教案是教學過程中必不可少的工具,可以提高教學效果。教案的編寫需要結合評價方式和標準,用以評估學生的學習效果。這些教案不僅涵蓋了各個年級和學科的內容,還包括了不同教學形式和教學手段的應用。
數軸教案滬科版篇一
1.掌握數軸的概念,理解數軸上的點和有理數的對應關系;
重點:數軸的概念和用數軸上的點表示有理數。難點:同上。[教學設計]
一。創(chuàng)設情境引入新知
觀察屏幕上的溫度計,讀出溫度。(3個溫度分別是零上,零,零下)
[問題1]:在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境。(分組討論,交流合作,動手操作)
二。合作交流探究新知
通過剛才的操作,我們總結一下,用一條直線表示有理數,這條直線必須滿足什么條件?(原點,單位長度,正方向,說出含義就可以)
四。反復演練掌握新知
教科書12練習。畫出數軸并表示下列有理數:
1.5,-2.2,-2.5,,,0.2.寫出數軸上點a,b,c,d,e所表示的數:
1.數軸需要滿足什么樣的條件;
2.數軸的作用是什么?
[作業(yè)]
必做題:教科書第18頁習題1.2:第2題。[備選題]
1.在數軸上,表示數-3,2.6,,0,,,-1的點中,在原點左邊的點有個。2.在數軸上點a表示-4,如果把原點o向負方向移動1.5個單位,那么在新數軸上點a表示的數是()
(2)你覺得數軸上的點表示數的大小與點的位置有關嗎?為什么?
總結可以由教師提出問題,學生總結,教師完善。2題也可以啟發(fā)學生反過來想,即點a向正方向移動1.5個單位。3題有一定的難度,兩次變動可轉化成原點實際怎樣移動了,移動了幾個單位,那么-5實際上怎樣移動了。
數軸教案滬科版篇二
措施開場白勵志故事管理制度了三字經考察新聞宣傳策劃書諺語了主題班會報告;歇后語提案狀物離職報告批復,辭職三字經教育誓詞檢測題了喜報陸游:朗誦廣播稿:通告自我介紹對照通知團結:先進事跡勞動節(jié)求職信;舉報信評價。
數軸教案滬科版篇三
有了數軸,數和形得到了初步結合,這有利于對數學問題的研究,數形結合是理解數學、學好數學的重要思想方法,本課知識要點如下表:
定義
三要素
應用
數形結合
規(guī)定了原點、正方向、單位長度的直線叫數軸
原點
正方向
單位長度
幫助理解有理數的概念,每個有理數都可用數軸上的點表示,但數軸上的點并非都是有理數
比較有理數大小,數軸上右邊的數總比左邊的數要大
在理解并掌握數軸概念的基礎之上,要會畫出數軸,能將已知數在數軸上表示出來,能說出數軸上已知點所表示的數,要知道所有的有理數都可以用數軸上的點表示,會利用數軸比較有理數的大小。
數軸教案滬科版篇四
[教學目標]
1.掌握數軸的概念,理解數軸上的點和有理數的對應關系;
重點:數軸的概念和用數軸上的點表示有理數.難點:同上.[教學設計]
一.創(chuàng)設情境引入新知
觀察屏幕上的溫度計,讀出溫度..(3個溫度分別是零上,零,零下)
[問題1]:在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.(分組討論,交流合作,動手操作)
二.合作交流探究新知
通過剛才的操作,我們總結一下,用一條直線表示有理數,這條直線必須滿足什么條件?(原點,單位長度,正方向,說出含義就可以)
四.反復演練掌握新知
教科書12練習.畫出數軸并表示下列有理數:
1.5,-2.2,-2.5, , ,0.2.寫出數軸上點a,b,c,d,e所表示的數:
1.數軸需要滿足什么樣的條件;
2.數軸的作用是什么?
[作業(yè)]
必做題:教科書第18頁習題1.2:第2題.[備選題]
1.在數軸上,表示數-3,2.6, ,0, , ,-1的點中,在原點左邊的點有個.2.在數軸上點a表示-4,如果把原點o向負方向移動1.5個單位,那么在新數軸上點a表示的數是()
(2)你覺得數軸上的點表示數的大小與點的位置有關嗎?為什么?
總結可以由教師提出問題,學生總結,教師完善.2題也可以啟發(fā)學生反過來想,即點a向正方向移動1.5個單位.3題有一定的難度,兩次變動可轉化成原點實際怎樣移動了,移動了幾個單位,那么-5實際上怎樣移動了.
數軸教案滬科版篇五
反思整改道德愛國近義詞了防控工作安排李商隱小結申請書的對策周記測試題;員工手冊辭職信黃庭堅章程了宣言復習方法的說明書黨員請柬順口溜優(yōu)秀,開學啟事的規(guī)范工作思路:我答辯狀模板求職信規(guī)章我演講稿創(chuàng)業(yè)項目采訪。
數軸教案滬科版篇六
小學里曾學過利用射線上的點來表示數,為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數?伴以溫度計為模型,引出數軸的概念。數軸是一條具有三個要素(原點、正方向、單位長度)的直線,這三個要素是判斷一條直線是不是數軸的根本依據。數軸與它所在的位置無關,但為了教學上需要,一般水平放置的數軸,規(guī)定從原點向右為正方向。要注意原點位置選擇的任意性。
關于有理數與數軸上的點的對應關系,應該明確的是有理數可以用數軸上的點表示,但數軸上的點與有理數并不存在一一對應的關系。根據幾個有理數在數軸上所對應的點的相互位置關系,應該能夠判斷它們之間的大小關系。通過點與有理數的對應關系及其應用,逐步滲透數形結合的思想。
數軸教案滬科版篇七
1.使學生正確理解數軸的意義,掌握數軸的三要素;
2.使學生學會由數軸上的已知點說出它所表示的數,能將有理數用數軸上的點表示出來;
3.使學生初步理解數形結合的思想方法.
重點:初步理解數形結合的思想方法,正確掌握數軸畫法和用數軸上的點表示有理數.
難點:正確理解有理數與數軸上點的對應關系.
2.用“射線”能不能表示有理數?為什么?
3.你認為把“射線”做怎樣的改動,才能用來表示有理數呢?
與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零.具體方法如下(邊說邊畫):
提問:我們能不能用這條直線表示任何有理數?(可列舉幾個數)
在此基礎上,給出數軸的定義,即規(guī)定了原點、正方向和單位長度的直線叫做數軸.
通過上述提問,向學生指出:數軸的三要素——原點、正方向和單位長度,缺一不可.
示出來.
2.說出下面數軸上a,b,c,d,o,m各點表示什么數?
1.在下面數軸上:
(1)分別指出表示-2,3,-4,0,1各數的點.
(2)a,h,d,e,o各點分別表示什么數?
2.在下面數軸上,a,b,c,d各點分別表示什么數?
3.下列各小題先分別畫出數軸,然后在數軸上畫出表示大括號內的一組數的點:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
數軸教案滬科版篇八
1.會正確畫出數軸.
2.會用數軸上的點表示有理數,能說出數軸上(表示有理數)的點所表示的數.
3.會利用數軸比較有理數的大小.
4.初步感受“數形結合”的思想方法.
【教學過程設計建議(第一課時)】
1.情境創(chuàng)設
2.探索活動
可以讓學生對照“做一做”的幾個步驟共同評價“板演”作業(yè),形成對數軸的正確認識.
3.例題教學
可以根據學生的實際情況,適當增加在數軸上表示分數的練習.
【教學過程設計建議(第二課時)】
1.探索活動
借助生活經驗(溫度的高低),引導學生探索:
邊的點所表示的數”.
“議一議”中的第2個問題,應組織學生認真操作,為得出上述結論增加感性認識.
對于兩個負數比較大小,學生比較陌生,教學中還可以采用以下方法:
2.例題教學
3.小結
下一篇:華師大版七上2.2數軸(含答案)
數軸教案滬科版篇九
1.掌握數軸的概念,理解數軸上的點和有理數的對應關系;
3.感受在特定的條件下數與形是可以互相轉化的,體驗生活中的數學.
重點:數軸的概念和用數軸上的點表示有理數.
難點:同上.
一.創(chuàng)設情境引入新知
觀察屏幕上的溫度計,讀出溫度..(3個溫度分別是零上,零,零下)
問題1:
在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.(分組討論,交流合作,動手操作)
二.合作交流探究新知
通過剛才的.操作,我們總結一下,用一條直線表示有理數,這條直線必須滿足什么條件?(原點,單位長度,正方向,說出含義就可以)
小游戲:
在一條直線上的同學站起來,我們規(guī)定原點,正方向,單位長度,按老師發(fā)的數字口令回答"到"游戲前可先不加任何條件,游戲中發(fā)現問題,進行彌補.
總結游戲,明確用直線表示有理數的要求,提出數軸的概念和要求(教科書第11頁).
三.動手動腦學用新知
1.你能舉出生活中用直線表示數的實際例子嗎?(溫度計,測量尺,電視音量,量杯容量標志,血壓計等).
四.反復演練掌握新知
教科書12練習.畫出數軸并表示下列有理數:
1.5,-2.2,-2.5,,,0.
2.寫出數軸上點a,b,c,d,e所表示的數:
問題1先給出情境,學生觀察,思考,研究,表示.增強學生的合作意識.
滿足的條件可以先不必明確,基本能明確就可以,在后面逐步明確.
游戲的目的是使學生明白數與點的對應關系,并知道要想在直線上表示數必須滿足的條件是什么.
明確數軸的正確畫法和要求.
練習中注意糾正學生數軸畫法的錯誤和點的表示錯誤.
1.數軸需要滿足什么樣的條件;
2.數軸的作用是什么?
必做題:教科書第18頁習題1.2:第2題.
1.在數軸上,表示數-3,2.6,,0,,,-1的點中,在原點左邊的點有個.
2.在數軸上點a表示-4,如果把原點o向負方向移動1.5個單位,那么在新數軸上點a表示的數是xx。
a.b.-4c.d.
(2)你覺得數軸上的點表示數的大小與點的位置有關嗎?為什么?
總結可以由教師提出問題,學生總結,教師完善。
數軸教案滬科版篇十
1、了解一元一次方程的概念。
2、掌握含有括號的一元一次方程的解法。
1、重點:解含有括號的一元一次方程的解法。
2、難點:括號前面是負號時,去括號時忘記變號。
一、復習提問
1、解下列方程:
(1)5x-2=8(2)5+2x=4x
2、去括號法則是什么?“移項”要注意什么?
二、新授
一元一次方程的概念
只含有一個未知數,并且含有未知數的式子都是整式,未知數的次數是l,這樣的方程叫做一元一次方程。
例1.判斷下列哪些是一元一次方程
x=3x-2x-=-l
5x2-3x+1=02x+y=l-3y=5
例2.解方程(1)-2(x-1)=4
(2)3(x-2)+1=x-(2x-1)
強調去括號時把括號外的因數分別乘以括號內的每一項,若括號前面是“-”號,注意去掉括號,要改變括號內的每一項的符號。
補充:解方程3x-[3(x+1)-(1+4)]=l
說明:方程中有多重括號時,一般應按先去小括號,再去中括號,最后去大括號的方法去括號,每去一層括號合并同類項一次,以簡便運算。
三、鞏固練習
教科書第9頁,練習,l、2、3。
四、小結
學習了一元一次方程的概念,含有括號的一元一次方程的解法。用分配律去括號時,不要漏乘括號中的項,并且不要搞錯符號。
五、作業(yè)
1、教科書第12頁習題6.2,2第l題。
數軸教案滬科版篇十一
[教學目標]
1.掌握數軸的概念,理解數軸上的點和有理數的對應關系;
重點:數軸的概念和用數軸上的點表示有理數.難點:同上.[教學設計]
一.創(chuàng)設情境引入新知
觀察屏幕上的溫度計,讀出溫度..(3個溫度分別是零上,零,零下)
[問題1]:在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.(分組討論,交流合作,動手操作)
二.合作交流探究新知
通過剛才的操作,我們總結一下,用一條直線表示有理數,這條直線必須滿足什么條件?(原點,單位長度,正方向,說出含義就可以)
四.反復演練掌握新知
教科書12練習.畫出數軸并表示下列有理數:
1.5,-2.2,-2.5, , ,0.2.寫出數軸上點a,b,c,d,e所表示的數:
1.數軸需要滿足什么樣的條件;
2.數軸的作用是什么?
[作業(yè)]
必做題:教科書第18頁習題1.2:第2題.[備選題]
1.在數軸上,表示數-3,2.6, ,0, , ,-1的點中,在原點左邊的點有個.2.在數軸上點a表示-4,如果把原點o向負方向移動1.5個單位,那么在新數軸上點a表示的數是()
(2)你覺得數軸上的點表示數的大小與點的位置有關嗎?為什么?
總結可以由教師提出問題,學生總結,教師完善.2題也可以啟發(fā)學生反過來想,即點a向正方向移動1.5個單位.3題有一定的難度,兩次變動可轉化成原點實際怎樣移動了,移動了幾個單位,那么-5實際上怎樣移動了.
數軸教案滬科版篇十二
新課標規(guī)定應從實際情景入手,并且使學生能夠對問題產生強烈的求知欲。
1.數軸是數形轉化、結合的重要媒介,情境設計的原型來源于生活實際,學生易于體驗和接受,讓學生通過觀察、思考和自己動手操作、經歷和體驗數軸的形成過程,加深對數軸概念的理解,同時培養(yǎng)學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規(guī)律。利用溫度計引入調動學生學習的積極性。
2.教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數形結合的數學思想方法。
二、在問題的探索上
我采用了師生互動,通過師生雙邊活動產生一種動態(tài)效果,使學生在充滿好奇心的狀態(tài)下,在老師提供的情景下,在具有較多的時間和空間的條件下,親身參加探索發(fā)現,主動的獲取知識和技能。但在整個的實施過程中出現了一些問題,比如:在概念的得出上學生的總結出現了一些問題,我再處理時由于怕時間不夠充裕所以學生出現的問題我給做出了解答,其實這里應由學生自己來解決,這樣對學生能力的提高非常有幫助。
三、習題的配備
整個習題的配備大致是按從易到難的順序排列的,面向全體學生,采用多種形式,使不同層次的學生都有所得,并且采用循序漸進的方。在講解完例題后,讓學生互相提問,以促使學生積極踴躍的參與到教學活動中來,創(chuàng)造一種輕松的學習氛圍。但我總體感覺習題的量不夠充足,學生的練習機會較少。
四、不足之處
學生通過學習掌握了畫數軸時原點的位置和單位長度可以實際情況來確定,但由于受課本練習冊數軸圖形的影響,有部分學生認為只有向右的方向才能作為數軸的正方向,遇到向其它方向為正方向數軸圖形就認為它不是數軸了。這有待在今后的教學中改進教學方法使學生加深對這方面的理解。
數軸教案滬科版篇十三
學習目標:
1.會用數軸上的點表示有理數。
2.借助數軸了解相反數的概念,知道互為相反數的一對數在數軸上的位置關系,能用數軸比較有理數的大小。
學習規(guī)律:
經歷從實際中抽出數學模型,從數形結合兩個側面理解問題,并能選擇處理數學信息,作出大膽猜測。
練習1:
1.下列圖形是數軸的是()
2.2數軸學案。zip
上一篇:2.2數軸教學設計
下一篇:2.2數軸
數軸教案滬科版篇十四
設計理念
這一節(jié)是初中數學中非常重要的內容,從知識上講,數軸是數學學習和研究的重要工具,它主要應用于絕對值概念的理解,有理數運算法則的推導,及不等式的求解。同時,也是學習直角坐標系的基礎,從思想方法上講,數軸是數形結合的起點,而數形結合是學生理解數學、學好數學的重要思想方法。
教學目標
1、知識與技能
(1)掌握數軸的三要素,能正確畫出數軸。
(2)能將已知數在數軸上表示出來,能說出數軸上已知點所表示的數。
2、過程與方法
使學生受到把實際問題抽象成數學問題的訓練,逐步形成應用數學的意識。
3、情感態(tài)度與價值觀
通過畫數軸,給學生以圖形美的教育,同時由于數形的結合,學生會得到和諧美的享受。
重點正確掌握數軸畫法和用數軸上的`點表示有理數。
難點有理數和數軸上的點的對應關系。
教學過程
1、創(chuàng)設情境,讓學生根據家鄉(xiāng)的地圖嘗試畫出自己家相對沙墩中學的位置,讓學生初步體會生活中的平面問題可以簡化為具體的直線問題來研究。
3、讓學生仔細觀察溫度計,對比學生所畫圖形與溫度計的區(qū)別,學生會發(fā)現,溫度計上有0刻度,0刻度以上為正數,0刻度以下為負數,那我們能否用類似溫度計的圖形來表示有理數呢?從而引出課題――數軸。
數軸教案滬科版篇十五
首先讓學生回顧有理數,同時借助多媒體讓學生舉手回答,使學生思維活躍迅速進入上課狀態(tài)。
在進入新課時,又借助實物讓學生對數軸有一個感性的認識,引導學生回答在實際生活中類似于溫度計的例子,讓學生注意力集中,思維活躍。
教師對教材中的例1進行靈活性的解釋,學生通過實際生活中的具體模型歸納他們所具有的共同特點,從而得出數軸的定義,教學中應在學生的歸納處突出數軸的三要素,學生踴躍發(fā)言,共同不漏,興趣提升,課堂氣氛活躍。
在這節(jié)課的教學過程中,學生的思維始終保持高度的活躍的性,出現了很多的閃光點,對我的啟發(fā)也很大。
在教學中應把握教材的精神,創(chuàng)造性的利用教材,在設計安排和組織教學過程的每一個環(huán)節(jié)都應當很意識的體現探索的內容和方法,避免教學內容的過分抽象和形成化,使學生通過直觀感受去理解和把握體驗數學學習的樂趣。積累數學活動經驗,體現數學學習的樂趣,積累數學活動經驗,體驗數學思維的意義,讓學生在中學中逐步形成創(chuàng)新意識。
本節(jié)課中,相信學生,并為學生提供充分展示自己的機會,教學活動的設計力求使學生多動手,多思考,多反思,充分發(fā)揮學生的主題作用,創(chuàng)設實際情景,情境,給學生足夠的時間和空間進行充分的探索和交流,通過動手實踐,自主探索,合作交流的學習方式進行有效的學習。
本節(jié)課注意改進的方面是課堂最后的小結中,教師提出數軸上的點與有理數并非一一對應的關系,將學生的思想引入更深一層做的不好,在小組討論之前,應該留給學生充分的獨立思考的時間,不要讓一些思維活躍的學生的回答代替了其他學生的思考,掩蓋了其他學生的疑問,與其對困難學生的幫助等,使小組合作學習更具時效性。
數軸教案滬科版篇十六
掌握去分母解方程的方法,體會到轉化的思想。對于求解較復雜的方程,注意培養(yǎng)學生自覺反思求解的過程和自覺檢驗方程的解是否正確的良好習慣。
重點、難點。
1、重點:掌握去分母解方程的方法。
2、難點:求各分母的最小公倍數,去分母時,有時要添括號。
教學過程。
一、復習提問。
1.去括號和添括號法則。
2.求幾個數的最小公倍數的方法。
二、新授。
例1:解方程(見課本)。
解一元一次方程有哪些步驟?
一般要通過去分母,去括號,移項,合并同類項,未知數的系數化為1等步驟,把一個一元一次方程“轉化”成x=a的形式。解題時,要靈活運用這些步驟。
補充例:解方程(x+15)=-(x-7)。
三、鞏固練習。
教科書第10頁,練習1、2。
四、小結。
1.解一元一次方程有哪些步驟?
2.掌握移項要變號,去分母時,方程兩邊每一項都要乘各分母的最小公倍數,切勿漏乘不含有分母的項,另外分數線有兩層意義,一方面它是除號,另一方面它又代表著括號,所以在去分母時,應該將分子用括號括上。
五、作業(yè)。
教科書第13頁習題6.2,2第2題。
數軸教案滬科版篇十七
【知識與技能】
了解數軸的概念,能用數軸上的點準確地表示有理數。
【過程與方法】
通過觀察與實際操作,理解有理數與數軸上的點的對應關系,體會數形結合的思想。
【情感、態(tài)度與價值觀】
在數與形結合的過程中,體會數學學習的樂趣。
二、教學重難點
【教學重點】
數軸的三要素,用數軸上的點表示有理數。
【教學難點】
數形結合的思想方法。
三、教學過程
(一)引入新課
提出問題:通過實例溫度計上數字的意義,引出數學中也有像溫度計一樣可以用來表示數的軸,它就是我們今天學習的數軸。
(二)探索新知
學生活動:小組討論,用畫圖的形式表示東西向馬路上楊樹,柳樹,汽車站牌三者之間的關系:
學生活動:畫圖表示后提問。
提問2:“0”代表什么?數的符號的實際意義是什么?對照體溫計進行解答。
教師給出定義:在數學中,可以用一條直線上的點表示數,這條直線叫做數軸,它滿足:任取一個點表示數0,代表原點;通常規(guī)定直線上向右(或上)為正方向,從原點向左(或下)為負方向;選取合適的長度為單位長度。
提問3:你是如何理解數軸三要素的?
師生共同總結:“原點”是數軸的“基準”,表示0,是表示正數和負數的分界點,正方向是人為規(guī)定的,要依據實際問題選取合適的單位長度。
(三)課堂練習
如圖,寫出數軸上點a,b,c,d,e表示的數。
(四)小結作業(yè)
提問:今天有什么收獲?
引導學生回顧:數軸的三要素,用數軸表示數。
課后作業(yè):
課后練習題第二題;思考:到原點距離相等的兩個點有什么特點?
【本文地址:http://m.aiweibaby.com/zuowen/5989874.html】