結(jié)構(gòu),尤其是符號.

六、承上啟下,留下懸念。

七、板書設(shè)計(略)。

八、課后記:略。

函數(shù)的教案篇八

1、使學(xué)生掌握的概念,圖象和性質(zhì)。

(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域。

(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出的圖象,能從數(shù)形兩方面認(rèn)識的性質(zhì)。

(3)x能利用的性質(zhì)比較某些冪形數(shù)的大小,會利用的圖象畫出形如x的圖象。

2、x通過對的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會數(shù)形結(jié)合的思想方法。

3、通過對的研究,讓學(xué)生認(rèn)識到數(shù)學(xué)的應(yīng)用價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題。

(1)x是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以應(yīng)重點(diǎn)研究。

(2)x本節(jié)的教學(xué)重點(diǎn)是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì)。難點(diǎn)是對底數(shù)x在x和x時,函數(shù)值變化情況的區(qū)分。

(3)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究。

(1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是x的樣子,不能有一點(diǎn)差異,諸如x,x等都不是。

(2)對底數(shù)x的限制條件的理解與認(rèn)識也是認(rèn)識的重要內(nèi)容。如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說明,因?yàn)閷@個條件的認(rèn)識不僅關(guān)系到對的認(rèn)識及性質(zhì)的分類討論,還關(guān)系到后面對數(shù)函數(shù)中底數(shù)的認(rèn)識,所以一定要真正了解它的由來。

關(guān)于圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認(rèn)識后,以此為指導(dǎo)再列表計算,描點(diǎn)得圖象。

1、x理解的定義,初步掌握的圖象,性質(zhì)及其簡單應(yīng)用。

2、x通過的圖象和性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析,歸納的能力,進(jìn)一步體會數(shù)形結(jié)合的思想方法。

3、x通過對的研究,使學(xué)生能把握函數(shù)研究的基本方法,激發(fā)學(xué)生的學(xué)習(xí)興趣。

重點(diǎn)是理解的定義,把握圖象和性質(zhì)。

難點(diǎn)是認(rèn)識底數(shù)對函數(shù)值影響的認(rèn)識。

投影儀。

啟發(fā)討論研究式。

一、x引入新課。

我們前面學(xué)習(xí)了指數(shù)運(yùn)算,在此基礎(chǔ)上,今天我們要來研究一類新的.常見函數(shù)。

1、6、(板書)。

這類函數(shù)之所以重點(diǎn)介紹的原因就是它是實(shí)際生活中的一種需要。比如我們看下面的問題:

由學(xué)生回答:x與x之間的關(guān)系式,可以表示為x。

問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了x次后繩子剩余的長度為x米,試寫出x與x之間的函數(shù)關(guān)系。

由學(xué)生回答:x。

在以上兩個實(shí)例中我們可以看到這兩個函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量x均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為。

x的概念(板書)。

1、定義:形如x的函數(shù)稱為。(板書)。

教師在給出定義之后再對定義作幾點(diǎn)說明。

2、幾點(diǎn)說明x(板書)。

(1)x關(guān)于對x的規(guī)定:

教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學(xué)生感到有困難,可將問題分解為若x會有什么問題?如x,此時x,x等在實(shí)數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在。

若x對于x都無意義,若x則x無論x取何值,它總是1,對它沒有研究的必要。為了避免上述各種情況的發(fā)生,所以規(guī)定x且x。

(2)關(guān)于的定義域x(板書)。

教師引導(dǎo)學(xué)生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù)。此時教師可指出,其實(shí)當(dāng)指數(shù)為無理數(shù)時,x也是一個確定的實(shí)數(shù),對于無理指數(shù)冪,學(xué)過的有理指數(shù)冪的"性質(zhì)和運(yùn)算法則它都適用,所以將指數(shù)范圍擴(kuò)充為實(shí)數(shù)范圍,所以的定義域?yàn)閤。擴(kuò)充的另一個原因是因?yàn)槭顾叽砀袘?yīng)用價值。

(3)關(guān)于是否是的判斷(板書)。

剛才分別認(rèn)識了中底數(shù),指數(shù)的要求,下面我們從整體的角度來認(rèn)識一下,根據(jù)定義我們知道什么樣的函數(shù)是,請看下面函數(shù)是否是。

(4)x,x。

(5)x。

學(xué)生回答并說明理由,教師根據(jù)情況作點(diǎn)評,指出只有(1)和(3)是,其中(3)x可以寫成x,也是指數(shù)圖象。

最后提醒學(xué)生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時研究的關(guān)鍵在于畫出它的圖象,再細(xì)致歸納性質(zhì)。

3、歸納性質(zhì)。

作圖的用什么方法。用列表描點(diǎn)發(fā)現(xiàn),教師準(zhǔn)備明確性質(zhì),再由學(xué)生回答。

函數(shù)。

1、定義域x:

2、值域:

3、奇偶性x:既不是奇函數(shù)也不是偶函數(shù)。

4、截距:在x軸上沒有,在x軸上為1。

對于性質(zhì)1和2可以兩條合在一起說,并追問起什么作用。(確定圖象存在的大致位置)對第3條還應(yīng)會證明。對于單調(diào)性,我建議找一些特殊點(diǎn)。,先看一看,再下定論。對最后一條也是指導(dǎo)函數(shù)圖象畫圖的依據(jù)。(圖象位于x軸上方,且與x軸不相交。)。

在此基礎(chǔ)上,教師可指導(dǎo)學(xué)生列表,描點(diǎn)了。取點(diǎn)時還要提醒學(xué)生由于不具備對稱性,故x的值應(yīng)有正有負(fù),且由于單調(diào)性不清,所取點(diǎn)的個數(shù)不能太少。

此處教師可利用計算機(jī)列表描點(diǎn),給出十組數(shù)據(jù),而學(xué)生自己列表描點(diǎn),至少六組數(shù)據(jù)。連點(diǎn)成線時,一定提醒學(xué)生圖象的變化趨勢(當(dāng)x越小,圖象越靠近x軸,x越大,圖象上升的越快),并連出光滑曲線。

二、圖象與性質(zhì)(板書)。

1、圖象的畫法:性質(zhì)指導(dǎo)下的列表描點(diǎn)法。

2、草圖:

當(dāng)畫完第一個圖象之后,可問學(xué)生是否需要再畫第二個?它是否具有代表性?(教師可提示底數(shù)的條件是且x,取值可分為兩段)讓學(xué)生明白需再畫第二個,不妨取x為例。

此時畫它的圖象的方法應(yīng)讓學(xué)生來選擇,應(yīng)讓學(xué)生意識到列表描點(diǎn)不是唯一的方法,而圖象變換的方法更為簡單。即x=x與x圖象之間關(guān)于x軸對稱,而此時x的圖象已經(jīng)有了,具備了變換的條件。讓學(xué)生自己做對稱,教師借助計算機(jī)畫圖,在同一坐標(biāo)系下得到x的圖象。

最后問學(xué)生是否需要再畫。(可能有兩種可能性,若學(xué)生認(rèn)為無需再畫,則追問其原因并要求其說出性質(zhì),若認(rèn)為還需畫,則教師可利用計算機(jī)再畫出如x的圖象一起比較,再找共性)。

由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個表,如下:

以上內(nèi)容學(xué)生說不齊的,教師可適當(dāng)提出觀察角度讓學(xué)生去描述,然后再讓學(xué)生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿。

填好后,讓學(xué)生仿照此例再列一個x的表,將相應(yīng)的內(nèi)容填好。為進(jìn)一步整理性質(zhì),教師可提出從另一個角度來分類,整理函數(shù)的性質(zhì)。

3、性質(zhì)。

(1)無論x為何值,x都有定義域?yàn)閤,值域?yàn)閤,都過點(diǎn)x。

(2)x時,x在定義域內(nèi)為增函數(shù),x時,x為減函數(shù)。

(3)x時,x,xx時,x。

總結(jié)之后,特別提醒學(xué)生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì)。

三、簡單應(yīng)用x(板書)。

1、利用單調(diào)性比大小。x(板書)。

一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡單的問題。首先我們來看下面的問題。

例1、x比較下列各組數(shù)的大小。

(1)x與x;x(2)x與x;。

(3)x與1x。(板書)。

首先讓學(xué)生觀察兩個數(shù)的特點(diǎn),有什么相同?由學(xué)生指出它們底數(shù)相同,指數(shù)不同。再追問根據(jù)這個特點(diǎn),用什么方法來比較它們的大小呢?讓學(xué)生聯(lián)想,提出構(gòu)造函數(shù)的方法,即把這兩個數(shù)看作某個函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小。然后以第(1)題為例,給出解答過程。

解:x在x上是增函數(shù),且x。(板書)。

教師最后再強(qiáng)調(diào)過程必須寫清三句話:

(1)x構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性。

(2)x自變量的大小比較。

(3)x函數(shù)值的大小比較。

后兩個題的過程略。要求學(xué)生仿照第(1)題敘述過程。

例2。比較下列各組數(shù)的大小。

(1)x與x;x(2)x與x;。

(3)x與x。(板書)。

先讓學(xué)生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法。引導(dǎo)學(xué)生發(fā)現(xiàn)對(1)來說x可以寫成x,這樣就可以轉(zhuǎn)化成同底的問題,再用例1的方法解決,對(2)來說x可以寫成x,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學(xué)生思考解決。(教師可提示學(xué)生的函數(shù)值與1有關(guān),可以用1來起橋梁作用)。

最后由學(xué)生說出x1,1。

解決后由教師小結(jié)比較大小的方法。

(1)x構(gòu)造函數(shù)的方法:x數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)。

(2)x搭橋比較法:x用特殊的數(shù)1或0。

四、鞏固練習(xí)。

練習(xí):比較下列各組數(shù)的大?。ò鍟?。

(1)x與xx(2)x與x;。

(3)x與x;x(4)x與x。解答過程略。

五、小結(jié)。

1、的概念。

2、的圖象和性質(zhì)。

3、簡單應(yīng)用。

六、板書設(shè)計。

函數(shù)的教案篇九

啟發(fā)研討式。

投影儀。

教學(xué)過程。

一、引入新課。

提問:什么是指數(shù)函數(shù)?指數(shù)函數(shù)存在反函數(shù)嗎?

由學(xué)生說出是指數(shù)函數(shù),它是存在反函數(shù)的、并由一個學(xué)生口答求反函數(shù)的過程:

由得、又的值域?yàn)?,所求反函?shù)為、

那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)對數(shù)函數(shù)、

1、作圖方法。

具體操作時,要求學(xué)生做到:

(1)指數(shù)函數(shù)和的圖像要盡量準(zhǔn)確(關(guān)鍵點(diǎn)的位置,圖像的變化趨勢等)、

(2)畫出直線、

學(xué)生在筆記本完成具體操作,教師在學(xué)生完成后將關(guān)鍵步驟在黑板上演示一遍,畫出和的.圖像、(此時同底的指數(shù)函數(shù)和對數(shù)函數(shù)畫在同一坐標(biāo)系內(nèi))如圖:

2、草圖。

教師畫完圖后再利用投影儀將和的圖像畫在同一坐標(biāo)系內(nèi),如圖:

然后提出讓學(xué)生根據(jù)圖像說出對數(shù)函數(shù)的性質(zhì)(要求從幾何與代數(shù)兩個角度說明)。

3、性質(zhì)。

(1)定義域:

(2)值域:

由以上兩條可說明圖像位于軸的右側(cè)、

(3)截距:令得,即在軸上的截距為1,與軸無交點(diǎn)即以軸為漸近線、

(4)奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關(guān)于原點(diǎn)對稱,也不關(guān)于軸對稱、

(5)單調(diào)性:與有關(guān)、當(dāng)時,在上是增函數(shù)、即圖像是上升的。

當(dāng)時,在上是減函數(shù),即圖像是下降的、

之后可以追問學(xué)生有沒有最大值和最小值,當(dāng)?shù)玫椒穸ù鸢笗r,可以再問能否看待何時函數(shù)值為正?學(xué)生看著圖可以答出應(yīng)有兩種情況:

當(dāng)時,有;當(dāng)時,有、

最后教師在總結(jié)時,強(qiáng)調(diào)記住性質(zhì)的關(guān)鍵在于要腦中有圖、且應(yīng)將其性質(zhì)與指數(shù)函數(shù)的性質(zhì)對比記憶、(特別強(qiáng)調(diào)它們單調(diào)性的一致性)。

對圖像和性質(zhì)有了一定的了解后,一起來看看它們的應(yīng)用、

三、鞏固練習(xí)。

練習(xí):若,求的取值范圍、

四、小結(jié)五、作業(yè)略。

函數(shù)的教案篇十

教學(xué)目標(biāo):

知識與技能。

1、初步掌握函數(shù)概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。

2、根據(jù)兩個變量間的關(guān)系式,給定其中一個量,相應(yīng)地會求出另一個量的值。

3、會對一個具體實(shí)例進(jìn)行概括抽象成為數(shù)學(xué)問題。

過程與方法。

1、通過函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點(diǎn)認(rèn)識現(xiàn)實(shí)世界的意識和能力。

2、經(jīng)歷具體實(shí)例的抽象概括過程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。

情感與價值觀。

1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。

2、讓學(xué)生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學(xué)知識的理解和有效的學(xué)習(xí)模式。

教學(xué)重點(diǎn):

1、掌握函數(shù)概念。

2、判斷兩個變量之間的關(guān)系是否可看作函數(shù)。

3、能把實(shí)際問題抽象概括為函數(shù)問題。

教學(xué)難點(diǎn):

1、理解函數(shù)的概念。

2、能把實(shí)際問題抽象概括為函數(shù)問題。

教學(xué)過程設(shè)計:

一、創(chuàng)設(shè)問題情境,導(dǎo)入新課。

『師』:同學(xué)們,你們看下圖上面那個像車輪狀的物體是什么?

函數(shù)的教案篇十一

1、使學(xué)生掌握的概念,圖象和性質(zhì)。

(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域。

(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出的圖象,能從數(shù)形兩方面認(rèn)識的性質(zhì)。

(3)x能利用的性質(zhì)比較某些冪形數(shù)的大小,會利用的圖象畫出形如x的圖象。

2、x通過對的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會數(shù)形結(jié)合的思想方法。

3、通過對的研究,讓學(xué)生認(rèn)識到數(shù)學(xué)的應(yīng)用價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題。

(1)x是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以應(yīng)重點(diǎn)研究。

(2)x本節(jié)的教學(xué)重點(diǎn)是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì)。難點(diǎn)是對底數(shù)x在x和x時,函數(shù)值變化情況的區(qū)分。

(3)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究。

(1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是x的樣子,不能有一點(diǎn)差異,諸如x,x等都不是。

(2)對底數(shù)x的限制條件的理解與認(rèn)識也是認(rèn)識的重要內(nèi)容。如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說明,因?yàn)閷@個條件的認(rèn)識不僅關(guān)系到對的認(rèn)識及性質(zhì)的分類討論,還關(guān)系到后面對數(shù)函數(shù)中底數(shù)的認(rèn)識,所以一定要真正了解它的由來。

關(guān)于圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認(rèn)識后,以此為指導(dǎo)再列表計算,描點(diǎn)得圖象。

1。x理解的定義,初步掌握的圖象,性質(zhì)及其簡單應(yīng)用。

2。x通過的圖象和性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析,歸納的能力,進(jìn)一步體會數(shù)形結(jié)合的思想方法。

3。x通過對的研究,使學(xué)生能把握函數(shù)研究的基本方法,激發(fā)學(xué)生的學(xué)習(xí)興趣。

重點(diǎn)是理解的定義,把握圖象和性質(zhì)。

難點(diǎn)是認(rèn)識底數(shù)對函數(shù)值影響的認(rèn)識。

投影儀

啟發(fā)討論研究式

一、x引入新課

我們前面學(xué)習(xí)了指數(shù)運(yùn)算,在此基礎(chǔ)上,今天我們要來研究一類新的常見函數(shù)。

1、6、(板書)

這類函數(shù)之所以重點(diǎn)介紹的原因就是它是實(shí)際生活中的一種需要。比如我們看下面的問題:

由學(xué)生回答:x與x之間的關(guān)系式,可以表示為x。

問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了x次后繩子剩余的長度為x米,試寫出x與x之間的函數(shù)關(guān)系。

由學(xué)生回答:x。

在以上兩個實(shí)例中我們可以看到這兩個函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量x均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為。

x的概念(板書)

1、定義:形如x的函數(shù)稱為。(板書)

教師在給出定義之后再對定義作幾點(diǎn)說明。

2、幾點(diǎn)說明x(板書)

(1)x關(guān)于對x的規(guī)定:

教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學(xué)生感到有困難,可將問題分解為若x會有什么問題?如x,此時x,x等在實(shí)數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在。

若x對于x都無意義,若x則x無論x取何值,它總是1,對它沒有研究的必要。為了避免上述各種情況的發(fā)生,所以規(guī)定x且x。

(2)關(guān)于的定義域x(板書)

教師引導(dǎo)學(xué)生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù)。此時教師可指出,其實(shí)當(dāng)指數(shù)為無理數(shù)時,x也是一個確定的實(shí)數(shù),對于無理指數(shù)冪,學(xué)過的有理指數(shù)冪的"性質(zhì)和運(yùn)算法則它都適用,所以將指數(shù)范圍擴(kuò)充為實(shí)數(shù)范圍,所以的定義域?yàn)閤。擴(kuò)充的另一個原因是因?yàn)槭顾叽砀袘?yīng)用價值。

(3)關(guān)于是否是的判斷(板書)

剛才分別認(rèn)識了中底數(shù),指數(shù)的要求,下面我們從整體的角度來認(rèn)識一下,根據(jù)定義我們知道什么樣的函數(shù)是,請看下面函數(shù)是否是。

(4)x,x

(5)x。

學(xué)生回答并說明理由,教師根據(jù)情況作點(diǎn)評,指出只有(1)和(3)是,其中(3)x可以寫成x,也是指數(shù)圖象。

最后提醒學(xué)生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時研究的關(guān)鍵在于畫出它的圖象,再細(xì)致歸納性質(zhì)。

3、歸納性質(zhì)

作圖的用什么方法。用列表描點(diǎn)發(fā)現(xiàn),教師準(zhǔn)備明確性質(zhì),再由學(xué)生回答。

函數(shù)

1、定義域x:

2、值域:

3、奇偶性x:既不是奇函數(shù)也不是偶函數(shù)

4、截距:在x軸上沒有,在x軸上為1。

對于性質(zhì)1和2可以兩條合在一起說,并追問起什么作用。(確定圖象存在的大致位置)對第3條還應(yīng)會證明。對于單調(diào)性,我建議找一些特殊點(diǎn)。,先看一看,再下定論。對最后一條也是指導(dǎo)函數(shù)圖象畫圖的依據(jù)。(圖象位于x軸上方,且與x軸不相交。)

在此基礎(chǔ)上,教師可指導(dǎo)學(xué)生列表,描點(diǎn)了。取點(diǎn)時還要提醒學(xué)生由于不具備對稱性,故x的值應(yīng)有正有負(fù),且由于單調(diào)性不清,所取點(diǎn)的個數(shù)不能太少。

此處教師可利用計算機(jī)列表描點(diǎn),給出十組數(shù)據(jù),而學(xué)生自己列表描點(diǎn),至少六組數(shù)據(jù)。連點(diǎn)成線時,一定提醒學(xué)生圖象的變化趨勢(當(dāng)x越小,圖象越靠近x軸,x越大,圖象上升的越快),并連出光滑曲線。

二、圖象與性質(zhì)(板書)

1、圖象的畫法:性質(zhì)指導(dǎo)下的列表描點(diǎn)法。

2、草圖:

當(dāng)畫完第一個圖象之后,可問學(xué)生是否需要再畫第二個?它是否具有代表性?(教師可提示底數(shù)的條件是且x,取值可分為兩段)讓學(xué)生明白需再畫第二個,不妨取x為例。

此時畫它的圖象的方法應(yīng)讓學(xué)生來選擇,應(yīng)讓學(xué)生意識到列表描點(diǎn)不是唯一的方法,而圖象變換的方法更為簡單。即x=x與x圖象之間關(guān)于x軸對稱,而此時x的圖象已經(jīng)有了,具備了變換的條件。讓學(xué)生自己做對稱,教師借助計算機(jī)畫圖,在同一坐標(biāo)系下得到x的圖象。

最后問學(xué)生是否需要再畫。(可能有兩種可能性,若學(xué)生認(rèn)為無需再畫,則追問其原因并要求其說出性質(zhì),若認(rèn)為還需畫,則教師可利用計算機(jī)再畫出如x的圖象一起比較,再找共性)

由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個表,如下:

以上內(nèi)容學(xué)生說不齊的,教師可適當(dāng)提出觀察角度讓學(xué)生去描述,然后再讓學(xué)生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿。

填好后,讓學(xué)生仿照此例再列一個x的表,將相應(yīng)的內(nèi)容填好。為進(jìn)一步整理性質(zhì),教師可提出從另一個角度來分類,整理函數(shù)的性質(zhì)。

3、性質(zhì)。

(1)無論x為何值,x都有定義域?yàn)閤,值域?yàn)閤,都過點(diǎn)x。

(2)x時,x在定義域內(nèi)為增函數(shù),x時,x為減函數(shù)。

(3)x時,x,x x時,x。

總結(jié)之后,特別提醒學(xué)生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì)。

三、簡單應(yīng)用x (板書)

1、利用單調(diào)性比大小。x(板書)

一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡單的問題。首先我們來看下面的問題。

例1、x比較下列各組數(shù)的大小

(1)x與x;x(2)x與x;

(3)x與1x。(板書)

首先讓學(xué)生觀察兩個數(shù)的特點(diǎn),有什么相同?由學(xué)生指出它們底數(shù)相同,指數(shù)不同。再追問根據(jù)這個特點(diǎn),用什么方法來比較它們的大小呢?讓學(xué)生聯(lián)想,提出構(gòu)造函數(shù)的方法,即把這兩個數(shù)看作某個函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小。然后以第(1)題為例,給出解答過程。

解:x在x上是增函數(shù),且

教師最后再強(qiáng)調(diào)過程必須寫清三句話:

(1)x構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性。

(2)x自變量的大小比較。

(3)x函數(shù)值的大小比較。

后兩個題的過程略。要求學(xué)生仿照第(1)題敘述過程。

例2。比較下列各組數(shù)的大小

(1)x與x;x(2)x與x ;

(3)x與x。(板書)

先讓學(xué)生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法。引導(dǎo)學(xué)生發(fā)現(xiàn)對(1)來說x可以寫成x,這樣就可以轉(zhuǎn)化成同底的問題,再用例1的方法解決,對(2)來說x可以寫成x,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學(xué)生思考解決。(教師可提示學(xué)生的函數(shù)值與1有關(guān),可以用1來起橋梁作用)

最后由學(xué)生說出x1,1。

解決后由教師小結(jié)比較大小的方法

(1)x構(gòu)造函數(shù)的方法:x數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)

(2)x搭橋比較法:x用特殊的數(shù)1或0。

四、鞏固練習(xí)

練習(xí):比較下列各組數(shù)的大?。ò鍟?/p>

(1)x與x x(2)x與x;

(3)x與x;x(4)x與x。解答過程略

五、小結(jié)

1、的概念

2、的圖象和性質(zhì)

3、簡單應(yīng)用

六、板書設(shè)計

函數(shù)的教案篇十二

2.能較熟練地運(yùn)用指數(shù)函數(shù)的性質(zhì)解決指數(shù)函數(shù)的平移問題;。

指數(shù)函數(shù)的性質(zhì)的應(yīng)用;。

指數(shù)函數(shù)圖象的平移變換.

1.復(fù)習(xí)指數(shù)函數(shù)的概念、圖象和性質(zhì)。

練習(xí):函數(shù)y=ax(a0且a1)的定義域是_____,值域是______,函數(shù)圖象所過的定點(diǎn)坐標(biāo)為.若a1,則當(dāng)x0時,y1;而當(dāng)x0時,y1.若00時,y1;而當(dāng)x0時,y1.

例1解不等式:

(1);(2);。

(3);(4).

小結(jié):解關(guān)于指數(shù)的不等式與判斷幾個指數(shù)值的大小一樣,是指數(shù)性質(zhì)的運(yùn)用,關(guān)鍵是底數(shù)所在的范圍.

例2說明下列函數(shù)的圖象與指數(shù)函數(shù)y=2x的圖象的關(guān)系,并畫出它們的示意圖:

(1);(2);(3);(4).

小結(jié):指數(shù)函數(shù)的平移規(guī)律:y=f(x)左右平移y=f(x+k)(當(dāng)k0時,向左平移,反之向右平移),上下平移y=f(x)+h(當(dāng)h0時,向上平移,反之向下平移).

練習(xí):

(1)將函數(shù)f(x)=3x的圖象向右平移3個單位,再向下平移2個單位,可以得到函數(shù)的圖象.

(2)將函數(shù)f(x)=3x的圖象向右平移2個單位,再向上平移3個單位,可以得到函數(shù)的圖象.

(3)將函數(shù)圖象先向左平移2個單位,再向下平移1個單位所得函數(shù)的解析式是.

(4)對任意的a0且a1,函數(shù)y=a2x1的圖象恒過的定點(diǎn)的坐標(biāo)是.函數(shù)y=a2x-1的圖象恒過的定點(diǎn)的坐標(biāo)是.

小結(jié):指數(shù)函數(shù)的定點(diǎn)往往是解決問題的突破口!定點(diǎn)與單調(diào)性相結(jié)合,就可以構(gòu)造出函數(shù)的簡圖,從而許多問題就可以找到解決的突破口.

(5)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=2x和y=2|x2|的圖象?

(6)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=|2x-1|的圖象?

小結(jié):函數(shù)圖象的對稱變換規(guī)律.

例3已知函數(shù)y=f(x)是定義在r上的奇函數(shù),且x0時,f(x)=1-2x,試畫出此函數(shù)的圖象.

例4求函數(shù)的最小值以及取得最小值時的x值.

小結(jié):復(fù)合函數(shù)常常需要換元來求解其最值.

練習(xí):

(1)函數(shù)y=ax在[0,1]上的最大值與最小值的和為3,則a等于;。

(2)函數(shù)y=2x的值域?yàn)?。

(4)當(dāng)x0時,函數(shù)f(x)=(a2-1)x的值總大于1,求實(shí)數(shù)a的取值范圍.

1.指數(shù)函數(shù)的性質(zhì)及應(yīng)用;。

2.指數(shù)型函數(shù)的定點(diǎn)問題;。

3.指數(shù)型函數(shù)的草圖及其變換規(guī)律.

課本p55-6,7.

(1)函數(shù)f(x)的定義域?yàn)?0,1),則函數(shù)的定義域?yàn)?

(2)對于任意的x1,x2r,若函數(shù)f(x)=2x,試比較的大小.

函數(shù)的教案篇十三

即:一角的正弦大于另一個角的余弦。

2、若,則,。

3、的圖象的對稱中心為(),對稱軸方程為。

4、的圖象的對稱中心為(),對稱軸方程為。

5、及的圖象的對稱中心為()。

6、常用三角公式:。

有理公式:;。

降次公式:,;。

萬能公式:,,(其中)。

7、輔助角公式:,其中。輔助角的位置由坐標(biāo)決定,即角的終邊過點(diǎn)。

8、時,。

9、。

其中為內(nèi)切圓半徑,為外接圓半徑。

特別地:直角中,設(shè)c為斜邊,則內(nèi)切圓半徑,外接圓半徑。

10、的圖象的圖象(時,向左平移個單位,時,向右平移個單位)。

11、解題時,條件中若有出現(xiàn),則可設(shè),。

則。

12、等腰三角形中,若且,則。

13、若等邊三角形的邊長為,則其中線長為,面積為。

14、;。

函數(shù)的教案篇十四

2.通過對抽象符號的認(rèn)識與使用,使學(xué)生在符號表示方面的能力得以提高.。

難點(diǎn):重點(diǎn)是在映射的基礎(chǔ)上理解的概念;

難點(diǎn)是對抽象符號的認(rèn)識與使用.。

投影儀。

自學(xué)研究與啟發(fā)討論式.。

(要求學(xué)生盡量用自己的話描述初中的定義,并試舉出各類學(xué)過的例子)。

提問1.是嗎?

(由學(xué)生討論,發(fā)表各自的意見,有的認(rèn)為它不是,理由是沒有兩個變量,也有的認(rèn)為是,理由是可以可做.)。

現(xiàn)在請同學(xué)們打開書翻到第50頁,從這開始閱讀有關(guān)的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問)。

提問2.新的的定義是什么?能否用最簡單的語言來概括一下.。

(板書)2.2。

一、的概念。

問題3:映射與有何關(guān)系?(一定是映射嗎?映射一定是嗎?)。

引導(dǎo)學(xué)生發(fā)現(xiàn),是特殊的映射,特殊在集合a,b必是非空的數(shù)集.。

2.本質(zhì):是非空數(shù)集到非空數(shù)集的映射.(板書)。

然后讓學(xué)生試回答剛才關(guān)于是不是的問題,要求從映射的角度解釋.。

此時學(xué)生可以清楚的看到滿足映射觀點(diǎn)下的定義,故是一個,這樣解釋就很自然.。

教師繼續(xù)把問題引向深入,提出在映射的觀點(diǎn)下如何解釋是個?

從映射角度看可以是其中定義域是,值域是.。

3.的三要素及其作用(板書)。

例1以下關(guān)系式表示嗎?為什么?

(1);(2).。

解:(1)由有意義得,解得.由于定義域是空集,故它不能表示.。

(2)由有意義得,解得.定義域?yàn)椋涤驗(yàn)椋?/p>

由以上兩題可以看出三要素的作用。

(1)判斷一個關(guān)系是否存在.(板書)。

例2下列各中,哪一個與是同一個.。

(1);(2)(3);(4).。

解:先認(rèn)清,它是(定義域)到(值域)的映射,其中。

再看(1)定義域?yàn)榍?,是不同的?2)定義域?yàn)?,是不同的?/p>

(4),法則是不同的;

而(3)定義域是,值域是,法則是乘2減1,與完全相同.。

(2)判斷兩個是否相同.(板書)。

4.對符號的理解(板書)。

例3已知試求(板書)。

分析:首先讓學(xué)生認(rèn)清的含義,要求學(xué)生能從變量觀點(diǎn)和映射觀點(diǎn)解釋,再進(jìn)行計算.。

含義1:當(dāng)自變量取3時,對應(yīng)的值即;

含義2:定義域中原象3的象,根據(jù)求象的方法知.而應(yīng)表示原象的象,即.。

計算之后,要求學(xué)生了解與的區(qū)別,是常量,而是變量,只是中一個特殊值.。

1.的定義。

2.對三要素的認(rèn)識。

3.對符號的認(rèn)識。

五、

2.2例1.例3.。

一.的概念。

1.定義。

2.本質(zhì)例2.小結(jié):

3.三要素的認(rèn)識及作用。

4.對符號的理解。

探究活動。

答案:

函數(shù)的教案篇十五

(要求學(xué)生盡量用自己的話描述初中函數(shù)的定義,并試舉出各類學(xué)過的函數(shù)例子)

提問1.是函數(shù)嗎?

(由學(xué)生討論,發(fā)表各自的意見,有的認(rèn)為它不是函數(shù),理由是沒有兩個變量,也有的認(rèn)為是函數(shù),理由是可以可做.)

二、新課

現(xiàn)在請同學(xué)們打開書翻到第50頁,從這開始閱讀有關(guān)的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問)

提問2.新的函數(shù)的定義是什么?能否用最簡單的語言來概括一下.

(板書)2.2函數(shù)

一、函數(shù)的概念

問題3:映射與函數(shù)有何關(guān)系?(函數(shù)一定是映射嗎?映射一定是函數(shù)嗎?)

引導(dǎo)學(xué)生發(fā)現(xiàn),函數(shù)是特殊的映射,特殊在集合a,b必是非空的數(shù)集.

2.本質(zhì):函數(shù)是非空數(shù)集到非空數(shù)集的映射.(板書)

然后讓學(xué)生試回答剛才關(guān)于是不是函數(shù)的問題,要求從映射的角度解釋.

此時學(xué)生可以清楚的看到滿足映射觀點(diǎn)下的函數(shù)定義,故是一個函數(shù),這樣解釋就很自然.

教師繼續(xù)把問題引向深入,提出在映射的觀點(diǎn)下如何解釋是個函數(shù)?

從映射角度看可以是其中定義域是,值域是.

3.函數(shù)的三要素及其作用(板書)

以下關(guān)系式表示函數(shù)嗎?為什么?

(1);(2).

解:(1)由有意義得,解得.由于定義域是空集,故它不能表示函數(shù).

(2)由有意義得,解得.定義域?yàn)?,值域?yàn)椋?/p>

由以上兩題可以看出三要素的作用

(1)判斷一個函數(shù)關(guān)系是否存在.(板書)

(1);(2) (3);(4).

解:先認(rèn)清,它是(定義域)到(值域)的映射,其中

再看(1)定義域?yàn)榍?,是不同的?2)定義域?yàn)?,是不同的?/p>

(4),法則是不同的;

而(3)定義域是,值域是,法則是乘2減1,與完全相同.

(2)判斷兩個函數(shù)是否相同.(板書)

4.對函數(shù)符號的理解(板書)

已知函數(shù)試求(板書)

分析:首先讓學(xué)生認(rèn)清的含義,要求學(xué)生能從變量觀點(diǎn)和映射觀點(diǎn)解釋,再進(jìn)行計算.

含義1:當(dāng)自變量取3時,對應(yīng)的函數(shù)值即;

含義2:定義域中原象3的象,根據(jù)求象的方法知.而應(yīng)表示原象的象,即.

計算之后,要求學(xué)生了解與的區(qū)別,是常量,而是變量,只是中一個特殊值.

三、小結(jié)

1.函數(shù)的定義

2.對函數(shù)三要素的認(rèn)識

3.對函數(shù)符號的認(rèn)識

四、作業(yè):略

五、

2.2函數(shù)例1.例3.

一.函數(shù)的概念

1.定義

2.本質(zhì)例2.小結(jié):

3.函數(shù)三要素的認(rèn)識及作用

4.對函數(shù)符號的理解

答案:

函數(shù)的教案篇十六

(二)解析:本節(jié)課要學(xué)的內(nèi)容指的是會判定函數(shù)在某個區(qū)間上的單調(diào)性、會確定函數(shù)的單調(diào)區(qū)間、能證明函數(shù)的單調(diào)性,其關(guān)鍵是利用形式化的定義處理有關(guān)的單調(diào)性問題,理解它關(guān)鍵就是要學(xué)會轉(zhuǎn)換式子。學(xué)生已經(jīng)掌握了函數(shù)單調(diào)性的定義、代數(shù)式的變換、函數(shù)的概念等知識,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的應(yīng)用。教學(xué)的重點(diǎn)是應(yīng)用定義證明函數(shù)在某個區(qū)間上的單調(diào)性,解決重點(diǎn)的關(guān)鍵是嚴(yán)格按過程進(jìn)行證明。

二、教學(xué)目標(biāo)及解析。

(一)教學(xué)目標(biāo):

掌握用定義證明函數(shù)單調(diào)性的步驟,會求函數(shù)的單調(diào)區(qū)間,提高應(yīng)用知識解決問題的能力。

(二)解析:

會證明就是指會利用三步曲證明函數(shù)的單調(diào)性;會求函數(shù)的單調(diào)區(qū)間就是指會利用函數(shù)的圖象寫出單調(diào)增區(qū)間或減區(qū)間;應(yīng)用知識解決問題就是指能利用函數(shù)單調(diào)性的意義去求參變量的取值情況或轉(zhuǎn)化成熟悉的問題。

三、問題診斷分析。

在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是如何才能準(zhǔn)確確定的符號,產(chǎn)生這一問題的原因是學(xué)生對代數(shù)式的恒等變換不熟練。要解決這一問題,就是要根據(jù)學(xué)生的實(shí)際情況進(jìn)行知識補(bǔ)習(xí),特別是因式分解、二次根式中的分母有理化的補(bǔ)習(xí)。

在本節(jié)課的教學(xué)中,準(zhǔn)備使用(),因?yàn)槭褂茫ǎ?,有利于()?/p>

函數(shù)的教案篇十七

1.使學(xué)生掌握的概念,圖象和性質(zhì).

(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域.

(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出的圖象,能從數(shù)形兩方面認(rèn)識的性質(zhì).

(3)能利用的性質(zhì)比較某些冪形數(shù)的大小,會利用的圖象畫出形如的圖象.

2.通過對的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會數(shù)形結(jié)合的思想方法.

3.通過對的研究,讓學(xué)生認(rèn)識到數(shù)學(xué)的應(yīng)用價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題.

函數(shù)的教案篇十八

通過對這節(jié)課的教學(xué)研究,我深刻地認(rèn)識到新課程背景下的數(shù)學(xué)課堂教學(xué)應(yīng)注意:

1、教師要“放得開”,做一個邊緣人。我們應(yīng)該充分相信學(xué)生,給學(xué)生成長的機(jī)會和空間。不再搞“包辦代替”,不能急性子。凡是學(xué)生能做的,就應(yīng)該讓他們自主去做;凡是學(xué)生之間能合作完成的,就應(yīng)該讓他們自主探究。給學(xué)生一滴水的機(jī)會,也許他會收獲一片海洋。

2、要做到“問題引領(lǐng)”,用問題牽引學(xué)習(xí)。本節(jié)課的設(shè)計給予學(xué)生的基礎(chǔ),設(shè)計了多個學(xué)生容易解決的問題串,這樣,能夠在循序漸進(jìn)中學(xué)到知識。

3、要創(chuàng)造性地使用教材。教學(xué)過程中,不應(yīng)局限于教材,而應(yīng)充分利用教材這個平臺,伸向與教材有關(guān)的領(lǐng)域。數(shù)學(xué)是思維的體操,因此,若能對數(shù)學(xué)教材科學(xué)安排,對問題妙引導(dǎo),有意識地引導(dǎo)學(xué)生有意識地主動學(xué)習(xí)更多更全面的數(shù)學(xué)知識,變“傳授”為“探究”,充分暴露知識的發(fā)生發(fā)展過程,以探索者的身份去發(fā)現(xiàn)問題、總結(jié)規(guī)律。

4、注重探究,體驗(yàn)知識的形成過程。數(shù)學(xué)教學(xué)從本質(zhì)上講,是教師和學(xué)生以課堂為主渠道的交流活動,是教師和學(xué)生在某種教學(xué)情境中的探究活動。這節(jié)課教師本著“讓學(xué)生充分經(jīng)歷知識的形成、發(fā)展和應(yīng)用過程,充分體驗(yàn)數(shù)學(xué)的發(fā)現(xiàn)和創(chuàng)造歷程”的教學(xué)理念,對教學(xué)過程和教學(xué)手段作了充分的準(zhǔn)備。整節(jié)課學(xué)生在教師的引導(dǎo)下逐步探索、不斷發(fā)現(xiàn),品嘗到了數(shù)學(xué)學(xué)習(xí)的樂趣,教師的主導(dǎo)作用和學(xué)生的主體地位都得到了很好地體現(xiàn)。

總之,我們的教學(xué)工作是一項(xiàng)內(nèi)涵豐富的系統(tǒng)工程。教學(xué)中用問題引領(lǐng)學(xué)生,提升效率,不是一朝一夕就可以取得明顯成效的,它更是一個復(fù)雜的課題?!氨鶅鋈撸且蝗罩?,在教學(xué)中必須循序漸進(jìn),長期實(shí)踐,與時俱進(jìn),爭取做教學(xué)改革的有心人,只有這樣才能在教學(xué)研究工作中有所作為。因此,在實(shí)際教學(xué)中,我們應(yīng)時刻以學(xué)生為中心,充分給予學(xué)生成長的時間,鼓勵學(xué)生自主探究,采用適時激勵與點(diǎn)撥的方法使學(xué)生的思維活躍起來,讓課堂真正成為學(xué)生學(xué)習(xí)、發(fā)現(xiàn)的樂園。

函數(shù)的教案篇十九

(二)能畫出簡單函數(shù)的圖象,會列表、描點(diǎn)、連線;。

(三)能從圖象上由自變量的值求出對應(yīng)的函數(shù)的近似值。

重點(diǎn):認(rèn)識函數(shù)圖象的意義,會對簡單的函數(shù)列表、描點(diǎn)、連線畫出函數(shù)圖象。

難點(diǎn):對已恬圖象能讀圖、識圖,從圖象解釋函數(shù)變化關(guān)系。

1.什么叫函數(shù)?

2.什么叫平面直角坐標(biāo)系?

3.在坐標(biāo)平面內(nèi),什么叫點(diǎn)的橫坐標(biāo)?什么叫點(diǎn)的.縱坐標(biāo)?

4.如果點(diǎn)a的橫坐標(biāo)為3,縱坐標(biāo)為5,請用記號表示a(3,5).

5.請?jiān)谧鴺?biāo)平面內(nèi)畫出a點(diǎn)。

6.如果已知一個點(diǎn)的坐標(biāo),可在坐標(biāo)平面內(nèi)畫出幾個點(diǎn)?反過來,如果坐標(biāo)平面內(nèi)的一個點(diǎn)確定,這個點(diǎn)的坐標(biāo)有幾個?這樣的點(diǎn)和坐標(biāo)的對應(yīng)關(guān)系,叫做什么對應(yīng)?(答:叫做坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對一一對應(yīng))。

我們在前幾節(jié)課已經(jīng)知道,函數(shù)關(guān)系可以用解析式表示,像y=2x+1就表示以x為自變量時,y是x的函數(shù)。

這個函數(shù)關(guān)系中,y與x的函數(shù)。

這個函數(shù)關(guān)系中,y與x的對應(yīng)關(guān)系,我們還可通知在坐標(biāo)平面內(nèi)畫出圖象的方法來表示。

函數(shù)的教案篇二十

學(xué)生能理解函數(shù)的概念,掌握常見的函數(shù)(sum,average,max,min等)。學(xué)生能夠根據(jù)所學(xué)函數(shù)知識判別計算得到的數(shù)據(jù)的正確性。

學(xué)生能夠使用函數(shù)(sum,average,max,min等)計算所給數(shù)據(jù)的和、平均值、最大最小值。學(xué)生通過自主探究學(xué)會新函數(shù)的使用。并且能夠根據(jù)實(shí)際工作生活中的需求選擇和正確使用函數(shù),并能夠?qū)τ嬎愕臄?shù)據(jù)結(jié)果合理利用。

學(xué)生自主學(xué)習(xí)意識得到提高,在任務(wù)的完成過程中體會到成功的喜悅,并在具體的任務(wù)中感受環(huán)境保護(hù)的重要性及艱巨性。

sum函數(shù)的插入和使用。

函數(shù)的格式、函數(shù)參數(shù)正確使用以及修改。

任務(wù)驅(qū)動,觀察分析,通過實(shí)踐掌握,發(fā)現(xiàn)問題,協(xié)作學(xué)習(xí)。

excel文件《2000年全國各省固體廢棄物情況》、統(tǒng)計表格一張。

1、展示投影片,創(chuàng)設(shè)數(shù)據(jù)處理環(huán)境。

2、以環(huán)境污染中的固體廢棄物數(shù)據(jù)為素材來進(jìn)行教學(xué)。

3、展示《2000年全國各省固體廢棄物情況》工作簿中的《固體廢棄物數(shù)量狀況》工作表,要求根據(jù)已學(xué)知識計算各省各類廢棄物的總量。

函數(shù)名表示函數(shù)的計算關(guān)系。

=sum(起始單元格:結(jié)束單元格)。

4、問:求某一種廢棄物的全國總量用公式法和自動求和哪個方便?

注意參數(shù)的正確性。

1、簡單描述函數(shù):函數(shù)是一些預(yù)定義了的計算關(guān)系,可將參數(shù)按特定的順序或結(jié)構(gòu)進(jìn)行計算。

在公式中計算關(guān)系是我們自己定義的,而函數(shù)給我們提供了大量的已定義好的計算關(guān)系,我們只需要根據(jù)不同的處理目的去選擇、提供參數(shù)去套用就可以了。

2、使用函數(shù)sum計算各廢棄物的全國總計。(強(qiáng)調(diào)計算范圍的正確性)。

3、通過介紹average函數(shù)學(xué)習(xí)函數(shù)的輸入。

函數(shù)的輸入與一般的公式?jīng)]有什么不同,用戶可以直接在“=”后鍵入函數(shù)及其參數(shù)。例如我們選定一個單元格后,直接鍵入“=average(d3:d13)”就可以在該單元格中創(chuàng)建一個統(tǒng)計函數(shù),統(tǒng)計出該表格中比去年同期增長%的平均數(shù)。

(參數(shù)的格式要嚴(yán)格;符號要用英文符號,以避免出錯。)。

有的同學(xué)開始瞪眼睛了,不大好用吧?

因?yàn)檫@種方法要求我們對函數(shù)的使用比較熟悉,如果我們對需要使用的函數(shù)名稱、參數(shù)格式等不是非常有把握,則建議使用“插入函數(shù)”對話框來輸入函數(shù)。

用相同任務(wù)演示操作過程。

4、引出max和min函數(shù)。

探索任務(wù):利用提示應(yīng)用max和min函數(shù)計算各廢棄物的最大和最小值。

5、引出countif函數(shù)。

探索任務(wù):利用countif函數(shù)按要求計算并體會函數(shù)的不同格式。

1、教師小結(jié)比較。

2、根據(jù)得到的數(shù)據(jù)引發(fā)出怎樣的思考。

四、???????。

1、廢棄物數(shù)量大危害大,各個省都在想各種辦法進(jìn)行處理,把對環(huán)境的污染降到最低。

2、研究任務(wù):運(yùn)用表格數(shù)據(jù),計算各省廢棄物處理率的最大,最小值,以及廢棄物處理率大于90%,小于70%的省份個數(shù),并對應(yīng)計算各省處理的廢棄物量和剩余的廢棄物量及全國總數(shù)。

1、分析存在問題,表揚(yáng)練習(xí)完成比較好的同學(xué),強(qiáng)調(diào)鼓勵大家探究學(xué)習(xí)的精神。

2、把結(jié)果進(jìn)行記錄,上繳或在課后進(jìn)行分析比較,寫出一小論文。

1、讓學(xué)生體會到固體廢棄物數(shù)量的巨大。

2、處理真實(shí)數(shù)據(jù)引發(fā)學(xué)生興趣。

通過比較得到兩種方法的優(yōu)劣。

學(xué)生的計算結(jié)果在現(xiàn)實(shí)中的運(yùn)用,真正體現(xiàn)信息技術(shù)課是收集,分析數(shù)據(jù),的工具。

通過類比學(xué)習(xí),提高學(xué)生的自學(xué)能力和分析問題能力。

實(shí)際數(shù)據(jù),引發(fā)思考。

學(xué)生應(yīng)用課堂所學(xué)知識。

學(xué)生帶著任務(wù)離開教室,課程之間整合,學(xué)生環(huán)境保護(hù)知識得到加強(qiáng)。

觀看投影。

學(xué)生用公式法和自動求和兩種方法計算各省廢棄物總量。

回答可用自動求和。

動手操作。

計算各類廢氣物的全國各省平均。

練習(xí)。

練習(xí)。

用自己計算所得數(shù)據(jù)對現(xiàn)實(shí)進(jìn)行分析。

應(yīng)用所學(xué)知識。

練習(xí)并記錄數(shù)據(jù)。

函數(shù)的教案篇二十一

(1)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以應(yīng)重點(diǎn)研究.

(2)本節(jié)的教學(xué)重點(diǎn)是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì).難點(diǎn)是對底數(shù)在和時,函數(shù)值變化情況的區(qū)分.

(3)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.

教法建議。

(1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點(diǎn)差異,諸如,等都不是.

(2)對底數(shù)的限制條件的理解與認(rèn)識也是認(rèn)識的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說明,因?yàn)閷@個條件的認(rèn)識不僅關(guān)系到對的認(rèn)識及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對數(shù)函數(shù)中底數(shù)的認(rèn)識,所以一定要真正了解它的由來.

關(guān)于圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認(rèn)識后,以此為指導(dǎo)再列表計算,描點(diǎn)得圖象.

函數(shù)的教案篇二十二

我本節(jié)課說課的內(nèi)容是高中數(shù)學(xué)第一冊第二章第六節(jié)“指數(shù)函數(shù)”的第一課時——指數(shù)函數(shù)的定義,圖像及性質(zhì)。我將嘗試運(yùn)用新課標(biāo)的理念指導(dǎo)本節(jié)課的教學(xué)。新課標(biāo)指出,學(xué)生是教學(xué)的主體,教師的教要應(yīng)本著從學(xué)生的認(rèn)知規(guī)律出發(fā),以學(xué)生活動為主線,在原有知識的基礎(chǔ)上,建構(gòu)新的知識體系。我將以此為基礎(chǔ)從教材分析,教學(xué)目標(biāo)分析,教法學(xué)法分析和教學(xué)過程分析這幾個方面加以說明。

一、教材分析。

1、教材的地位和作用:函數(shù)是高中數(shù)學(xué)學(xué)習(xí)的重點(diǎn)和難點(diǎn),函數(shù)的貫穿于整個高中數(shù)學(xué)之中。本節(jié)課是學(xué)生在已掌握了函數(shù)的一般性質(zhì)和簡單的指數(shù)運(yùn)算的基礎(chǔ)上,進(jìn)一步研究指數(shù)函數(shù),以及指數(shù)函數(shù)的圖像與性質(zhì),同時也為今后研究對數(shù)函數(shù)以及等比數(shù)列的性質(zhì)打下堅(jiān)實(shí)的基礎(chǔ)。因此,本節(jié)課的內(nèi)容十分重要,它對知識起到了承上啟下的作用。

2、教學(xué)的重點(diǎn)和難點(diǎn):根據(jù)這一節(jié)課的內(nèi)容特點(diǎn)以及學(xué)生的實(shí)際情況,我將本節(jié)課教學(xué)重點(diǎn)定為指數(shù)函數(shù)的圖像、性質(zhì)及其運(yùn)用,本節(jié)課的難點(diǎn)是指數(shù)函數(shù)圖像和性質(zhì)的發(fā)現(xiàn)過程,及指數(shù)函數(shù)圖像與底的關(guān)系。

二、教學(xué)目標(biāo)分析。

基于對教材的理解和分析,我制定了以下的教學(xué)目標(biāo)。

3、情感目標(biāo)(可持續(xù)性目標(biāo)):通過學(xué)習(xí),使學(xué)生學(xué)會認(rèn)識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)學(xué)生勇于提問,善于探索的思維品質(zhì)。

三、教法學(xué)法分析。

1、教學(xué)策略:首先從實(shí)際問題出發(fā),激發(fā)學(xué)生的學(xué)習(xí)興趣。第二步,學(xué)生歸納指數(shù)的圖像和性質(zhì)。第三步,典型例題分析,加深學(xué)生對指數(shù)函數(shù)的理解。

2、教學(xué):貫徹引導(dǎo)發(fā)現(xiàn)式教學(xué)原則,在教學(xué)中既注重知識的直觀素材和背景材料,又要激活相關(guān)知識和引導(dǎo)學(xué)生思考、探究、創(chuàng)設(shè)有趣的問題。

3、教法分析:根據(jù)教學(xué)內(nèi)容和學(xué)生的狀況,本節(jié)課我采用引導(dǎo)發(fā)現(xiàn)式的教學(xué)方法并充分利用多媒體輔助教學(xué)。

函數(shù)的教案篇二十三

1、初步掌握函數(shù)概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。

2、根據(jù)兩個變量間的關(guān)系式,給定其中一個量,相應(yīng)地會求出另一個量的值。

3、會對一個具體實(shí)例進(jìn)行概括抽象成為數(shù)學(xué)問題。

過程與方法。

1、通過函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點(diǎn)認(rèn)識現(xiàn)實(shí)世界的意識和能力。

2、經(jīng)歷具體實(shí)例的抽象概括過程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。

情感與價值觀。

1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。

2、讓學(xué)生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學(xué)知識的理解和有效的學(xué)習(xí)模式。

1、掌握函數(shù)概念。

2、判斷兩個變量之間的關(guān)系是否可看作函數(shù)。

3、能把實(shí)際問題抽象概括為函數(shù)問題。

1、理解函數(shù)的概念。

2、能把實(shí)際問題抽象概括為函數(shù)問題。

一、創(chuàng)設(shè)問題情境,導(dǎo)入新課。

『師』:同學(xué)們,你們看下圖上面那個像車輪狀的物體是什么?

【本文地址:http://m.aiweibaby.com/zuowen/17189942.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔