2023年考研數學1大綱(模板四篇)

格式:DOC 上傳日期:2023-04-23 12:40:20
2023年考研數學1大綱(模板四篇)
時間:2023-04-23 12:40:20     小編:zdfb

范文為教學中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。范文怎么寫才能發(fā)揮它最大的作用呢?下面我給大家整理了一些優(yōu)秀范文,希望能夠幫助到大家,我們一起來看一看吧。

考研數學1大綱篇一

2.掌握變量可分離的微分方程、齊次微分方程和一階線性微分方程的求解方法.

3.會解二階常系數齊次線性微分方程.

4.了解線性微分方程解的性質及解的結構定理,會解自由項為多項式、指數函數、正弦函數、余弦函數的二階常系數非齊次線性微分方程.

5.了解差分與差分方程及其通解與特解等概念.

6.了解一階常系數線性差分方程的求解方法.

7.會用微分方程求解簡單的經濟應用問題.

考研數學1大綱篇二

1.了解級數的收斂與發(fā)散、收斂級數的和的概念.

2.了解級數的基本性質及級數收斂的必要條件,掌握幾何級數及 級數的收斂與發(fā)散的條件,掌握正項級數收斂性的比較判別法和比值判別法.

3.了解任意項級數絕對收斂與條件收斂的概念以及絕對收斂與收斂的關系,了解交錯級數的萊布尼茨判別法.

4.會求冪級數的收斂半徑、收斂區(qū)間及收斂域.

5.了解冪級數在其收斂區(qū)間內的基本性質(和函數的連續(xù)性、逐項求導和逐項積分),會求簡單冪級數在其收斂區(qū)間內的和函數.

6.了解麥克勞林(maclaurin)展開式.

考研數學1大綱篇三

1.理解導數的概念及可導性與連續(xù)性之間的關系,了解導數的幾何意義與經濟意義(含邊際與彈性的概念),會求平面曲線的切線方程和法線方程.

2.掌握基本初等函數的導數公式、導數的四則運算法則及復合函數的求導法則,會求分段函數的導數,會求反函數與隱函數的導數.

3.了解高階導數的概念,會求簡單函數的高階導數.

4.了解微分的概念、導數與微分之間的關系以及一階微分形式的不變性,會求函數的微分.

5.理解羅爾(rolle)定理、拉格朗日( lagrange)中值定理,了解泰勒(taylor)定理、柯西(cauchy)中值定理,掌握這四個定理的簡單應用.

6.會用洛必達法則求極限.

7.掌握函數單調性的判別方法,了解函數極值的概念,掌握函數極值、最大值和最小值的求法及其應用.

8.會用導數判斷函數圖形的凹凸性(注:在區(qū)間 內,設函數 具有二階導數.當 時, 的圖形是凹的;當 時, 的圖形是凸的),會求函數圖形的拐點和漸近線.

9.會描述簡單函數的圖形.

考研數學1大綱篇四

1.理解函數的概念,掌握函數的表示法,會建立應用問題的函數關系.

2.了解函數的有界性、單調性、周期性和奇偶性.

3.理解復合函數及分段函數的概念,了解反函數及隱函數的概念.

4.掌握基本初等函數的性質及其圖形,了解初等函數的概念.

5.了解數列極限和函數極限(包括左極限與右極限)的概念.

6.了解極限的性質與極限存在的兩個準則,掌握極限的四則運算法則,掌握利用兩個重要極限求極限的方法.

7.理解無窮小量的概念和基本性質,掌握無窮小量的比較方法.了解無窮大量的概念及其與無窮小量的關系.

8.理解函數連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數間斷點的類型.

9.了解連續(xù)函數的性質和初等函數的連續(xù)性,理解閉區(qū)間上連續(xù)函數的性質(有界性、最大值和最小值定理、介值定理),并會應用這些性質.

【本文地址:http://m.aiweibaby.com/zuowen/2687803.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔