高中數(shù)學(xué)學(xué)習(xí)方法匯總(9篇)

格式:DOC 上傳日期:2023-06-06 16:31:48
高中數(shù)學(xué)學(xué)習(xí)方法匯總(9篇)
時(shí)間:2023-06-06 16:31:48     小編:zdfb

在日常的學(xué)習(xí)、工作、生活中,肯定對(duì)各類范文都很熟悉吧。那么我們?cè)撊绾螌懸黄^為完美的范文呢?下面是小編為大家收集的優(yōu)秀范文,供大家參考借鑒,希望可以幫助到有需要的朋友。

高中數(shù)學(xué)學(xué)習(xí)方法篇一

只有解決質(zhì)量高的、有代表性的題目才能達(dá)到事半功倍的效果。然而絕大多數(shù)的同學(xué)還沒(méi)有辨別、分析題目好壞的能力,這就需要在老師的指導(dǎo)下來(lái)選擇復(fù)習(xí)的練習(xí)題,以了解高考題的形式、難度。

解答任何一個(gè)數(shù)學(xué)題目之前,都要先進(jìn)行分析。相對(duì)于比較難的題目,分析更顯得尤為重要。我們知道,解決數(shù)學(xué)問(wèn)題實(shí)際上就是在題目的已知條件和待求結(jié)論中架起聯(lián)系的橋梁,也就是在分析題目中已知與待求之間差異的基礎(chǔ)上,化歸和消除這些差異。當(dāng)然在這個(gè)過(guò)程中也反映出對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)掌握的熟練程度、理解程度和數(shù)學(xué)方法的靈活應(yīng)用能力。例如,許多三角方面的題目都是把角、函數(shù)名、結(jié)構(gòu)形式統(tǒng)一后就可以解決問(wèn)題了,而選擇怎樣的三角公式也是成敗的關(guān)鍵。

①在知識(shí)方面,題目中涉及哪些概念、定理、公式等基礎(chǔ)知識(shí),在解題過(guò)程中是如何應(yīng)用這些知識(shí)的。

②在方法方面:如何入手的,用到了哪些解題方法、技巧,自己是否能夠熟練掌握和應(yīng)用。

③能不能把解題過(guò)程概括、歸納成幾個(gè)步驟(比如用數(shù)學(xué)歸納法證明題目就有很明顯的三個(gè)步驟)。

④能不能歸納出題目的類型,進(jìn)而掌握這類題目的解題通法(我們反對(duì)老師把現(xiàn)成的題目類型給學(xué)生,讓學(xué)生拿著題目套類型,但我們鼓勵(lì)學(xué)生自己總結(jié)、歸納題目類型)。

高中數(shù)學(xué)導(dǎo)數(shù)的定義,公式及應(yīng)用總結(jié)

函數(shù)y=f(x)在x0點(diǎn)的導(dǎo)數(shù)f'(x0)的幾何意義:表示函數(shù)曲線在p0[x0,f(x0)] 點(diǎn)的切線斜率(導(dǎo)數(shù)的幾何意義是該函數(shù)曲線在這一點(diǎn)上的切線斜率)。

求函數(shù)y=f(x)在x0處導(dǎo)數(shù)的步驟:

① 求函數(shù)的增量δy=f(x0+δx)-f(x0) ② 求平均變化率 ③ 取極限,得導(dǎo)數(shù)。

高中數(shù)學(xué)學(xué)習(xí)方法篇二

高中數(shù)學(xué)是應(yīng)用性很強(qiáng)的學(xué)科,學(xué)習(xí)數(shù)學(xué)就是學(xué)習(xí)解題。搞題海戰(zhàn)術(shù)的方式、方法固然是不對(duì)的,但離開解題來(lái)學(xué)習(xí)數(shù)學(xué)同樣也是錯(cuò)誤的。其中的關(guān)鍵在于對(duì)待題目的態(tài)度和處理解題的方式上。

1、首先是精選題目,做到少而精。

只有解決質(zhì)量高的、有代表性的題目才能達(dá)到事半功倍的效果。然而絕大多數(shù)的同學(xué)還沒(méi)有辨別、分析題目好壞的能力,這就需要在老師的指導(dǎo)下來(lái)選擇復(fù)習(xí)的練習(xí)題,以了解高考題的形式、難度。

2、其次是分析題目。

解答任何一個(gè)數(shù)學(xué)題目之前,都要先進(jìn)行分析。相對(duì)于比較難的題目,分析更顯得尤為重要。我們知道,解決數(shù)學(xué)問(wèn)題實(shí)際上就是在題目的已知條件和待求結(jié)論中架起聯(lián)系的橋梁,也就是在分析題目中已知與待求之間差異的基礎(chǔ)上,化歸和消除這些差異。當(dāng)然在這個(gè)過(guò)程中也反映出對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)掌握的熟練程度、理解程度和數(shù)學(xué)方法的靈活應(yīng)用能力。例如,許多三角方面的題目都是把角、函數(shù)名、結(jié)構(gòu)形式統(tǒng)一后就可以解決問(wèn)題了,而選擇怎樣的三角公式也是成敗的關(guān)鍵。

3、最后,題目總結(jié)。

①在知識(shí)方面,題目中涉及哪些概念、定理、公式等基礎(chǔ)知識(shí),在解題過(guò)程中是如何應(yīng)用這些知識(shí)的。

②在方法方面:如何入手的,用到了哪些解題方法、技巧,自己是否能夠熟練掌握和應(yīng)用。

③能不能把解題過(guò)程概括、歸納成幾個(gè)步驟(比如用數(shù)學(xué)歸納法證明題目就有很明顯的三個(gè)步驟)。

④能不能歸納出題目的類型,進(jìn)而掌握這類題目的解題通法(我們反對(duì)老師把現(xiàn)成的'題目類型給學(xué)生,讓學(xué)生拿著題目套類型,但我們鼓勵(lì)學(xué)生自己總結(jié)、歸納題目類型)。

設(shè)多邊形的邊數(shù)為n

則其內(nèi)角和=(n-2)*180°

因?yàn)閚個(gè)頂點(diǎn)的n個(gè)外角和n個(gè)內(nèi)角的和

=n*180°

(每個(gè)頂點(diǎn)的一個(gè)外角和相鄰的內(nèi)角互補(bǔ))

所以n邊形的外角和

=n*180°-(n-2)*180°

=n*180°-n*180°+360°

=360°

即n邊形的外角和等于360°

設(shè)多邊形的邊數(shù)為n

則其外角和=360°

因?yàn)閚個(gè)頂點(diǎn)的n個(gè)外角和n個(gè)內(nèi)角的和

=n*180°

(每個(gè)頂點(diǎn)的一個(gè)外角和相鄰的內(nèi)角互補(bǔ))

所以n邊形的內(nèi)角和

=n*180°-360°

=n*180°-2*180°

=(n-2)*180°

即n邊形的內(nèi)角和等于(n-2)*180°

如何學(xué)好數(shù)學(xué)

首先和敏捷對(duì)于來(lái)說(shuō)固然重要,但良好的可以把效果提高幾倍,這是先天因素不可比擬的。學(xué)好首先要過(guò)的是關(guān)。任何事情都有一個(gè)由量變到質(zhì)變的循序漸進(jìn)的積累過(guò)程。

一.。不等于瀏覽。要深入了解內(nèi)容,找出重點(diǎn),難點(diǎn),疑點(diǎn),經(jīng)過(guò)思考,標(biāo)出不懂的,有益于抓住重點(diǎn),還可以培養(yǎng)自學(xué),有時(shí)間還可以超前學(xué)習(xí)。

二.聽講。核心在。1。以聽為主,兼顧記錄。2。注重過(guò)程,輕結(jié)論。

3.有重點(diǎn)。4。提高聽課。

三.。像演電影一樣把課堂,整理筆記,

五.總結(jié)。1。要將所學(xué)的知識(shí)變成知識(shí)網(wǎng),從大主干到分枝,清晰地深存在腦中,新題想到老題,從而一通百通。2。建立錯(cuò)誤集,錯(cuò)誤多半會(huì)錯(cuò)上兩次,在有意識(shí)改正的情況下,還有可能錯(cuò)下去,最有效的應(yīng)該是會(huì)正確地做這道題,并在下次遇到同樣情況時(shí)候有注意的意識(shí)。3。周末再將一周做的題回頭看一番,提出每道題的思路方法。4有問(wèn)題一定要問(wèn)。

另外,聽老師的話,勤學(xué)苦練不可少,沒(méi)有捷徑,要樂(lè)觀,有毅力,要有決心,還要有耐心,學(xué)數(shù)學(xué)是一個(gè)很長(zhǎng)的過(guò)程,你的努力于回報(bào)往往不能那么盡如人意的成正比,甚至?xí)邢缕侣返内厔?shì),但只要堅(jiān)持下去,那條成績(jī)線會(huì)抬起頭來(lái),一定能看到光明。

《希臘文集》中的方程問(wèn)題

《希臘文集》是一本用詩(shī)歌寫成的問(wèn)題集,主要是六韻腳詩(shī)。荷馬著名的長(zhǎng)詩(shī)《伊麗亞特》和《奧德賽》就是用這種詩(shī)體寫成的。

我們用現(xiàn)代方法來(lái)解:設(shè)聽課的學(xué)生有x人,根據(jù)題目條件可列出方程

這是一個(gè)一元一次方程。

移項(xiàng),得

答:畢達(dá)哥拉斯有28名學(xué)生聽課。

這個(gè)問(wèn)題可以用方程組來(lái)解:

2(x-1)=y+1 (1)

x+1=y-1 (2)

(1)與(2)聯(lián)立,有

這是一個(gè)二元一次議程組。

(1)-(2)得 x-3=2,

x=5 (3)

將(3)代入(2),得y=7。

答:驢原來(lái)馱5口袋,騾子原來(lái)馱7口袋。

《希臘文集》有一道名的題目“愛(ài)神的煩惱”。這里有許多神的名字,先介紹一下:愛(ài)羅斯是希臘神話中的愛(ài)神,吉波莉達(dá)是賽浦路斯島的守護(hù)神。9位文藝女神中,葉芙特爾波管簡(jiǎn)樂(lè),愛(ài)拉托管愛(ài)情詩(shī),達(dá)利婭管吉?jiǎng)。叵;衾芪璧福览滥裙鼙瘎?,克里奧管歷史,波利尼婭管頌歌,烏拉尼婭管天文,卡利奧帕管史詩(shī)。

這道題也是用詩(shī)歌形式寫在的:

愛(ài)羅斯在路旁哭泣,

淚水一滴接一滴。

吉波莉達(dá)向前問(wèn)道:波利尼

“是什么事情使你如此傷悲?

我可能夠幫助你?”

愛(ài)羅斯回答道:

“九位文藝女神

不知來(lái)自何方

把我從赫爾康山采回的蘋果,

幾乎一掃而光,

葉芙特爾波飛快地?fù)屪呤种唬?/p>

愛(ài)拉托搶得更多——

七個(gè)蘋果中拿走一個(gè)。

八分之一被達(dá)利婭搶走,

比這多一倍的蘋果落入特希霍拉之手。

美利波美娜最是客氣,

只取走二十分之一。

可又來(lái)了克里奧,

她的收獲比這多四倍。

還有三位女神,

個(gè)個(gè)都不空手,

30個(gè)歸波利尼婭,

120個(gè)歸烏拉尼婭,

300個(gè)歸卡利奧帕。

我,可憐的愛(ài)羅斯。

愛(ài)羅斯原有多少個(gè)蘋果?還剩下50個(gè)蘋果。”

設(shè)愛(ài)羅斯原來(lái)有x個(gè)蘋果,則6位文藝女神搶走的蘋果分別是 。

可列出方程

答:愛(ài)羅斯原來(lái)有蘋果3360個(gè)。

選自《中學(xué)生數(shù)學(xué)》20xx年5月下

編者按:小編為大家收集了“20xx高考數(shù)學(xué)復(fù)習(xí)三步曲”,供大家參考,希望對(duì)大家有所幫助!

今年高考文理科的數(shù)學(xué)試卷總體難度不大,為師生所接受。文科試卷難易程度適中,尤其是填空題和選擇題難度不大,解答題難易程度和試題坡度安排都比較合理,有利于考生的發(fā)揮,也有利于指導(dǎo)以后的學(xué)習(xí)。

理科試卷容易題、中等題和難題比例恰當(dāng),注重邏輯思維能力和表達(dá)能力(運(yùn)用數(shù)學(xué)符號(hào))以及數(shù)形結(jié)合能力的考查,部分試題新而不難,開放題有所體現(xiàn),把能力的考查落到實(shí)處。但我個(gè)人認(rèn)為,今年試卷對(duì)高中數(shù)學(xué)的主干知識(shí)的核心內(nèi)容考查不到位,但不等于我們今后可以完全不重視。

抓基礎(chǔ):不變應(yīng)萬(wàn)變

把基礎(chǔ)知識(shí)和基本技能落到實(shí)處。唯有如此才能以不變應(yīng)萬(wàn)變。比如,文科第22題是一道經(jīng)典題型,考查圓錐曲線上一點(diǎn)到定點(diǎn)距離,既考老師又考學(xué)生。所謂考老師是說(shuō)這樣的題型你講過(guò)沒(méi)有,是怎么講的?學(xué)生的典型錯(cuò)誤(以定點(diǎn)為圓心作一個(gè)與橢圓相切的圓,再利用判別式等于0)是怎么糾正?正確解法(轉(zhuǎn)化為二次函數(shù)在某個(gè)區(qū)間上的最值)是怎么想到的?只有經(jīng)過(guò)這樣的教學(xué)環(huán)節(jié),學(xué)生才能真正理解。所謂考學(xué)生是說(shuō)你自己做錯(cuò)了,老師重點(diǎn)講評(píng)了的經(jīng)典問(wèn)題,你掌握了沒(méi)有?掌握的標(biāo)準(zhǔn)是能否順利解答相應(yīng)的變式問(wèn)題。由于第(3)含有參數(shù),需要分類討論,能有效甄別考生的思維水平和運(yùn)算能力。本題以橢圓(解析幾何重點(diǎn)內(nèi)容之一)為載體,考查把幾何問(wèn)題轉(zhuǎn)化為代數(shù)問(wèn)題的能力(這是解析幾何的核心思想),以及含參數(shù)的二次函數(shù)求最值問(wèn)題(也是代數(shù)中的重點(diǎn)和難點(diǎn)),一舉多得。

當(dāng)然,可能會(huì)有人認(rèn)為這道題形式不新,其實(shí),要求考題全新既無(wú)必要,也不可能,只要有利于高校選拔和中學(xué)教學(xué)就好,不必過(guò)分求新、求異。

理科的第22題相對(duì)較難,不少同學(xué)反映不好表述。若能從集合的包含關(guān)系這個(gè)角度考慮,則容易表述,部分考生是直接對(duì)兩個(gè)數(shù)列進(jìn)行分類,由于要用到一些多數(shù)學(xué)生不熟悉的整除知識(shí),因而感到困難,無(wú)法下手。這就體現(xiàn)基礎(chǔ)知識(shí)和基本技能的重要性。

盡管今年理科試卷在知識(shí)點(diǎn)分布上有些不盡如人意,但復(fù)習(xí)不能受此影響,仍然要全面、扎實(shí)復(fù)習(xí),不能留下知識(shí)點(diǎn)的死角,相應(yīng)的技能、技巧要牢固掌握,思想方法都要總結(jié)到位,這樣才能“不管風(fēng)吹浪打,勝似閑庭信步”。

破難題:提升應(yīng)對(duì)力

如何應(yīng)對(duì)“題梗阻”?考試中遇到不會(huì)做的題目很正常,有些同學(xué)會(huì)因此影響臨場(chǎng)發(fā)揮??忌M(jìn)考場(chǎng)就像運(yùn)動(dòng)員進(jìn)運(yùn)動(dòng)場(chǎng),心理素質(zhì)很重要,把心理輔導(dǎo)和答題技巧融于學(xué)習(xí)之中。在高三復(fù)習(xí)過(guò)程中,不僅要講數(shù)學(xué)知識(shí),同時(shí)還要訓(xùn)練學(xué)生的心理素質(zhì)和培養(yǎng)學(xué)生的答題技巧,這樣才能使學(xué)生在考場(chǎng)上應(yīng)付裕如,出色發(fā)揮,考出好成績(jī)。

理科的22題第(2)卡住不少考生,耽誤時(shí)間還影響心情,以致第(3)和后面第23題來(lái)不及或無(wú)心去做,其實(shí),做第(3)題用不到第(2)的結(jié)論。而第23題是新編的開放性問(wèn)題,首先要靜心才能讀懂題目,而讀懂題目至少第(1)、(2)兩題不難。要做到這些并不容易,不是臨考前“先易后難”一句話學(xué)生就能做到,需要在平時(shí)教學(xué)過(guò)程中結(jié)合具體問(wèn)題,訓(xùn)練學(xué)生的心理素質(zhì),提高其在解題過(guò)程中遇到困難時(shí)的應(yīng)變能力,掌握應(yīng)變策略,才能在考場(chǎng)上“敢于放棄”,從容跳過(guò)不會(huì)做的題或在解答題中跳步解答,把自己能做的題目先做對(duì),把應(yīng)得的分得到,這樣考試總是成功的,無(wú)論分?jǐn)?shù)高低。

為何時(shí)間與成績(jī)不成正比?高三數(shù)學(xué)就是大量解題,有些重點(diǎn)中學(xué)的優(yōu)秀學(xué)生的高考成績(jī)甚至不比高二時(shí)考分高,豈不是白學(xué)?其實(shí),這是誤解。數(shù)學(xué)講究邏輯,問(wèn)題從哪里來(lái)(已知),到哪里去(求證),中間有哪些溝溝坎坎(思維障礙),怎么克服(怎樣進(jìn)行等價(jià)轉(zhuǎn)化),不僅是照葫蘆畫瓢的操作性(當(dāng)然也是必要的)訓(xùn)練,更重要的是以數(shù)學(xué)知識(shí)為載體,讓學(xué)生學(xué)會(huì)思考問(wèn)題的方式方法,還要在解題后對(duì)問(wèn)題作歸納總結(jié),找出規(guī)律,有時(shí)還要把問(wèn)題作適當(dāng)推廣,把學(xué)生的邏輯思維引到辯證思維。這樣經(jīng)過(guò)一年的高三數(shù)學(xué)學(xué)習(xí),學(xué)生收獲的不僅是分?jǐn)?shù),還有對(duì)人終生受用的思維品質(zhì)的提高。

重方法:培養(yǎng)好品質(zhì)

有些同學(xué)做了許多題,就是成績(jī)提高不見提高,自己和家長(zhǎng)都很納悶。其實(shí)學(xué)習(xí)數(shù)學(xué)關(guān)鍵是要掌握方法,同時(shí)還要培養(yǎng)敢于做難題、新題的膽量和毅力。重復(fù)性操作的題目做再多,意義也不大。對(duì)待難題的態(tài)度是培養(yǎng)學(xué)生意志品質(zhì)的好時(shí)機(jī),不能輕易錯(cuò)過(guò)(當(dāng)然也要因人而異)。有些同學(xué)往往認(rèn)為只要弄懂思路,不必解到底。其實(shí),這樣的同學(xué)往往眼高手低,會(huì)而不對(duì),考試成績(jī)忽高忽低,原因在于某些細(xì)節(jié)處理不當(dāng),造成“一失足成千古恨”,事后以粗心搪塞過(guò)去。這就需要老師對(duì)學(xué)生深入了解,結(jié)合具體問(wèn)題給予悉心指導(dǎo),幫助學(xué)生找出真實(shí)原因,并制定改正錯(cuò)誤的辦法,這一過(guò)程表面上是幫助學(xué)生學(xué)會(huì)解題,實(shí)際上對(duì)學(xué)生意志品質(zhì)的培養(yǎng)也就潛移默化地得到了落實(shí)。

我們有理由相信,把解題和人的素質(zhì)培養(yǎng)有機(jī)結(jié)合的高三數(shù)學(xué)教學(xué),不僅能提高學(xué)生的解題能力,還能促使他們健康成長(zhǎng),讓我們一起努力!

以上就是為大家提供的“20xx高考數(shù)學(xué)復(fù)習(xí)三步曲”希望能對(duì)考生產(chǎn)生幫助,更多資料請(qǐng)咨詢中考頻道。

生物數(shù)學(xué)概論

生物數(shù)學(xué)是生物學(xué)與數(shù)學(xué)之間的邊緣學(xué)科。它以數(shù)學(xué)方法研究和解決生物學(xué)問(wèn)題,并對(duì)與生物學(xué)有關(guān)的數(shù)學(xué)方法進(jìn)行理論研究。

生物數(shù)學(xué)的分支學(xué)科較多,從生物學(xué)的應(yīng)用去劃分,有數(shù)量分類學(xué)、數(shù)量遺傳學(xué)、數(shù)量生態(tài)學(xué)、數(shù)量生理學(xué)和生物力學(xué)等;從研究使用的數(shù)學(xué)方法劃分,又可分為生物統(tǒng)計(jì)學(xué)、生物信息論、生物系統(tǒng)論、生物控制論和生物方程等分支。這些分支與前者不同,它們沒(méi)有明確的生物學(xué)研究對(duì)象,只研究那些涉及生物學(xué)應(yīng)用有關(guān)的數(shù)學(xué)方法和理論。

生物數(shù)學(xué)具有豐富的數(shù)學(xué)理論基礎(chǔ),包括集合論、概率論、統(tǒng)計(jì)數(shù)學(xué)、對(duì)策論、微積分、微分方程、線性代數(shù)、矩陣論和拓?fù)鋵W(xué),還包括一些近代數(shù)學(xué)分支,如信息論、圖論、控制論、系統(tǒng)論和模糊數(shù)學(xué)等。

由于生命現(xiàn)象復(fù)雜,從生物學(xué)中提出的數(shù)學(xué)問(wèn)題往往十分復(fù)雜,需要進(jìn)行大量計(jì)算工作。因此,計(jì)算機(jī)是研究和解決生物學(xué)問(wèn)題的重要工具。然而就整個(gè)學(xué)科的內(nèi)容而論,生物數(shù)學(xué)需要解決和研究的本質(zhì)方面是生物學(xué)問(wèn)題,數(shù)學(xué)和電腦僅僅是解決問(wèn)題的工具和手段。因此,生物數(shù)學(xué)與其他生物邊緣學(xué)科一樣通常被歸屬于生物學(xué)而不屬于數(shù)學(xué)。

生命現(xiàn)象數(shù)量化的方法,就是以數(shù)量關(guān)系描述生命現(xiàn)象。數(shù)量化是利用數(shù)學(xué)工具研究生物學(xué)的前提。生物表現(xiàn)性狀的數(shù)值表示是數(shù)量化的一個(gè)方面。生物內(nèi)在的或外表的,個(gè)體的或群體的,器官的或細(xì)胞的,直到分子水平的各種表現(xiàn)性狀,依據(jù)性狀本身的生物學(xué)意義,用適當(dāng)?shù)臄?shù)值予以描述。

數(shù)量化的實(shí)質(zhì)就是要建立一個(gè)集合函數(shù),以函數(shù)值來(lái)描述有關(guān)集合。傳統(tǒng)的集合概念認(rèn)為一個(gè)元素屬于某集合,非此即彼、界限分明??墒巧锝绱嬖谥罅拷缦薏幻鞔_的模糊現(xiàn)象,而集合概念的明確性不能貼切地描述這些模糊現(xiàn)象,給生命現(xiàn)象的數(shù)量化帶來(lái)困難。1965年扎德提出模糊集合概念,模糊集合適合于描述生物學(xué)中許多模糊現(xiàn)象,為生命現(xiàn)象的數(shù)量化提供了新的數(shù)學(xué)工具。以模糊集合為基礎(chǔ)的模糊數(shù)學(xué)已廣泛應(yīng)用于生物數(shù)學(xué)。

數(shù)學(xué)模型是能夠表現(xiàn)和描述真實(shí)世界某些現(xiàn)象、特征和狀況的數(shù)學(xué)系統(tǒng)。數(shù)學(xué)模型能定量地描述生命物質(zhì)運(yùn)動(dòng)的過(guò)程,一個(gè)復(fù)雜的生物學(xué)問(wèn)題借助數(shù)學(xué)模型能轉(zhuǎn)變成一個(gè)數(shù)學(xué)問(wèn)題,通過(guò)對(duì)數(shù)學(xué)模型的邏輯推理、求解和運(yùn)算,就能夠獲得客觀事物的有關(guān)結(jié)論,達(dá)到對(duì)生命現(xiàn)象進(jìn)行研究的目的。

比如描述生物種群增長(zhǎng)的費(fèi)爾許爾斯特-珀?duì)柗匠?,就能夠比較正確的表示種群增長(zhǎng)的規(guī)律;通過(guò)描述捕食與被捕食兩個(gè)種群相克關(guān)系的洛特卡-沃爾泰拉方程,從理論上說(shuō)明:農(nóng)藥的濫用,在毒殺害蟲的同時(shí)也殺死了害蟲的天敵,從而常常導(dǎo)致害蟲更猖獗地發(fā)生等。

還有一類更一般的方程類型,稱為反應(yīng)擴(kuò)散方程的數(shù)學(xué)模型在生物學(xué)中廣為應(yīng)用,它與生理學(xué)、生態(tài)學(xué)、群體遺傳學(xué)、醫(yī)學(xué)中的流行病學(xué)和藥理學(xué)等研究有較密切的關(guān)系。60年代,普里戈任提出著名的耗散結(jié)構(gòu)理論,以新的觀點(diǎn)解釋生命現(xiàn)象和生物進(jìn)化原理,其數(shù)學(xué)基礎(chǔ)亦與反應(yīng)擴(kuò)散方程有關(guān)。

由于那些片面的、孤立的、機(jī)械的研究方法不能完全滿足生物學(xué)的需要,因此,在非生命科學(xué)中發(fā)展起來(lái)的數(shù)學(xué),在被利用到生物學(xué)的研究領(lǐng)域時(shí)就需要從事物的多方面,在相互聯(lián)系的水平上進(jìn)行全面的研究,需要綜合分析的數(shù)學(xué)方法。

多元分析就是為適應(yīng)生物學(xué)等多元復(fù)雜問(wèn)題的需要、在統(tǒng)計(jì)學(xué)中分化出來(lái)的一個(gè)分支領(lǐng)域,它是從統(tǒng)計(jì)學(xué)的角度進(jìn)行綜合分析的數(shù)學(xué)方法。多元統(tǒng)計(jì)的各種矩陣運(yùn)算,體現(xiàn)多種生物實(shí)體與多個(gè)性狀指標(biāo)的結(jié)合,在相互聯(lián)系的水平上,綜合統(tǒng)計(jì)出生命活動(dòng)的特點(diǎn)和規(guī)律性。

生物數(shù)學(xué)中常用的多元分析方法有回歸分析、判別分析、聚類分析、主成分分析和典范分析等。生物學(xué)家常常把多種方法結(jié)合使用,以期達(dá)到更好的綜合分析效果。

多元分析不僅對(duì)生物學(xué)的理論研究有意義,而且由于原始數(shù)據(jù)直接來(lái)自生產(chǎn)實(shí)踐和科學(xué)實(shí)驗(yàn),有很大的實(shí)用價(jià)值。在農(nóng)、林業(yè)生產(chǎn)中,對(duì)品種鑒別、系統(tǒng)分類、情況預(yù)測(cè)、生產(chǎn)規(guī)劃以及生態(tài)條件的分析等,都可應(yīng)用多元分析方法。醫(yī)學(xué)方面的應(yīng)用,多元分析與電腦的結(jié)合已經(jīng)實(shí)現(xiàn)對(duì)疾病的診斷,幫助醫(yī)生分析病情,提出治療方案。

系統(tǒng)論和控制論是以系統(tǒng)和控制的觀點(diǎn),進(jìn)行綜合分析的數(shù)學(xué)方法。系統(tǒng)論和控制論的方法沒(méi)有把那些次要的因素忽略,也沒(méi)有孤立地看待每一個(gè)特性,而是通過(guò)狀態(tài)方程把錯(cuò)綜復(fù)雜的關(guān)系都結(jié)合在一起,在綜合的水平上進(jìn)行全面分析。對(duì)系統(tǒng)的綜合分析也可以就系統(tǒng)的可控性、可觀測(cè)性和穩(wěn)定性作出判斷,更進(jìn)一步揭示該系統(tǒng)生命活動(dòng)的特征。

在系統(tǒng)和控制理論中,綜合分析的特點(diǎn)還表現(xiàn)在把輸出和狀態(tài)的變化反饋對(duì)系統(tǒng)的影響,即反饋關(guān)系也考慮在內(nèi)。生命活動(dòng)普遍存在反饋現(xiàn)象,許多生命過(guò)程在反饋條件的制約下達(dá)到平衡,生命得以維持和延續(xù)。對(duì)系統(tǒng)的控制常常靠反饋關(guān)系來(lái)實(shí)現(xiàn)。

生命現(xiàn)象常常以大量、重復(fù)的形式出現(xiàn),又受到多種外界環(huán)境和內(nèi)在因素的隨機(jī)干擾。因此概率論和統(tǒng)計(jì)學(xué)是研究生物學(xué)經(jīng)常使用的方法。生物統(tǒng)計(jì)學(xué)是生物數(shù)學(xué)發(fā)展最早的一個(gè)分支,各種統(tǒng)計(jì)分析方法已經(jīng)成為生物學(xué)研究工作和生產(chǎn)實(shí)踐的常規(guī)手段。

概率與統(tǒng)計(jì)方法的應(yīng)用還表現(xiàn)在隨機(jī)數(shù)學(xué)模型的研究中。原來(lái)數(shù)學(xué)模型可分為確定模型和隨機(jī)模型兩大類如果模型中的變量由模型完全確定,這是確定模型;與之相反,變量出現(xiàn)隨機(jī)性變化不能完全確定,稱為隨機(jī)模型。又根據(jù)模型中時(shí)間和狀態(tài)變量取值的連續(xù)或離散性,有連續(xù)模型和離散模型之分。前述幾個(gè)微分方程形式的模型都是連續(xù)的、確定的數(shù)學(xué)模型。這種模型不能描述帶有隨機(jī)性的生命現(xiàn)象,它的應(yīng)用受到限制。因此隨機(jī)模型成為生物數(shù)學(xué)不可缺少的部分。

60年代末,法國(guó)數(shù)學(xué)家托姆從拓?fù)鋵W(xué)提出一種幾何模型,能夠描繪多維不連續(xù)現(xiàn)象,他的理論稱為突變理論。生物學(xué)中許多處于飛躍的、臨界狀態(tài)的不連續(xù)現(xiàn)象,都能找到相應(yīng)的躍變類型給予定性的解釋。躍變論彌補(bǔ)了連續(xù)數(shù)學(xué)方法的不足之處,現(xiàn)在已成功地應(yīng)用于生理學(xué)、生態(tài)學(xué)、心理學(xué)和組織胚胎學(xué)。對(duì)神經(jīng)心理學(xué)的研究甚至已經(jīng)指導(dǎo)醫(yī)生應(yīng)用于某些疾病的臨床治療。

繼托姆之后,躍變論不斷地發(fā)展。例如塞曼又提出初級(jí)波和二級(jí)波的新理論。躍變理論的新發(fā)展對(duì)生物群落的分布、傳染疾病的蔓延、胚胎的發(fā)育等生物學(xué)問(wèn)題賦予新的理解。

上述各種生物數(shù)學(xué)方法的應(yīng)用,對(duì)生物學(xué)產(chǎn)生重大影響。20世紀(jì)50年代以來(lái),生物學(xué)突飛猛進(jìn)地發(fā)展,多種學(xué)科向生物學(xué)滲透,從不同角度展現(xiàn)生命物質(zhì)運(yùn)動(dòng)的矛盾,數(shù)學(xué)以定量的形式把這些矛盾的實(shí)質(zhì)體現(xiàn)出來(lái)。從而能夠使用數(shù)學(xué)工具進(jìn)行分析;能夠輸入電腦進(jìn)行精確的運(yùn)算;還能把來(lái)自名方面的因素聯(lián)系在一起,通過(guò)綜合分析闡明生命活動(dòng)的機(jī)制。

總之,數(shù)學(xué)的介入把生物學(xué)的研究從定性的、描述性的水平提高到定量的、精確的、探索規(guī)律的高水平。生物數(shù)學(xué)在農(nóng)業(yè)、林業(yè)、醫(yī)學(xué),環(huán)境科學(xué)、社會(huì)科學(xué)和人口控制等方面的應(yīng)用,已經(jīng)成為人類從事生產(chǎn)實(shí)踐的手段。

數(shù)學(xué)在生物學(xué)中的應(yīng)用,也促使數(shù)學(xué)向前發(fā)展。實(shí)際上,系統(tǒng)論、控制論和模糊數(shù)學(xué)的產(chǎn)生以及統(tǒng)計(jì)數(shù)學(xué)中多元統(tǒng)計(jì)的興起都與生物學(xué)的應(yīng)用有關(guān)。從生物數(shù)學(xué)中提出了許多數(shù)學(xué)問(wèn)題,萌發(fā)出許多數(shù)學(xué)發(fā)展的生長(zhǎng)點(diǎn),正吸引著許多數(shù)學(xué)家從事研究。它說(shuō)明,數(shù)學(xué)的應(yīng)用從非生命轉(zhuǎn)向有生命是一次深刻的轉(zhuǎn)變,在生命科學(xué)的推動(dòng)下,數(shù)學(xué)將獲得巨大發(fā)展。

當(dāng)今的生物數(shù)學(xué)仍處于探索和發(fā)展階段,生物數(shù)學(xué)的許多方法和理論還很不完善,它的應(yīng)用雖然取得某些成功,但仍是低水平的、粗略的、甚至是勉強(qiáng)的。許多更復(fù)雜的生物學(xué)問(wèn)題至今未能找到相應(yīng)的數(shù)學(xué)方法進(jìn)行研究。因此,生物數(shù)學(xué)還要從生物學(xué)的需要和特點(diǎn),探求新方法、新手段和新的理論體系,還有待發(fā)展和完善。

20xx年高考數(shù)學(xué)命題預(yù)測(cè)之立體幾何

【編者按】近幾年高考立體幾何試題以基礎(chǔ)題和中檔題為主,熱點(diǎn)問(wèn)題主要有證明點(diǎn)線面的關(guān)系,如點(diǎn)共線、線共點(diǎn)、線共面問(wèn)題;證明空間線面平行、垂直關(guān)系;求空間的角和距離;利用空間向量,將空間中的性質(zhì)及位置關(guān)系的判定與向量運(yùn)算相結(jié)合,使幾何問(wèn)題代數(shù)化等等。考查的重點(diǎn)是點(diǎn)線面的位置關(guān)系及空間距離和空間角,突出空間想象能力,側(cè)重于空間線面位置關(guān)系的定性與定量考查,算中有證。其中選擇、填空題注重幾何符號(hào)語(yǔ)言、文字語(yǔ)言、圖形語(yǔ)言三種語(yǔ)言的相互轉(zhuǎn)化,考查學(xué)生對(duì)圖形的識(shí)別、理解和加工能力;解答題則一般將線面集中于一個(gè)幾何體中,即以一個(gè)多面體為依托,設(shè)置幾個(gè)小問(wèn),設(shè)問(wèn)形式以證明或計(jì)算為主。

20xx年高考中立體幾何命題有如下特點(diǎn):

1.線面位置關(guān)系突出平行和垂直,將側(cè)重于垂直關(guān)系。

2.多面體中線面關(guān)系論證,空間“角”與“距離”的計(jì)算常在解答題中綜合出現(xiàn)。

3.多面體及簡(jiǎn)單多面體的概念、性質(zhì)多在選擇題,填空題出現(xiàn)。

4.有關(guān)三棱柱、四棱柱、三棱錐的問(wèn)題,特別是與球有關(guān)的問(wèn)題將是高考命題的熱點(diǎn)。

高中數(shù)學(xué)學(xué)習(xí)方法篇三

如果等到把課堂內(nèi)容遺忘得差不多時(shí)才復(fù)習(xí),就幾乎等于重新學(xué)習(xí),所以課堂學(xué)習(xí)的新知識(shí)必須及時(shí)復(fù)習(xí)。

可以一個(gè)人單獨(dú)回憶,也可以幾個(gè)人在一起互相啟發(fā),補(bǔ)充回憶。一般按照教師板書的提綱和要領(lǐng)進(jìn)行,也可以按教材綱目結(jié)構(gòu)進(jìn)行,從課題到重點(diǎn)內(nèi)容,再到例題的每部分的細(xì)節(jié),循序漸進(jìn)地進(jìn)行復(fù)習(xí)。在復(fù)習(xí)過(guò)程中要不失時(shí)機(jī)整理筆記,因?yàn)檎砉P記也是一種有效的復(fù)習(xí)方法。

即使是復(fù)習(xí)過(guò)的內(nèi)容仍須定期鞏固,但是復(fù)習(xí)的次數(shù)應(yīng)隨時(shí)間的增長(zhǎng)而逐步減小,間隔也可以逐漸拉長(zhǎng)??梢援?dāng)天鞏固新知識(shí),每周進(jìn)行周小結(jié),每月進(jìn)行階段性總結(jié),期中、期末進(jìn)行全面系統(tǒng)的學(xué)期復(fù)習(xí)。從內(nèi)容上看,每課知識(shí)即時(shí)回顧,每單元進(jìn)行知識(shí)梳理,每章節(jié)進(jìn)行知識(shí)歸納總結(jié),必須把相關(guān)知識(shí)串聯(lián)在一起,形成知識(shí)網(wǎng)絡(luò),達(dá)到對(duì)知識(shí)和方法的整體把握。

復(fù)習(xí)一般可以分為集中復(fù)習(xí)和分散復(fù)習(xí)。實(shí)驗(yàn)證明,分散復(fù)習(xí)的效果優(yōu)于集中復(fù)習(xí),特殊情況除外。分散復(fù)習(xí),可以把需要識(shí)記的材料適當(dāng)分類,并且與其他的學(xué)習(xí)或娛樂(lè)或休息交替進(jìn)行,不至于單調(diào)使用某種思維方式,形成疲勞。分散復(fù)習(xí)也應(yīng)結(jié)合各自認(rèn)知水平,以及識(shí)記素材的特點(diǎn),把握重復(fù)次數(shù)與間隔時(shí)間,并非間隔時(shí)間越長(zhǎng)越好,而要適合自己的復(fù)習(xí)規(guī)律。

高中數(shù)學(xué)學(xué)習(xí)方法篇四

一、計(jì)算能力。

高中涉及到更多的內(nèi)容,而計(jì)算是一項(xiàng)基本技能,對(duì)于初中時(shí)候的有理數(shù)的運(yùn)算、二次根式的運(yùn)算、實(shí)數(shù)的運(yùn)算、整式和分式運(yùn)算,代數(shù)式的變形等方面如果還存在問(wèn)題,應(yīng)該把部分再好好復(fù)習(xí)鞏固一下。若計(jì)算頻頻出現(xiàn)問(wèn)題,會(huì)成為高中學(xué)習(xí)的一個(gè)巨大的絆腳石。

二、反思總結(jié)。

很多同學(xué)進(jìn)入高中后都會(huì)在學(xué)法上遇到很大的困擾。因?yàn)楦咧兄R(shí)多,授課時(shí)間短,難度大,所以初中時(shí)候的一些學(xué)習(xí)方法在高中就不太適用了。對(duì)于高中的知識(shí),不能認(rèn)為“做題多了自然就會(huì)了”,因?yàn)榈搅烁咧袥](méi)有那么多時(shí)間來(lái)做題,因此一定要找到一種更有效地學(xué)習(xí)方法,那就是要在每次學(xué)習(xí)過(guò)后進(jìn)行總結(jié)和反思。總結(jié)知識(shí)點(diǎn)之間的聯(lián)系和區(qū)別,反思一下知識(shí)更深層的本質(zhì)。三、預(yù)習(xí)高一的知識(shí)。新課程標(biāo)準(zhǔn)的高一第一學(xué)期一般是講必修1和必修4兩本。目前高中采取模塊教學(xué),每個(gè)學(xué)期2個(gè)模塊。

必修1的主要內(nèi)容是三部分:

集合:數(shù)學(xué)中最基礎(chǔ),最通用的數(shù)學(xué)語(yǔ)言。貫穿整個(gè)高中以及現(xiàn)代數(shù)學(xué)都是以集合語(yǔ)言為基礎(chǔ)的。一定要學(xué)明白了。

函數(shù):通過(guò)初中對(duì)具體函數(shù)的學(xué)習(xí),在其基礎(chǔ)上研究任意函數(shù)研究其性質(zhì),如單調(diào)性,奇偶性,對(duì)稱性,周期性等。這一部分相對(duì)有一定的難度,而且與初中的聯(lián)系比較緊。基本初等函數(shù):指數(shù)和對(duì)數(shù)的運(yùn)算以及利用前面學(xué)到的函數(shù)性質(zhì)研究指數(shù)函數(shù),對(duì)數(shù)函數(shù)和冪函數(shù)。這部分知識(shí)有新的計(jì)算,并且應(yīng)用前面的函數(shù)性質(zhì)學(xué)習(xí)新的函數(shù)。

必修4的主要內(nèi)容也分為三部分:

三角函數(shù):對(duì)于初中的角的概念進(jìn)行擴(kuò)充,涉及到三角函數(shù)的運(yùn)算以及三角函數(shù)的性質(zhì)。

平面向量:這是數(shù)學(xué)里面一種新的常用的工具,通過(guò)向量的方法可以方便的解決很多三角函數(shù)的問(wèn)題。這種方法與平面直角坐標(biāo)系的聯(lián)系比較多,但與函數(shù)有所不同,應(yīng)注意區(qū)別與聯(lián)系。

三角恒等變換:這部分主要是三角的運(yùn)算,屬于公式很多,運(yùn)算量也比較大的內(nèi)容,高中化學(xué)。統(tǒng)觀上述高一第一學(xué)期的內(nèi)容可見知識(shí)非常多,而且這些知識(shí)在高考中的比重也比較大,因此若在高一一開始不能學(xué)好,對(duì)于后面的學(xué)習(xí)是會(huì)有一定影響的。因此,要考慮到初高中知識(shí)的差異,對(duì)自己的學(xué)法進(jìn)行改進(jìn),最后要適當(dāng)?shù)念A(yù)習(xí)一下新高一的內(nèi)容,以期很快的適應(yīng)高中的數(shù)學(xué)學(xué)習(xí)。

高中數(shù)學(xué)學(xué)習(xí)方法篇五

高三數(shù)學(xué)怎么學(xué)?其實(shí),這是一個(gè)吃“牛軋花生糖”的過(guò)程。我想借用這5個(gè)字“牛、軋(同音“扎”,即扎實(shí))、花生(諧音“化生”,即數(shù)學(xué)解題中的“化生為熟”策略)糖(甜蜜)”,來(lái)談?wù)勎覍?duì)大家學(xué)習(xí)高三數(shù)學(xué)的建議。

提起“?!保藗儠?huì)說(shuō)牛氣沖天、老黃牛、牛勁。是的,我們學(xué)習(xí)就是要一股牛氣,要有一股初生牛犢的精神,要有牛氣沖天的干勁,要不畏難、不怕苦,要勤于思考、敢于實(shí)踐,要把自卑心理一掃而光,代之而起的是高漲而持續(xù)的學(xué)習(xí)熱情。

牛在緊要關(guān)頭不僅有沖勁,在平時(shí)耕田拉車中還特有韌勁,我們特別需要能長(zhǎng)久維持的韌勁,它是我們成功的必要條件,有了這股韌勁,就能克服一切困難,集中精力,發(fā)奮讀書,即使身體小有不適,也能盡量堅(jiān)持學(xué)習(xí),這是對(duì)自己意志的考驗(yàn)。

“軋”音同 “扎”,寓意是學(xué)習(xí)要扎實(shí)。數(shù)學(xué)學(xué)習(xí)的扎實(shí)表現(xiàn)在:

(1)不滿足于聽懂、看懂,關(guān)鍵要能準(zhǔn)確地書寫表達(dá)出來(lái),還要能舉一反三,否則,沒(méi)有真懂。

(2)運(yùn)算要既快又準(zhǔn)。速度慢了不行,但算錯(cuò)了更不行!

要做到這兩條,必須在課堂上認(rèn)真聽講、用心思考、勤于演算、善于筆記。在課后還要通過(guò)一定數(shù)量模仿性練習(xí)、提高性練習(xí)等高質(zhì)量作業(yè)才能牢固掌握,做作業(yè)不互相對(duì)答案,不抄襲,遇到不懂問(wèn)題可以相互討論,但懂了以后自己再獨(dú)立做。還要自覺(jué)學(xué)會(huì)歸納解題成功的經(jīng)驗(yàn)和總結(jié)失敗的教訓(xùn),做到吃一塹,長(zhǎng)一智。

花生的果實(shí)生長(zhǎng)在地下,默默地被大地滋潤(rùn)著,直到成熟才離開土地,營(yíng)養(yǎng)價(jià)值極高。滋潤(rùn)著學(xué)生成長(zhǎng)的是國(guó)家以及你們的父母和老師。

“花生”的“生”單獨(dú)字面有陌生、生疏的意思,“花”有相間的意思,此處借用“花生”是想說(shuō)在學(xué)習(xí)過(guò)程中會(huì)時(shí)常出現(xiàn)一些新的問(wèn)題和困難,這需要我們正確的態(tài)度去對(duì)待,是強(qiáng)調(diào)基礎(chǔ)差、問(wèn)題難,還是知難而進(jìn),用心思考,不恥下問(wèn),是對(duì)每個(gè)同學(xué)學(xué)習(xí)毅力的考驗(yàn)。

“花生”的諧音是“化生”,借指數(shù)學(xué)中常用的方法——化生為熟。這是數(shù)學(xué)學(xué)習(xí)中解決問(wèn)題的一條重要途徑,是學(xué)會(huì)分析問(wèn)題和解決問(wèn)題的重要方法。

糖是大家喜歡的食品,它給我們辛苦的學(xué)習(xí)帶來(lái)一絲甜意,我希望大家在繁重的學(xué)習(xí)間隙,可以唱支歌、跳曲舞來(lái)調(diào)節(jié)生活,來(lái)體驗(yàn)學(xué)習(xí)的甜蜜,預(yù)示同學(xué)們?nèi)旮咧猩钣幸粋€(gè)甜美的結(jié)果。但是大家知道,葡萄在成熟之前是不甜的,這預(yù)示著,在我們最后幾個(gè)月的學(xué)習(xí)中可能會(huì)有很多感觸,那種時(shí)而忽然開朗,眼前一片光明,時(shí)而百思不解,眼前一片黑暗,那種糾結(jié)、煩躁、甚至憤怒,沒(méi)有親身經(jīng)歷的人是難以體會(huì)的!這樣的經(jīng)歷是一個(gè)人成長(zhǎng)、成熟所必須經(jīng)歷的,我們只能面對(duì),沒(méi)有逃避的余地,這或許是“先苦后甜”的深刻含義吧。

吃了今天的“牛軋花生糖”,我相信今后你們學(xué)習(xí)信心更大,克服困難的意志更堅(jiān)強(qiáng),解決問(wèn)題方法更多,成績(jī)提高得更快,明天的日子會(huì)更甜!

高中數(shù)學(xué)學(xué)習(xí)方法篇六

高中數(shù)學(xué)的學(xué)習(xí)不能滿足于盲目地在題海中奮戰(zhàn),更加不能就題來(lái)論題。特別是高中階段的數(shù)學(xué)學(xué)習(xí),要特別注重掌握數(shù)學(xué)的思想方法。數(shù)學(xué)思想方法如果按層次分,可分為數(shù)學(xué)一般方法、邏輯學(xué)數(shù)學(xué)方法與數(shù)學(xué)思想方法。其中,數(shù)學(xué)一般方法主要是數(shù)學(xué)解題的具體方法及相關(guān)技能、技巧,比如高中數(shù)學(xué)里的配方法、換元法、待定系數(shù)法和判別式法等。邏輯學(xué)數(shù)學(xué)方法主要是指數(shù)學(xué)的思維方法,主要有分析法、綜合法、歸納法和試驗(yàn)法等。數(shù)學(xué)思想方法主要有函數(shù)與方程思想、化歸思想及數(shù)形結(jié)合思想等。

通過(guò)對(duì)數(shù)學(xué)解題過(guò)程中最富有特色的典型智力活動(dòng)進(jìn)行分析和歸納,可以提煉出分析、解決數(shù)學(xué)問(wèn)題的規(guī)律來(lái),也就是要先弄清問(wèn)題,再擬定解題計(jì)劃,接著實(shí)現(xiàn)解題計(jì)劃,最后進(jìn)行回顧這四個(gè)階段。在數(shù)學(xué)教學(xué)中,教師要把好審題關(guān)、計(jì)算關(guān)及數(shù)學(xué)表達(dá)關(guān),要求學(xué)生對(duì)概念、公式和定理等知識(shí)點(diǎn)進(jìn)行準(zhǔn)確記憶,并能牢固掌握,還要學(xué)會(huì)運(yùn)用這些知識(shí)開展計(jì)算、證明和邏輯推理。只要把握高中數(shù)學(xué)學(xué)習(xí)的規(guī)律,掌握了學(xué)習(xí)的方法,無(wú)論遇到任何題目,都能迎刃而解。

(1)抓教材處理。正所謂“萬(wàn)變不離其中”。要知道,教材始終是我們學(xué)習(xí)的根本依據(jù)。教學(xué)是活的,思維也是活的,學(xué)習(xí)能力是隨著知識(shí)的積累而同時(shí)形成的。我們要通過(guò)老師教學(xué),理解所學(xué)內(nèi)容在教材中的地位,并將前后知識(shí)聯(lián)系起來(lái),把握教材,才能掌握學(xué)習(xí)的主動(dòng)性。

(2)抓問(wèn)題暴露。對(duì)于那些典型的問(wèn)題,必須及時(shí)解決,而不能把問(wèn)題遺留下來(lái),而要對(duì)遺留的問(wèn)題及時(shí)、有針對(duì)地起來(lái),注重實(shí)效。

(3)抓解題指導(dǎo)。要合理選擇簡(jiǎn)捷的運(yùn)算途徑,要根據(jù)問(wèn)題的條件和要求合理地選擇運(yùn)算過(guò)程,抓住問(wèn)題的關(guān)鍵突破口,提高自己的學(xué)習(xí)能力。

(4)抓思維訓(xùn)練。數(shù)學(xué)的特點(diǎn)是具有高度的抽象性、邏輯性和廣泛的適用性,對(duì)能力要求較高。我們?cè)谄綍r(shí)的訓(xùn)練中,要注重一個(gè)思維的過(guò)程,學(xué)習(xí)能力是在不斷運(yùn)用中才能培養(yǎng)出來(lái)的。

(5)抓40分鐘課堂效率。我們學(xué)習(xí)的大部分時(shí)間都在學(xué)校,如果不能很好地抓住課堂時(shí)間,而寄望于課下去補(bǔ),則會(huì)使學(xué)習(xí)效率大打折扣了。

高中數(shù)學(xué)學(xué)習(xí)方法篇七

良好的學(xué)習(xí)習(xí)慣包括制定學(xué)習(xí)計(jì)劃、課前預(yù)習(xí)、專心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面。

(1)制定計(jì)劃明確學(xué)習(xí)目的。合理的學(xué)習(xí)計(jì)劃是推動(dòng)我們主動(dòng)學(xué)習(xí)和克服困難的內(nèi)在動(dòng)力。計(jì)劃先由老師指導(dǎo)督促,再一定要由自己切實(shí)完成,既有長(zhǎng)遠(yuǎn)打算,又有短期安排,執(zhí)行過(guò)程中嚴(yán)格要求自己,磨煉學(xué)習(xí)意志。

(2)課前預(yù)習(xí)是取得較好學(xué)習(xí)效果的基礎(chǔ)。課前預(yù)習(xí)不僅能培養(yǎng)自學(xué)能力,而且能提高學(xué)習(xí)新課的興趣,掌握學(xué)習(xí)的主動(dòng)權(quán)。預(yù)習(xí)不能搞走過(guò)場(chǎng),要講究質(zhì)量,力爭(zhēng)在課前把教材弄懂,上課著重聽老師講思路,把握重點(diǎn),突破難點(diǎn),盡可能把問(wèn)題解決在課堂上。

(3)上課是理解和掌握基本知識(shí)、基本技能和基本方法的關(guān)鍵環(huán)節(jié)?!皩W(xué)然后知不足”,上課更能專心聽重點(diǎn)難點(diǎn),把老師補(bǔ)充的內(nèi)容記錄下來(lái),而不是全抄全錄,顧此失彼。

(4)及時(shí)復(fù)習(xí)是提高效率學(xué)習(xí)的重要一環(huán)。通過(guò)反復(fù)閱讀教材,多方面查閱有關(guān)資料,強(qiáng)化對(duì)基本概念知識(shí)體系的理解與記憶,將所學(xué)的新知識(shí)與有關(guān)舊知識(shí)聯(lián)系起來(lái),進(jìn)行分析比效,一邊復(fù)習(xí)一邊將復(fù)習(xí)成果整理在筆記本上,使對(duì)所學(xué)的新知識(shí)由“懂”到“會(huì)”。

(5)獨(dú)立作業(yè)是通過(guò)自己的獨(dú)立思考,靈活地分析問(wèn)題、解決問(wèn)題,進(jìn)一步加深對(duì)所學(xué)新知識(shí)的理解和對(duì)新技能的掌握過(guò)程。這一過(guò)程也是對(duì)我們意志毅力的考驗(yàn),通過(guò)運(yùn)用使我們對(duì)所學(xué)知識(shí)由“會(huì)”到“熟”。

(6)解決疑難是指對(duì)獨(dú)立完成作業(yè)過(guò)程中暴露出來(lái)對(duì)知識(shí)理解的錯(cuò)誤,或由于思維受阻遺漏解答,通過(guò)點(diǎn)撥使思路暢通,補(bǔ)遺解答的過(guò)程。解決疑難一定要有鍥而不舍的精神。做錯(cuò)的作業(yè)再做一遍。對(duì)錯(cuò)誤的地方?jīng)]弄清楚要反復(fù)思考。實(shí)在解決不了的要請(qǐng)教老師和同學(xué),并要經(jīng)常把易錯(cuò)的地方拿來(lái)復(fù)習(xí)強(qiáng)化,作適當(dāng)?shù)闹貜?fù)性練習(xí),把求老師問(wèn)同學(xué)獲得的東西消化變成自己的知識(shí),長(zhǎng)期堅(jiān)持使對(duì)所學(xué)知識(shí)由“熟”到“活”。

(7)系統(tǒng)小結(jié)是通過(guò)積極思考,達(dá)到全面系統(tǒng)深刻地掌握知識(shí)和發(fā)展認(rèn)識(shí)能力的重要環(huán)節(jié)。小結(jié)要在系統(tǒng)復(fù)習(xí)的基礎(chǔ)上以教材為依據(jù),參照筆記與資料,通過(guò)分析、綜合、類比、概括,揭示知識(shí)間的內(nèi)在聯(lián)系,以達(dá)到對(duì)所學(xué)知識(shí)融會(huì)貫通的目的。經(jīng)常進(jìn)行多層次小結(jié),能對(duì)所學(xué)知識(shí)由“活”到“悟”。

(8)課外學(xué)習(xí)包括閱讀課外書籍與報(bào)刊,參加學(xué)科競(jìng)賽與講座,走訪高年級(jí)同學(xué)或老師交流學(xué)習(xí)心得等。課外學(xué)習(xí)是課內(nèi)學(xué)習(xí)的補(bǔ)充和繼續(xù),它不僅能豐富同學(xué)們的文化科學(xué)知識(shí),加深和鞏固課內(nèi)所學(xué)的知識(shí),而且能夠滿足和發(fā)展我們的興趣愛(ài)好,培養(yǎng)獨(dú)立學(xué)習(xí)和工作的能力,激發(fā)求知欲與學(xué)習(xí)熱情。

由于高一同學(xué)年齡較小,閱歷有限,為數(shù)不少的同學(xué)容易急躁。有的同學(xué)貪多求快,囫圇吞棗,想靠幾天“沖刺”一蹴而就。學(xué)習(xí)是一個(gè)長(zhǎng)期的鞏固舊知、發(fā)現(xiàn)新知的積累過(guò)程,決非一朝一夕可以完成的。許多優(yōu)秀的同學(xué)能取得好成績(jī),其中一個(gè)重要原因是他們的基本功扎實(shí),他們的閱讀、書寫、運(yùn)算技能達(dá)到了自動(dòng)化或半自動(dòng)化的熟練程度。讓高一同學(xué)學(xué)會(huì)積極歸因,樹立自信心,如:取得一點(diǎn)成績(jī)及時(shí)體會(huì)成功,強(qiáng)化學(xué)習(xí)能力;遇到挫折及時(shí)調(diào)整學(xué)習(xí)方法、策略,更加努力改變挫折,循序漸進(jìn),爭(zhēng)取在高考成功。

數(shù)學(xué)學(xué)科擔(dān)負(fù)著培養(yǎng)運(yùn)算能力、邏輯思維能力、空間想象能力,以及運(yùn)用所學(xué)知識(shí)分析問(wèn)題、解決問(wèn)題的能力的重任。其中運(yùn)算能力的培養(yǎng)一定要講究“活”,只看書不做題不行,只埋頭做題不總結(jié)積累也不行,教學(xué)中進(jìn)行一題多解思考,優(yōu)化運(yùn)算策略;邏輯思維能力是具有高度的抽象性、邏輯性和廣泛的適用性,對(duì)能力要求較高,使用歸類、網(wǎng)聯(lián)策略,區(qū)別好幾個(gè)概念:三段式推理、四種命題和充要條件的關(guān)系;空間想象能力對(duì)平面知識(shí)的擴(kuò)充既要能鉆進(jìn)去,又要能跳出來(lái),結(jié)合立體幾何,體會(huì)圖形、符號(hào)和文字之間的互化;運(yùn)用所學(xué)知識(shí)分析問(wèn)題、解決問(wèn)題的能力,就是要重視應(yīng)用題的轉(zhuǎn)化訓(xùn)練,歸類數(shù)學(xué)模型,體會(huì)數(shù)學(xué)語(yǔ)言。華羅庚先生倡導(dǎo)的“由薄到厚”和“由厚到薄”的學(xué)習(xí)過(guò)程就是這個(gè)道理,方法因人而異,但學(xué)習(xí)的四個(gè)環(huán)節(jié)(預(yù)習(xí)、上課、作業(yè)、復(fù)習(xí))和一個(gè)步驟(歸納總結(jié))是少不了的。

高一數(shù)學(xué)是高中學(xué)習(xí)一個(gè)艱苦的磨煉,經(jīng)過(guò)了這個(gè)階段的礪煉,就會(huì)打開高中數(shù)學(xué)的學(xué)習(xí)思維,前面的道路就會(huì)豁然開朗,只要同學(xué)們?cè)鰪?qiáng)信心,再掌握正確的高中數(shù)學(xué)學(xué)習(xí)方法,付出的努力一定會(huì)有回報(bào)。

高中數(shù)學(xué)學(xué)習(xí)方法篇八

在預(yù)習(xí)功課的時(shí)候不是簡(jiǎn)單的看一遍,要知道這個(gè)題是會(huì)做還是不會(huì)做,課上需要集中注意力聽講,一般來(lái)說(shuō),老師上課一般都是根據(jù)教學(xué)大綱來(lái)的,所以上課要專業(yè)這點(diǎn)很重要。但是老師課上所講的知識(shí)是面對(duì)所有學(xué)生,不是每個(gè)人都能掌握的,要學(xué)會(huì)調(diào)整。所以課前預(yù)習(xí)功課很重要。

二、利用晚自習(xí)時(shí)間

大家應(yīng)該都聽過(guò)這句話吧!當(dāng)別人在學(xué)習(xí)的時(shí)候,你還在學(xué)習(xí),當(dāng)別人在玩的時(shí)候,你還在學(xué)習(xí)。這樣你們的差距是非常大的,但是學(xué)習(xí)一定是有效去學(xué)習(xí)。不要盲目的,先復(fù)習(xí)再做作業(yè),效率高。試想,如果一道作業(yè)題需要反復(fù)翻書才能找到答案,而且因?yàn)椴皇炀毘霈F(xiàn)各種錯(cuò)誤,一來(lái)浪費(fèi)時(shí)間,二來(lái)浪費(fèi)了作業(yè)的價(jià)值–檢驗(yàn)當(dāng)天的學(xué)習(xí)效果。

晚自習(xí)時(shí)間還是比較充足的,閱讀白天老師講解的教材內(nèi)容,包括課本里面的定義、概念、例題等,根據(jù)課上老師的講解,重新把思路理一遍。

整理、補(bǔ)充、完善自己的課堂筆記,對(duì)于課堂上簡(jiǎn)寫的筆記,要根據(jù)自己當(dāng)天的課堂學(xué)習(xí)補(bǔ)充完整,既可以復(fù)習(xí)一遍重要內(nèi)容,又可以方便以后再次復(fù)習(xí)。

在看課堂筆記的時(shí)候,遇到不懂的題目可以記錄下來(lái),到時(shí)候問(wèn)同學(xué)或者老師。要有針對(duì)性。

三、每一張卷子不留題

把自己會(huì)做的題做完,然后把不懂的題目拿去問(wèn)同學(xué)或者老師,不要不好意思去問(wèn),怕老師說(shuō)太笨。其次就是報(bào)個(gè)培訓(xùn)班,利用額外時(shí)間彎道超車。

四、整理筆記

數(shù)學(xué)的筆記本基本有三本,一本是我們老師總結(jié)的一些方法和技巧,做題會(huì)經(jīng)常用到,還有一本就是把錯(cuò)題難題全部整理到這個(gè)本子上,提醒一點(diǎn)就是要針對(duì)去做題,最后一本是培訓(xùn)班上的筆記。

高中數(shù)學(xué)學(xué)習(xí)方法篇九

高中數(shù)學(xué)的學(xué)習(xí)不能滿足于盲目地在題海中奮戰(zhàn),更加不能就題來(lái)論題。特別是高中階段的數(shù)學(xué)學(xué)習(xí),要特別注重掌握數(shù)學(xué)的思想方法。數(shù)學(xué)思想方法如果按層次分,可分為數(shù)學(xué)一般方法、邏輯學(xué)數(shù)學(xué)方法與數(shù)學(xué)思想方法。其中,數(shù)學(xué)一般方法主要是數(shù)學(xué)解題的具體方法及相關(guān)技能、技巧,比如高中數(shù)學(xué)里的配方法、換元法、待定系數(shù)法和判別式法等。邏輯學(xué)數(shù)學(xué)方法主要是指數(shù)學(xué)的思維方法,主要有分析法、綜合法、歸納法和試驗(yàn)法等。數(shù)學(xué)思想方法主要有函數(shù)與方程思想、化歸思想及數(shù)形結(jié)合思想等。

通過(guò)對(duì)數(shù)學(xué)解題過(guò)程中最富有特色的典型智力活動(dòng)進(jìn)行分析和歸納,可以提煉出分析、解決數(shù)學(xué)問(wèn)題的規(guī)律來(lái),也就是要先弄清問(wèn)題,再擬定解題計(jì)劃,接著實(shí)現(xiàn)解題計(jì)劃,最后進(jìn)行回顧這四個(gè)階段。在數(shù)學(xué)教學(xué)中,教師要把好審題關(guān)、計(jì)算關(guān)及數(shù)學(xué)表達(dá)關(guān),要求學(xué)生對(duì)概念、公式和定理等知識(shí)點(diǎn)進(jìn)行準(zhǔn)確記憶,并能牢固掌握,還要學(xué)會(huì)運(yùn)用這些知識(shí)開展計(jì)算、證明和邏輯推理。只要把握高中數(shù)學(xué)學(xué)習(xí)的規(guī)律,掌握了學(xué)習(xí)的方法,無(wú)論遇到任何題目,都能迎刃而解。抓要點(diǎn)提高學(xué)習(xí)效率。

(1)抓教材處理。正所謂“萬(wàn)變不離其中”。要知道,教材始終是我們學(xué)習(xí)的根本依據(jù)。教學(xué)是活的,思維也是活的,學(xué)習(xí)能力是隨著知識(shí)的積累而同時(shí)形成的。我們要通過(guò)老師教學(xué),理解所學(xué)內(nèi)容在教材中的地位,并將前后知識(shí)聯(lián)系起來(lái),把握教材,才能掌握學(xué)習(xí)的主動(dòng)性。

(2)抓問(wèn)題暴露。對(duì)于那些典型的問(wèn)題,必須及時(shí)解決,而不能把問(wèn)題遺留下來(lái),而要對(duì)遺留的問(wèn)題及時(shí)、有針對(duì)地起來(lái),注重實(shí)效。

(3)抓解題指導(dǎo)。要合理選擇簡(jiǎn)捷的運(yùn)算途徑,要根據(jù)問(wèn)題的條件和要求合理地選擇運(yùn)算過(guò)程,抓住問(wèn)題的關(guān)鍵突破口,提高自己的學(xué)習(xí)能力。

(4)抓思維訓(xùn)練。數(shù)學(xué)的特點(diǎn)是具有高度的抽象性、邏輯性和廣泛的適用性,對(duì)能力要求較高。我們?cè)谄綍r(shí)的訓(xùn)練中,要注重一個(gè)思維的過(guò)程,學(xué)習(xí)能力是在不斷運(yùn)用中才能培養(yǎng)出來(lái)的。

(5)抓40分鐘課堂效率。我們學(xué)習(xí)的大部分時(shí)間都在學(xué)校,如果不能很好地抓住課堂時(shí)間,而寄望于課下去補(bǔ),則會(huì)使學(xué)習(xí)效率大打折扣了。

【本文地址:http://m.aiweibaby.com/zuowen/1933456.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔