感悟可以讓我們更加敏銳地觀(guān)察和感知世界,領(lǐng)悟到生活的真諦和意義。感悟的精髓在于通過(guò)文字將自己的思想和感受傳遞給他人。感悟是一種寶貴的財(cái)富,以下是一些感悟的精選范文供您參考。
數(shù)學(xué)建模論文感悟篇一
:隨著經(jīng)濟(jì)的快速發(fā)展,我國(guó)的科學(xué)技術(shù)也得到了長(zhǎng)足的進(jìn)步,在計(jì)算機(jī)應(yīng)用方面,從對(duì)計(jì)算機(jī)技術(shù)尚存新鮮感到運(yùn)用成熟,可以說(shuō)有了質(zhì)的飛躍。在日常生活以及技術(shù)操作當(dāng)中,計(jì)算機(jī)已經(jīng)融入其中,廣泛地應(yīng)用于各行各業(yè),筆者以數(shù)學(xué)建模為例,分析了數(shù)學(xué)建模與計(jì)算機(jī)應(yīng)用之間的關(guān)系,與此同時(shí),也探尋了計(jì)算機(jī)應(yīng)用技術(shù)在數(shù)學(xué)建模的輔助之下發(fā)揮的作用,并對(duì)數(shù)學(xué)建模進(jìn)行概念定義,使得讀者能夠?qū)?shù)學(xué)建模的意義有著更深層次的了解,希望能夠起到促進(jìn)二者之間的良性發(fā)展。
數(shù)學(xué)建模;計(jì)算機(jī)技術(shù);計(jì)算機(jī)應(yīng)用
隨著經(jīng)濟(jì)的快速發(fā)展,我國(guó)的科學(xué)技術(shù)也有了長(zhǎng)足的進(jìn)步,而與之密不可分的數(shù)學(xué)學(xué)科也有著不可小覷的進(jìn)步,與此同時(shí),數(shù)學(xué)學(xué)科的延伸領(lǐng)域從物理等逐漸擴(kuò)展到環(huán)境、人口、社會(huì)、經(jīng)濟(jì)范圍,使得其作用力逐漸增強(qiáng)。不僅如此,數(shù)學(xué)學(xué)科由原本的研究事物的性質(zhì)分析逐漸轉(zhuǎn)變到研究定量性質(zhì)范圍,促進(jìn)了多方面多層次的發(fā)展,由此可見(jiàn),數(shù)學(xué)學(xué)科的重要性質(zhì)。在日常生活中,運(yùn)用數(shù)學(xué)學(xué)科去解決實(shí)際問(wèn)題時(shí),首要完成的就是從復(fù)雜的事物中找到普遍的規(guī)律現(xiàn)象存在,并用最為清晰的數(shù)字、符號(hào)、公式等將潛在的信息表達(dá)出來(lái),再運(yùn)用計(jì)算機(jī)技術(shù)加以呈現(xiàn),形成人們所要完成的結(jié)果。筆者以數(shù)學(xué)建模為例,分析了數(shù)學(xué)建模與計(jì)算機(jī)應(yīng)用之間的關(guān)系,與此同時(shí),也探尋了計(jì)算機(jī)應(yīng)用技術(shù)在數(shù)學(xué)建模的輔助之下發(fā)揮的作用,并對(duì)數(shù)學(xué)建模進(jìn)行概念定義,使得讀者能夠?qū)?shù)學(xué)建模的意義有著更深層次的了解,希望能夠起到促進(jìn)二者之間的良性發(fā)展。
從宏觀(guān)角度上來(lái)講,數(shù)學(xué)建模是更側(cè)重于實(shí)際研究方面,并不僅僅是通過(guò)數(shù)字演示來(lái)完成事物的一般發(fā)展規(guī)律,與一般的理論研究截然不同。其研究范圍之廣,能夠深入到各個(gè)領(lǐng)域當(dāng)中,從任何一個(gè)相關(guān)領(lǐng)域中都能夠找到數(shù)學(xué)學(xué)科的發(fā)展軌跡,從中不難看出數(shù)學(xué)學(xué)科的實(shí)際意義與鮮明特點(diǎn)。數(shù)學(xué)為一門(mén)注重實(shí)際問(wèn)題研究的學(xué)科,這一性質(zhì)方向決定了其研究的層次,其研究范圍大到漫無(wú)邊際的宇宙,小到對(duì)于個(gè)體微生物或者單細(xì)胞物體,綜合性之強(qiáng)形成了研究范圍廣的特點(diǎn)。多個(gè)學(xué)科之間互相影響,從中找到互相之間存在的相互聯(lián)系,其中有許多不能夠被忽視的數(shù)學(xué)元素,且這些元素都是至關(guān)重要的,所以這個(gè)計(jì)算過(guò)程十分復(fù)雜,計(jì)算量與數(shù)據(jù)驗(yàn)算過(guò)程也十分耗費(fèi)時(shí)間,因此需要充足的存儲(chǔ)空間支持這一過(guò)程的運(yùn)行。在數(shù)學(xué)建模的過(guò)程當(dāng)中,所涉獵的數(shù)學(xué)算法并不是很簡(jiǎn)單,而建立的模型也遵循個(gè)人習(xí)慣,因此建成的模型也不是一成不變的,但是都能夠得出相同的答案。正因如此,在數(shù)學(xué)建模的過(guò)程當(dāng)中,就需要使用各種輔助工具來(lái)完成這一過(guò)程。由于計(jì)算機(jī)軟件具有的高速運(yùn)轉(zhuǎn)空間,使得計(jì)算機(jī)技術(shù)應(yīng)用于數(shù)學(xué)學(xué)科的建模過(guò)程當(dāng)中,與數(shù)學(xué)建模過(guò)程密不可分息息相關(guān)。由此可見(jiàn),計(jì)算機(jī)技術(shù)的應(yīng)用水平對(duì)于數(shù)學(xué)學(xué)科的重要作用。
2。1計(jì)算機(jī)的獨(dú)特性與數(shù)學(xué)建模的實(shí)際性特點(diǎn)計(jì)算機(jī)的獨(dú)特性與數(shù)學(xué)建模的實(shí)際性特點(diǎn),使得二者之間有著密不可分的聯(lián)系,正是因?yàn)檫@種聯(lián)系使得雙方都能夠有長(zhǎng)足的發(fā)展,在技術(shù)上是起著互相促進(jìn)的作用。計(jì)算機(jī)的廣泛應(yīng)用為數(shù)學(xué)建模提供了較為便利的服務(wù),在使用過(guò)程當(dāng)中,數(shù)學(xué)建模也能夠起到完成對(duì)計(jì)算機(jī)技術(shù)的促進(jìn),能夠在這一過(guò)程中形成更為便捷高速的使用方法與途徑,使得計(jì)算機(jī)技術(shù)應(yīng)用更為靈活,也可以說(shuō)數(shù)學(xué)建模為計(jì)算機(jī)技術(shù)的實(shí)際應(yīng)用提供了更為廣闊的應(yīng)用空間,從中不難發(fā)現(xiàn),數(shù)學(xué)建模對(duì)于計(jì)算機(jī)應(yīng)用技術(shù)的支持性。計(jì)算機(jī)應(yīng)用技術(shù)需要合成的是多方面的技術(shù)支持,而數(shù)學(xué)建模則是需要首要完成的,二者之間是相互影響共同促進(jìn)的作用。
2。2計(jì)算機(jī)為數(shù)學(xué)建模提供了重要的技術(shù)支持?jǐn)?shù)學(xué)建模對(duì)于計(jì)算機(jī)應(yīng)用技術(shù)的重要的指導(dǎo)意義與作用。第一點(diǎn),計(jì)算機(jī)在其技術(shù)的支持之下,有著大量的存儲(chǔ)空間能夠完成存儲(chǔ)資料的這一過(guò)程,許多重要資料在計(jì)算機(jī)技術(shù)的保護(hù)之下,存儲(chǔ)時(shí)間較為長(zhǎng)久,且保護(hù)力度較大,不容易被破壞及減少了不必要的人力以及物力;第二點(diǎn),計(jì)算機(jī)是多媒體的一個(gè)分支,運(yùn)用其成熟的互聯(lián)網(wǎng)思維技術(shù),能夠完成數(shù)學(xué)建模從平面到空間的轉(zhuǎn)化,能夠提供更為成熟的模擬環(huán)境,從而提高實(shí)踐的效率。由于數(shù)學(xué)建模過(guò)程的復(fù)雜化及對(duì)于實(shí)際問(wèn)題的研究方向的特質(zhì),使得對(duì)于各項(xiàng)技術(shù)的要求就很高,所以,需要涉及的操作與數(shù)據(jù)量非常大,過(guò)程也十分復(fù)雜,常見(jiàn)的過(guò)程有三維打印、三維激光掃描等。這些都是需要計(jì)算機(jī)技術(shù)的支持才能夠完成的,所以對(duì)于計(jì)算機(jī)技術(shù)的要求非常高,與此同時(shí),計(jì)算機(jī)應(yīng)用技術(shù)為數(shù)學(xué)建模提供了更為便捷、快速的解決方案與途徑。
2。3數(shù)學(xué)建模為計(jì)算機(jī)的發(fā)展提供了基石計(jì)算機(jī)的產(chǎn)生起源于數(shù)學(xué)建模的過(guò)程,在二十世紀(jì)八十年代,由于導(dǎo)彈在飛行時(shí)的運(yùn)行軌跡的計(jì)算量過(guò)大,人工無(wú)法滿(mǎn)足這一高速率的運(yùn)算條件,基于這一背景條件,產(chǎn)生了計(jì)算機(jī),計(jì)算機(jī)應(yīng)用技術(shù)由此拉開(kāi)了序幕。數(shù)學(xué)建模的過(guò)程是需要計(jì)算機(jī)來(lái)完成的,在全部的過(guò)程當(dāng)中,計(jì)算機(jī)參與計(jì)算的比重很大,從某種意義程度上來(lái)講,計(jì)算機(jī)技術(shù)對(duì)于數(shù)學(xué)建模的發(fā)展是起著推動(dòng)性的作用的,二者之間是有著聯(lián)系的。
數(shù)學(xué)建模論文感悟篇二
摘要:隨著現(xiàn)代社會(huì)的發(fā)展,數(shù)學(xué)的廣泛用途已經(jīng)無(wú)需質(zhì)疑,他深入到我們生活的方方面面?,F(xiàn)階段,數(shù)學(xué)建模已經(jīng)成為應(yīng)用數(shù)學(xué)知識(shí)解決日常問(wèn)題的一個(gè)重要手段。本文通過(guò)簡(jiǎn)述數(shù)學(xué)建模的方法與過(guò)程,以及應(yīng)用數(shù)學(xué)建模解決實(shí)際經(jīng)濟(jì)問(wèn)題的應(yīng)用,展現(xiàn)的了數(shù)學(xué)學(xué)習(xí)的重要意義,以及數(shù)學(xué)在經(jīng)濟(jì)問(wèn)題解決中的重要作用。
關(guān)鍵詞:數(shù)學(xué);數(shù)學(xué)建模;經(jīng)濟(jì);應(yīng)用
經(jīng)濟(jì)現(xiàn)象具有多變性,隨著經(jīng)濟(jì)社會(huì)的發(fā)展,國(guó)際間貿(mào)易往來(lái)的日趨緊密,日常經(jīng)濟(jì)形勢(shì)受到的影響因素越來(lái)越復(fù)雜多變。而日常經(jīng)濟(jì)生活中所遇到的經(jīng)濟(jì)現(xiàn)象同樣存在著諸多的變化的影響因素。如何應(yīng)對(duì)這些難以把控的變量,做好風(fēng)險(xiǎn)的預(yù)估、成本的核算、進(jìn)行最大成本的規(guī)劃,所有這些都可以借助數(shù)學(xué)知識(shí)、應(yīng)用數(shù)學(xué)建模為工具進(jìn)行較為理性的計(jì)算,為經(jīng)濟(jì)決策、企業(yè)規(guī)劃提供重要的幫助。
一、數(shù)學(xué)建模
數(shù)學(xué)建模,其實(shí)就是建立數(shù)學(xué)模型的簡(jiǎn)稱(chēng),實(shí)際上數(shù)學(xué)建模可以稱(chēng)之為解決問(wèn)題的一種思考方法,借助數(shù)學(xué)工具應(yīng)用已知的定理定義進(jìn)行合理的運(yùn)算,推導(dǎo)出一種理性的結(jié)果的過(guò)程。數(shù)學(xué)建模是可以聯(lián)系數(shù)學(xué)和外部世界的一個(gè)中介和橋梁,在工業(yè)設(shè)計(jì)、經(jīng)濟(jì)領(lǐng)域、工程建設(shè)等各個(gè)方面,運(yùn)用數(shù)學(xué)的語(yǔ)言和方法進(jìn)行問(wèn)題的求解和推導(dǎo),實(shí)際上,都是一種數(shù)學(xué)建模的過(guò)程。數(shù)學(xué)建模的主要過(guò)程可以總結(jié)為如下的框圖形式:實(shí)際上,數(shù)學(xué)模型的最終建立是一個(gè)反復(fù)驗(yàn)證、修改、完善的動(dòng)態(tài)過(guò)程,很少能夠通過(guò)一次過(guò)程就建立起完美適合實(shí)際問(wèn)題的數(shù)學(xué)模型。通過(guò)上述過(guò)程的多次循環(huán)執(zhí)行:1.模型準(zhǔn)備:分析問(wèn)題,明確建模的目的,統(tǒng)計(jì)各種信息數(shù)據(jù);2.模型假設(shè):根據(jù)建模目的,結(jié)合實(shí)際對(duì)象的特性,對(duì)復(fù)雜問(wèn)題進(jìn)行簡(jiǎn)化,提取主要因素,提煉精確的數(shù)學(xué)語(yǔ)言;3.模型建立:根據(jù)提煉的主要因素,選擇適當(dāng)?shù)臄?shù)學(xué)工具,建立各個(gè)量(變量、常量)間的數(shù)學(xué)關(guān)系,化實(shí)際問(wèn)題為數(shù)學(xué)語(yǔ)言;4.模型求解:對(duì)上述數(shù)學(xué)關(guān)系進(jìn)行求解(包括解方程、圖形分析、邏輯運(yùn)算等);5.模型分析:將求解結(jié)果與實(shí)際問(wèn)題結(jié)合,綜合分析,找到模型的缺陷和不足,進(jìn)行數(shù)學(xué)上的優(yōu)化,建立穩(wěn)定模型;6.模型檢驗(yàn):將模型得到的結(jié)果與實(shí)際情況相驗(yàn)證,檢驗(yàn)?zāi)P偷暮侠硇院瓦m用性。
二、經(jīng)濟(jì)問(wèn)題數(shù)學(xué)模型的建立
經(jīng)濟(jì)類(lèi)問(wèn)題因?yàn)槠涮赜械奶攸c(diǎn),可以按照變量的性質(zhì)分為兩類(lèi):概率型和確定型。概率型應(yīng)用于處理具有隨機(jī)性情況的模型,可以解決類(lèi)似風(fēng)險(xiǎn)評(píng)估、最優(yōu)產(chǎn)量計(jì)算、庫(kù)存平衡等問(wèn)題;確定型則可以基于一定的條件與假設(shè),精確的對(duì)一種特定情況的結(jié)果做出判斷,如成本核算、損失評(píng)估等。對(duì)經(jīng)濟(jì)問(wèn)題的建模計(jì)算實(shí)際上是一個(gè)從經(jīng)濟(jì)世界進(jìn)入數(shù)學(xué)世界再回到經(jīng)濟(jì)世界的過(guò)程。建立經(jīng)濟(jì)數(shù)學(xué)模型,需要首先對(duì)實(shí)際經(jīng)濟(jì)問(wèn)題和情況有一個(gè)較為深入的認(rèn)識(shí),然后通過(guò)細(xì)致的觀(guān)察梳理,抽出最為本質(zhì)的特征性的東西。將原始的復(fù)雜的經(jīng)濟(jì)問(wèn)題簡(jiǎn)化提煉為一個(gè)較為理想的自然模型,然后基于這個(gè)原始模型應(yīng)用數(shù)學(xué)知識(shí)建立完整的數(shù)學(xué)經(jīng)濟(jì)模型。
三、建模舉例
四、結(jié)語(yǔ)
綜上所述,我們可以看到,數(shù)學(xué)建模在經(jīng)濟(jì)中的應(yīng)用可以非常廣泛,對(duì)很多的決策和工作都可以提供參考和指導(dǎo),如提高利潤(rùn)、規(guī)避風(fēng)險(xiǎn)、降低成本、節(jié)省開(kāi)支等各個(gè)方面。上文只提供了一個(gè)簡(jiǎn)單的例子,和初步的介紹,其深入的理念和概念更加值得我們?nèi)ヅΦ膶W(xué)習(xí)和思考。
數(shù)學(xué)建模論文感悟篇三
摘要:數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時(shí)、適當(dāng)?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。
關(guān)鍵詞:數(shù)學(xué)建模;教師
一、新課的引入需要發(fā)揮教師的作用
教師在數(shù)學(xué)建模課堂上的引導(dǎo)作用首先體現(xiàn)在教師對(duì)新課的引入上。教師一段精彩的導(dǎo)入會(huì)點(diǎn)燃學(xué)生學(xué)習(xí)的熱情、激發(fā)學(xué)生的學(xué)習(xí)興趣、喚起學(xué)生的好奇心,能把學(xué)生的注意力迅速集中到要學(xué)的知識(shí)上來(lái)。這對(duì)提高教學(xué)質(zhì)量、提高學(xué)生的學(xué)習(xí)效果起著不可估量的作用。同時(shí),新課前的導(dǎo)入環(huán)節(jié)是對(duì)學(xué)生進(jìn)行情感教育的最佳時(shí)刻。學(xué)生只有在教師的引導(dǎo)下才能夠體會(huì)到數(shù)學(xué)建模的價(jià)值、增強(qiáng)學(xué)好數(shù)學(xué)建模的信心。俗話(huà)說(shuō):“好的開(kāi)始是成功的一半。”數(shù)學(xué)建模課堂也是這樣。因此,在新課引入時(shí)要充分發(fā)揮教師的作用。
二、在教學(xué)任務(wù)的設(shè)計(jì)上需要發(fā)揮教師的作用
數(shù)學(xué)建模課堂一般應(yīng)采用任務(wù)型教學(xué)模式,是讓學(xué)生通過(guò)自主探究、合作學(xué)習(xí)、交流展示的方式完成一系列學(xué)習(xí)任務(wù)來(lái)達(dá)到特定的教學(xué)目標(biāo)和學(xué)習(xí)目標(biāo)。學(xué)生在課堂中的主體作用能否得到有效發(fā)揮取決于教師對(duì)問(wèn)題設(shè)計(jì)質(zhì)量的高低。教師應(yīng)通過(guò)設(shè)計(jì)一系列高質(zhì)量的問(wèn)題把復(fù)雜的數(shù)學(xué)建模問(wèn)題分解成若干簡(jiǎn)單問(wèn)題來(lái)引導(dǎo)學(xué)生更好地發(fā)揮其主動(dòng)性。學(xué)生也只有在這些問(wèn)題的正確引導(dǎo)下才能突破難點(diǎn)并向著學(xué)習(xí)目標(biāo)努力,有效防止學(xué)生思考、探究、交流的內(nèi)容偏離學(xué)習(xí)目標(biāo)等現(xiàn)象的出現(xiàn)。這些任務(wù)的制訂需要充分發(fā)揮教師的作用。
三、在新舊知識(shí)的聯(lián)系點(diǎn)上需要發(fā)揮教師的作用
建構(gòu)主義強(qiáng)調(diào)新知識(shí)是在學(xué)生已有知識(shí)的基礎(chǔ)上通過(guò)學(xué)生自身有意義的建構(gòu)獲得的。筆者認(rèn)為,學(xué)生自主建構(gòu)知識(shí)應(yīng)在教師的科學(xué)引導(dǎo)下進(jìn)行。尤其是對(duì)于數(shù)學(xué)建模這樣高難度的知識(shí)更是這樣。失去了教師的科學(xué)引導(dǎo),學(xué)生易產(chǎn)生疲倦感,久而久之會(huì)喪失學(xué)習(xí)數(shù)學(xué)建模的興趣和信心。因此,在新舊知識(shí)聯(lián)系點(diǎn)上應(yīng)發(fā)揮教師的作用。教師應(yīng)在準(zhǔn)確掌握教學(xué)目標(biāo)、難點(diǎn)的基礎(chǔ)上,充分考慮學(xué)生的認(rèn)知能力、習(xí)慣、思維方式,通過(guò)有針對(duì)性的具體問(wèn)題喚起學(xué)生對(duì)舊知識(shí)的回憶,再通過(guò)啟發(fā)性問(wèn)題引導(dǎo)學(xué)生去發(fā)現(xiàn)新知識(shí),從而實(shí)現(xiàn)溫故知新的目的。在教師引領(lǐng)下學(xué)生自主建構(gòu)知識(shí)可以使學(xué)生少走彎路,從而使學(xué)生更加高效地自主探究、掌握新知識(shí)。
四、在教學(xué)重點(diǎn)、難點(diǎn)上需要教師的引導(dǎo)
教學(xué)的重點(diǎn)、難點(diǎn)是每一節(jié)課的核心和主線(xiàn),只有準(zhǔn)確把握了重點(diǎn)、突破了難點(diǎn)才能更好地掌握本節(jié)課的內(nèi)容。在強(qiáng)調(diào)學(xué)生自主探究、小組合作學(xué)習(xí)的課堂教學(xué)模式中,數(shù)學(xué)建模教材的重點(diǎn)、難點(diǎn)學(xué)生往往把握不準(zhǔn)、難以突破。這就需要教師科學(xué)引導(dǎo)學(xué)生主動(dòng)去發(fā)現(xiàn)重點(diǎn)、突破難點(diǎn)。教師引導(dǎo)學(xué)生發(fā)現(xiàn)重點(diǎn)、突破難點(diǎn)并不是讓教師直接告訴學(xué)生本節(jié)課的重點(diǎn)是什么、怎樣突破難點(diǎn),而是通過(guò)具體問(wèn)題的引導(dǎo)讓學(xué)生自己找到重點(diǎn)、并通過(guò)學(xué)生自己的思考、討論解決疑難問(wèn)題。學(xué)生在教師的引導(dǎo)下通過(guò)自己的努力、討論解決了疑難后,學(xué)生會(huì)非常興奮,從而會(huì)越來(lái)越喜歡數(shù)學(xué)建模課。相反,在沒(méi)有教師引導(dǎo)的數(shù)學(xué)建模課堂中,學(xué)生經(jīng)常被困難嚇倒,從而對(duì)數(shù)學(xué)建模課產(chǎn)生畏懼感。由此可見(jiàn),教師對(duì)學(xué)生的科學(xué)引導(dǎo)是學(xué)生學(xué)好數(shù)學(xué)建模必不可少的環(huán)節(jié)。在以學(xué)生為本、注重學(xué)生全面發(fā)展、提倡課堂中突出學(xué)生主體地位的背景下,教師的引導(dǎo)仍是數(shù)學(xué)建模課堂中不可缺失的要素。數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時(shí)、適當(dāng)?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。
數(shù)學(xué)建模論文感悟篇四
優(yōu)秀高教社杯全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽題目
(請(qǐng)先閱讀“全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽論文格式規(guī)范”)
a題城市表層土壤重金屬污染分析
隨著城市經(jīng)濟(jì)的快速發(fā)展和城市人口的不斷增加,人類(lèi)活動(dòng)對(duì)城市環(huán)境質(zhì)量的影響日顯突出。對(duì)城市土壤地質(zhì)環(huán)境異常的查證,以及如何應(yīng)用查證獲得的海量數(shù)據(jù)資料開(kāi)展城市環(huán)境質(zhì)量評(píng)價(jià),研究人類(lèi)活動(dòng)影響下城市地質(zhì)環(huán)境的演變模式,日益成為人們關(guān)注的焦點(diǎn)。
按照功能劃分,城區(qū)一般可分為生活區(qū)、工業(yè)區(qū)、山區(qū)、主干道路區(qū)及公園綠地區(qū)等,分別記為1類(lèi)區(qū)、2類(lèi)區(qū)、??、5類(lèi)區(qū),不同的區(qū)域環(huán)境受人類(lèi)活動(dòng)影響的程度不同。
現(xiàn)對(duì)某城市城區(qū)土壤地質(zhì)環(huán)境進(jìn)行調(diào)查。為此,將所考察的城區(qū)劃分為間距1公里左右的網(wǎng)格子區(qū)域,按照每平方公里1個(gè)采樣點(diǎn)對(duì)表層土(0~10厘米深度)進(jìn)行取樣、編號(hào),并用gps記錄采樣點(diǎn)的位置。應(yīng)用專(zhuān)門(mén)儀器測(cè)試分析,獲得了每個(gè)樣本所含的多種化學(xué)元素的濃度數(shù)據(jù)。另一方面,按照2公里的間距在那些遠(yuǎn)離人群及工業(yè)活動(dòng)的自然區(qū)取樣,將其作為該城區(qū)表層土壤中元素的背景值。
附件1列出了采樣點(diǎn)的位置、海拔高度及其所屬功能區(qū)等信息,附件2列出了8種主要重金屬元素在采樣點(diǎn)處的濃度,附件3列出了8種主要重金屬元素的背景值。
現(xiàn)要求你們通過(guò)數(shù)學(xué)建模來(lái)完成以下任務(wù):
(1)給出8種主要重金屬元素在該城區(qū)的空間分布,并分析該城區(qū)內(nèi)不同區(qū)域重金屬的污染程度。
(2)通過(guò)數(shù)據(jù)分析,說(shuō)明重金屬污染的主要原因。
(3)分析重金屬污染物的傳播特征,由此建立模型,確定污染源的位置。
數(shù)學(xué)建模論文感悟篇五
使學(xué)生的綜合應(yīng)用能力、實(shí)踐創(chuàng)新能力和綜合應(yīng)用素質(zhì)等多方面均能得到提升和發(fā)展。
對(duì)于醫(yī)學(xué)專(zhuān)業(yè)的學(xué)生來(lái)說(shuō),在校所學(xué)的數(shù)學(xué)基礎(chǔ)理論課程比較有限,并且學(xué)生對(duì)純粹的數(shù)學(xué)知識(shí)與復(fù)雜的理論推導(dǎo)已經(jīng)極為厭倦,如果數(shù)學(xué)建模還是以傳統(tǒng)的“灌輸式”和教師“主導(dǎo)型”為主、簡(jiǎn)單的應(yīng)用案例為主要教學(xué)內(nèi)容的話(huà),其結(jié)果勢(shì)必會(huì)使學(xué)生有一種再講數(shù)學(xué)課和做應(yīng)用題的感覺(jué),既不能很好地激發(fā)學(xué)生的學(xué)習(xí)興趣,也不能體現(xiàn)數(shù)學(xué)建模的思想方法和本質(zhì)特色。
因此,如何使學(xué)生擺脫這種尷尬的現(xiàn)狀已成為我們教學(xué)的一大難點(diǎn)。針對(duì)這種情況,在教學(xué)模式上,我們大膽嘗試研究型教學(xué)模式,即采用“從實(shí)踐中來(lái),到實(shí)踐中去”的教學(xué)理念。一方面,從最現(xiàn)實(shí)、最熱門(mén)的醫(yī)學(xué)話(huà)題出發(fā),從學(xué)生最感興趣的.問(wèn)題入手,激發(fā)學(xué)生的學(xué)習(xí)興趣和進(jìn)一步學(xué)習(xí)的主動(dòng)性,使他們從一開(kāi)始就能進(jìn)入到學(xué)習(xí)的角色中去;另一方面,通過(guò)開(kāi)展多種方式的實(shí)踐教學(xué)活動(dòng),使學(xué)生在實(shí)踐中掌握數(shù)學(xué)建模的常用方法和基本技能,忽略繁瑣的數(shù)學(xué)推導(dǎo)過(guò)程,讓學(xué)生體會(huì)發(fā)現(xiàn)問(wèn)題和思考問(wèn)題的過(guò)程,培養(yǎng)學(xué)生解決問(wèn)題的創(chuàng)新能力。
近些年來(lái),我們開(kāi)設(shè)的醫(yī)藥數(shù)學(xué)建模課受到了學(xué)生的一致好評(píng),其關(guān)鍵之處在于我們一改傳統(tǒng)的教學(xué)模式,通過(guò)組織數(shù)學(xué)建模興趣研討班,讓每位同學(xué)都能充分地參與到研究中去并且使每位學(xué)生都有發(fā)言的機(jī)會(huì)。這些舉措旨在進(jìn)一步激發(fā)學(xué)生的創(chuàng)新意識(shí),提高學(xué)生的數(shù)學(xué)建模實(shí)踐能力。研討班面向全校各類(lèi)醫(yī)學(xué)專(zhuān)業(yè)的學(xué)生,并以三人為單位,劃分成若干個(gè)組,通過(guò)專(zhuān)題研討的形式開(kāi)展活動(dòng)。實(shí)踐證明:通過(guò)這種研討過(guò)程,學(xué)生不僅對(duì)所學(xué)的醫(yī)學(xué)知識(shí)有了更深刻的理解與認(rèn)識(shí),在文獻(xiàn)資料查閱、計(jì)算機(jī)編程、語(yǔ)言表達(dá)能力等諸多方面也都有了顯著的提高。通過(guò)這個(gè)過(guò)程的學(xué)習(xí),為學(xué)生今后從事醫(yī)學(xué)科研工作打下了良好的基礎(chǔ)。
為了有效的培養(yǎng)學(xué)生綜合應(yīng)用能力和深層次學(xué)習(xí)的習(xí)慣與意識(shí),我們?cè)诮虒W(xué)方法上一改往日的“講透,講懂”的方法,忽略純理論的繁瑣推導(dǎo),突出知識(shí)的應(yīng)用思想和應(yīng)用意識(shí),讓學(xué)生帶著問(wèn)題上課,嘗試在解決問(wèn)題中與教師進(jìn)行交流,下課帶著問(wèn)題回去。
在課堂教學(xué)中,重點(diǎn)講解發(fā)現(xiàn)問(wèn)題和解決問(wèn)題的方法與技巧。通過(guò)課前作業(yè),引導(dǎo)學(xué)生自我發(fā)現(xiàn)問(wèn)題;通過(guò)課堂講解和研討,引導(dǎo)學(xué)生解決問(wèn)題;通過(guò)課后作業(yè),總結(jié)和鞏固所學(xué)知識(shí),學(xué)習(xí)應(yīng)用與拓展知識(shí)。這種完全以學(xué)生為主,教師為輔的做法,有利于培養(yǎng)學(xué)生樹(shù)立勇于探索求知的信心和探索新知識(shí)的能力與意識(shí),提高學(xué)生的創(chuàng)新能力和敏銳的洞察力及想象力,從而提升學(xué)生的綜合應(yīng)用素質(zhì)。
在現(xiàn)實(shí)生活中的實(shí)際問(wèn)題是比較復(fù)雜的,往往單一的方法是難以解決的,通常是需要多種方法的綜合應(yīng)用方能解決。
因此,以實(shí)際問(wèn)題驅(qū)動(dòng)的教學(xué)模式,主要是引導(dǎo)學(xué)生如何將復(fù)雜的實(shí)際問(wèn)題分解為一系列簡(jiǎn)單的小問(wèn)題,在解決每一個(gè)小問(wèn)題的過(guò)程中,讓學(xué)生學(xué)習(xí)并掌握相關(guān)的數(shù)學(xué)知識(shí)與方法。這種在應(yīng)用中學(xué)習(xí)的教學(xué)方法,在很大程度上解決了學(xué)生普遍存在的“學(xué)數(shù)學(xué)有什么用、學(xué)了數(shù)學(xué)不知怎么用”的困惑。
在整個(gè)教學(xué)過(guò)程中,貫穿以學(xué)生為主體,通過(guò)案例分析引導(dǎo)學(xué)生的思維方法,針對(duì)一個(gè)案例的解決過(guò)程和方法,要求實(shí)現(xiàn)舉一反三,促使學(xué)生對(duì)所掌握的知識(shí)進(jìn)行重組再現(xiàn)和優(yōu)化構(gòu)建,讓學(xué)生在學(xué)習(xí)和問(wèn)題的解決中學(xué)會(huì)不斷地總結(jié)與歸納,用成功的方法再去演繹解決新的問(wèn)題,通過(guò)不斷地歸納演繹、對(duì)比分析、總結(jié)經(jīng)驗(yàn)、彌補(bǔ)不足,進(jìn)一步學(xué)習(xí)相關(guān)知識(shí)和方法,再進(jìn)行實(shí)踐,從而不斷增強(qiáng)自身的綜合應(yīng)用能力和素質(zhì)。
隨著醫(yī)學(xué)院校教育理念的轉(zhuǎn)變以及教育體制改革的深入,對(duì)培養(yǎng)適應(yīng)科學(xué)技術(shù)迅速發(fā)展的創(chuàng)新型醫(yī)學(xué)人才提出了更高的要求。如何培養(yǎng)出具有創(chuàng)新能力、綜合素質(zhì)高的專(zhuān)業(yè)人才已成為亟待解決的問(wèn)題之一。本文探討了醫(yī)藥數(shù)學(xué)建模課程的開(kāi)設(shè)對(duì)培養(yǎng)大學(xué)生實(shí)踐創(chuàng)新能力的幾點(diǎn)做法。教學(xué)實(shí)踐證明:數(shù)學(xué)建模課充分鍛煉了學(xué)生的各項(xiàng)能力,是提高醫(yī)學(xué)專(zhuān)業(yè)學(xué)生綜合應(yīng)用素質(zhì)行之有效的方法。
數(shù)學(xué)建模論文感悟篇六
1、從應(yīng)用數(shù)學(xué)出發(fā)數(shù)學(xué)建模主要是通過(guò)運(yùn)用數(shù)學(xué)知識(shí)解決生活中遇到實(shí)際問(wèn)題的全過(guò)程。要讓數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程進(jìn)行有效的融合,最佳切入點(diǎn)就是課堂上把用數(shù)學(xué)解決生活中的實(shí)際問(wèn)題與教學(xué)內(nèi)容相融合,以應(yīng)用數(shù)學(xué)為導(dǎo)向,訓(xùn)練學(xué)生綜合運(yùn)用數(shù)學(xué)知識(shí)去刻畫(huà)實(shí)際問(wèn)題、提煉數(shù)學(xué)模型、處理實(shí)際數(shù)據(jù)、分析解決實(shí)際問(wèn)題的能力,培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)原理解決生活問(wèn)題的興趣和愛(ài)好。授課過(guò)程中,要改變以往單純地進(jìn)行課堂灌輸?shù)男袨?,多引入?yīng)用數(shù)學(xué)的內(nèi)容,通過(guò)師生互動(dòng)、課堂討論、小課題研究實(shí)踐等多種形式靈活多樣的教學(xué)方法,培養(yǎng)引導(dǎo)學(xué)生樹(shù)立應(yīng)用數(shù)學(xué)建模解決實(shí)際問(wèn)題的思想。
2、從數(shù)學(xué)實(shí)驗(yàn)做起要加強(qiáng)獨(dú)立學(xué)院學(xué)生進(jìn)行數(shù)學(xué)實(shí)驗(yàn)的行為,筆者認(rèn)為數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)有著密切的聯(lián)系,兩者都是從解決實(shí)際問(wèn)題出發(fā),當(dāng)前的大學(xué)生數(shù)學(xué)實(shí)驗(yàn)基本上是應(yīng)用數(shù)學(xué)軟件、數(shù)值計(jì)算、建立模型、過(guò)程演算和圖形顯示等一系列過(guò)程,因此進(jìn)行數(shù)學(xué)實(shí)驗(yàn)的全過(guò)程就是數(shù)學(xué)建模思想的啟發(fā)過(guò)程。但是我國(guó)的教育資源和教學(xué)方針限制了獨(dú)立學(xué)院學(xué)生的學(xué)習(xí)環(huán)境和學(xué)習(xí)資源,能夠進(jìn)行數(shù)學(xué)實(shí)驗(yàn)的條件還是有限的。即使個(gè)別有實(shí)驗(yàn)?zāi)芰Φ膶W(xué)校,也未能進(jìn)行充分利用,數(shù)學(xué)實(shí)驗(yàn)課的內(nèi)容隨意性較大,有些院校將其降格為軟件學(xué)習(xí)課程或初級(jí)算法課。根據(jù)調(diào)研,目前大部分獨(dú)立學(xué)院未開(kāi)設(shè)此類(lèi)課程,這是數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程融合的一大損失,不利于學(xué)生創(chuàng)新思維能力的提高。各校應(yīng)當(dāng)積極創(chuàng)造條件,把數(shù)學(xué)實(shí)驗(yàn)課設(shè)為大學(xué)數(shù)學(xué)的必修課,爭(zhēng)取設(shè)立數(shù)學(xué)建模選修課,并積極探索、逐步實(shí)現(xiàn)把數(shù)學(xué)建模的思想和方法融入大學(xué)數(shù)學(xué)的主干課程。
3、從計(jì)算機(jī)應(yīng)用切入數(shù)學(xué)是為理、工、經(jīng)、管、農(nóng)、醫(yī)、文等眾多學(xué)科服務(wù)的基礎(chǔ)工具,它在不同的領(lǐng)域因?yàn)閼?yīng)用程度不同而導(dǎo)致被重視的程度不同。但在當(dāng)今的信息化時(shí)代,計(jì)算機(jī)的廣泛應(yīng)用和計(jì)算技術(shù)的飛速發(fā)展,使科學(xué)計(jì)算和數(shù)值模擬已成為絕大多數(shù)學(xué)科的必要工具和常用手段。數(shù)學(xué)在不同學(xué)科領(lǐng)域有了共同的主題,即應(yīng)用數(shù)學(xué)建模,通過(guò)計(jì)算機(jī)對(duì)各自領(lǐng)域的科學(xué)研究、生活問(wèn)題等進(jìn)行模擬分析,這成為數(shù)學(xué)建模思想在跨學(xué)科領(lǐng)域交流和傳播的一個(gè)重要途徑。每個(gè)領(lǐng)域的教學(xué)可以計(jì)算機(jī)應(yīng)用為切入點(diǎn),讓數(shù)學(xué)建模思想與數(shù)學(xué)授課無(wú)縫結(jié)合,在提高學(xué)生掌握知識(shí)能力、挖掘培養(yǎng)創(chuàng)新思維的同時(shí),增加了大學(xué)數(shù)學(xué)課程內(nèi)容的豐富性、實(shí)用性,促進(jìn)教學(xué)手段變革和創(chuàng)新。因此,大學(xué)應(yīng)以適應(yīng)現(xiàn)代信息技術(shù)發(fā)展的形勢(shì)和學(xué)生將來(lái)的需求為契機(jī),加快改進(jìn)大學(xué)數(shù)學(xué)課程教學(xué)方式,把數(shù)學(xué)建模的思想和方法以及現(xiàn)代計(jì)算技術(shù)和計(jì)算工具盡快融入大學(xué)數(shù)學(xué)的主干課程當(dāng)中。
大學(xué)數(shù)學(xué)課程是大學(xué)工科各專(zhuān)業(yè)培養(yǎng)計(jì)劃中重要的公共基礎(chǔ)理論課,其目的在于培養(yǎng)工程技術(shù)人才所必備的數(shù)學(xué)素質(zhì),為培養(yǎng)我國(guó)現(xiàn)代化建設(shè)需要的高素質(zhì)人才服務(wù)。數(shù)學(xué)建模課程的必修化,要從能夠擴(kuò)充學(xué)生的知識(shí)結(jié)構(gòu),培養(yǎng)學(xué)生的創(chuàng)造性思維能力、抽象概括能力、邏輯推理能力、自學(xué)能力、分析問(wèn)題和解決問(wèn)題能力的角度出發(fā),建立適合獨(dú)立學(xué)院學(xué)生的數(shù)學(xué)建模教學(xué)內(nèi)容。日前獨(dú)立學(xué)院開(kāi)展數(shù)學(xué)建模活動(dòng)涉及內(nèi)容較淺,缺少相應(yīng)的數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)方而的教材。筆者近幾年通過(guò)承擔(dān)此類(lèi)課題的研究,認(rèn)為應(yīng)該加強(qiáng)以下內(nèi)容的建設(shè):
。2、開(kāi)設(shè)選修課拓展知識(shí)領(lǐng)域,讓學(xué)生可以通過(guò)選修數(shù)學(xué)建模、運(yùn)籌學(xué)、開(kāi)設(shè)數(shù)學(xué)實(shí)驗(yàn)(介紹matlab、maple等計(jì)算軟件課程),增加建立和解答數(shù)學(xué)模型的方法和技巧。比如以前用的“文曲星”電子詞典里的貸款計(jì)算,就是一個(gè)典型的運(yùn)用數(shù)學(xué)模型方便百姓自己計(jì)算的應(yīng)用。這個(gè)模型單靠數(shù)學(xué)和經(jīng)濟(jì)學(xué)單方面的知識(shí)是不夠的,必須把數(shù)學(xué)與經(jīng)濟(jì)學(xué)聯(lián)系在一起,才能有效解決生活中的問(wèn)題。
3、積極組織學(xué)生開(kāi)展或是參加數(shù)學(xué)建模大賽比賽是各個(gè)選手充分發(fā)揮水平、展示自己智慧的途徑,也是數(shù)學(xué)建模思想傳播的最好手段。比賽可以讓各個(gè)選手發(fā)現(xiàn)自己的不足,尋找自身數(shù)學(xué)建模出發(fā)點(diǎn)的缺陷,通過(guò)交流,還可以拓展學(xué)生思維。因此,有必要積極組織學(xué)生參入初等數(shù)學(xué)知識(shí)可以解決的數(shù)學(xué)模型、線(xiàn)性規(guī)劃模型、指派問(wèn)題模型、存儲(chǔ)問(wèn)題模型、圖論應(yīng)用題等方面的模擬競(jìng)賽,通過(guò)參賽積累大量數(shù)學(xué)建模知識(shí),促進(jìn)數(shù)學(xué)建模在教學(xué)中扮演更重要的`角色。教師應(yīng)該對(duì)歷年的全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽真題進(jìn)行認(rèn)真的解讀分析,通過(guò)對(duì)有意義的題目,如20xx年的《葡萄酒的評(píng)價(jià)》、《太陽(yáng)能小屋的設(shè)計(jì)》,20xx年的《交巡警服務(wù)平臺(tái)的設(shè)置與調(diào)度車(chē)燈線(xiàn)光源的計(jì)算》、20xx年的《眼科病床的合理安排》等,與生活相關(guān)的例子進(jìn)行講解分析,提高學(xué)生對(duì)數(shù)學(xué)建模的興趣和對(duì)模型應(yīng)用的直觀(guān)的認(rèn)識(shí),實(shí)現(xiàn)學(xué)校應(yīng)用型人才的培養(yǎng)。
4、加快教育方式的轉(zhuǎn)變高等教育設(shè)立數(shù)學(xué)這門(mén)學(xué)科就是為了應(yīng)用服務(wù),內(nèi)容應(yīng)重點(diǎn)放在基本概念、定理、公式等在生活中的應(yīng)用上。而傳統(tǒng)的高等數(shù)學(xué),除了推導(dǎo)就是證明,因此,要對(duì)傳統(tǒng)內(nèi)容進(jìn)行優(yōu)化組合,根據(jù)教學(xué)特點(diǎn)和學(xué)生情況推陳出新,要注重?cái)?shù)學(xué)思想的滲透和數(shù)學(xué)方法的介紹,對(duì)高等數(shù)學(xué)精髓的求導(dǎo)、微分方法、積分方法等的授課要重點(diǎn)放在解決實(shí)際生活的應(yīng)用上。要結(jié)合一些社會(huì)實(shí)踐問(wèn)題與函數(shù)建立的關(guān)系,分析確定變量、參數(shù),加強(qiáng)有關(guān)函數(shù)關(guān)系式建立的日常訓(xùn)練。培養(yǎng)學(xué)生對(duì)一些問(wèn)題的邏輯分析、抽象、簡(jiǎn)化并用數(shù)學(xué)語(yǔ)言表達(dá)的能力,逐步將學(xué)生帶入遇到問(wèn)題就能自然地去轉(zhuǎn)化成數(shù)學(xué)模型進(jìn)行處理的境界,并能將數(shù)學(xué)結(jié)論又能很好反向轉(zhuǎn)化成實(shí)際應(yīng)用。
21世紀(jì)我國(guó)進(jìn)入了大眾教育時(shí)期,高校招生人數(shù)劇增,學(xué)生水平差距較大,需要學(xué)校瞄準(zhǔn)正確的培養(yǎng)方向。通過(guò)對(duì)美國(guó)教學(xué)改革的研究,筆者認(rèn)為我國(guó)的數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程融合必須盡快在大學(xué)中廣泛推進(jìn),但要注意一些問(wèn)題:第一,數(shù)學(xué)教學(xué)改革一定要基于學(xué)生的現(xiàn)實(shí)水平,數(shù)學(xué)建模思想融入要與時(shí)俱進(jìn)。第二,教學(xué)目標(biāo)要正確定位,融合過(guò)程一定要與教學(xué)研究相結(jié)合,要在加強(qiáng)交流的基礎(chǔ)上不斷改進(jìn)。第三,大學(xué)生數(shù)學(xué)建模競(jìng)賽的舉辦和參入,要給予正確的理解和引導(dǎo),形成良性循環(huán)。要根據(jù)個(gè)人興趣愛(ài)好,注重個(gè)性,不應(yīng)面面強(qiáng)求。第四,傳統(tǒng)數(shù)學(xué)思想與現(xiàn)在數(shù)學(xué)建模思想必須互補(bǔ),必修與選修課程的作用與角色要分清。數(shù)學(xué)主干課程的教學(xué)水平是大學(xué)教學(xué)質(zhì)量的關(guān)鍵指標(biāo)之一,具備數(shù)學(xué)建模思想是理工類(lèi)大學(xué)生能否成為創(chuàng)新人才的重要條件之一。兩者的融合必將促進(jìn)我國(guó)教學(xué)水平和質(zhì)量的提高,為社會(huì)輸送更多的實(shí)用型、創(chuàng)新型人才。
數(shù)學(xué)建模論文感悟篇七
為了培養(yǎng)小學(xué)生良好的數(shù)學(xué)學(xué)習(xí)興趣,激發(fā)他們的數(shù)學(xué)潛能,教師需要采取必要的措施注重?cái)?shù)學(xué)建模思想的有效培養(yǎng),促進(jìn)學(xué)生的全面發(fā)展。在制定相關(guān)培養(yǎng)策略的過(guò)程中,教師應(yīng)充分考慮小學(xué)生的性格特點(diǎn),提高數(shù)學(xué)建模思想培養(yǎng)的有效性。基于此,文章將從不同的方面對(duì)小學(xué)生數(shù)學(xué)建模思想的培養(yǎng)策略進(jìn)行初步的探討。
作為小學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,數(shù)學(xué)建模思想的滲透及相關(guān)教學(xué)活動(dòng)的順利開(kāi)展,有利于提高復(fù)雜數(shù)學(xué)問(wèn)題的處理效率,保持?jǐn)?shù)學(xué)課堂教學(xué)的高效性。要實(shí)現(xiàn)這樣的發(fā)展目標(biāo),增強(qiáng)小學(xué)生數(shù)學(xué)建模思想的實(shí)際培養(yǎng)效果,需要加強(qiáng)對(duì)學(xué)生動(dòng)手實(shí)踐能力的培養(yǎng),激發(fā)學(xué)生的更高興趣。建模的過(guò)程涉及問(wèn)題表述、求解、必要解釋及有效驗(yàn)證,在這四個(gè)環(huán)節(jié)中,可能會(huì)存在一定的問(wèn)題,影響著數(shù)學(xué)教學(xué)計(jì)劃的實(shí)施。因此,教師需要利用學(xué)生動(dòng)手實(shí)踐能力的作用,實(shí)現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng),促使小學(xué)生能夠在數(shù)學(xué)建模過(guò)程中享受到更多的快樂(lè)。比如,在講解“認(rèn)識(shí)角”知識(shí)的過(guò)程中,某些學(xué)生認(rèn)為邊越長(zhǎng)角度也越大。為了使學(xué)生能夠?qū)ζ渲械闹R(shí)點(diǎn)有更加正確而全面的認(rèn)識(shí),教師可以通過(guò)在黑板上設(shè)置一些能夠活動(dòng)的三角板,讓學(xué)生親自動(dòng)手操作,以此得出角與邊長(zhǎng)的正確關(guān)系,為后續(xù)教學(xué)計(jì)劃的實(shí)施打下堅(jiān)實(shí)的基礎(chǔ)。通過(guò)這種教學(xué)方法的合理運(yùn)用,可以激發(fā)出學(xué)生們?cè)跀?shù)學(xué)建模學(xué)習(xí)中的更高興趣,豐富他們的想象力,從而使他們對(duì)數(shù)學(xué)建模思想有一定的了解,在未來(lái)學(xué)習(xí)過(guò)程中能夠保持良好的`數(shù)學(xué)建模能力。
通過(guò)對(duì)小學(xué)階段各種數(shù)學(xué)實(shí)踐教學(xué)活動(dòng)實(shí)際概況的深入分析,可知構(gòu)建良好的數(shù)學(xué)模型有利于加深學(xué)生對(duì)各知識(shí)(福建省莆田市秀嶼區(qū)東嶠前江小學(xué),福建莆田351164)點(diǎn)的深入理解,增強(qiáng)其主動(dòng)參與數(shù)學(xué)建模教學(xué)活動(dòng)的積極性。因此,為了使小學(xué)生數(shù)學(xué)建模思想培養(yǎng)能夠達(dá)到預(yù)期的效果,教師需要結(jié)合實(shí)際的教學(xué)內(nèi)容,建立必要的數(shù)學(xué)參考模型,提升學(xué)生對(duì)數(shù)學(xué)建模思想的整體認(rèn)知水平。比如,在講授“異分母分?jǐn)?shù)加減法”這部分知識(shí)的過(guò)程中,可以設(shè)置“0.8千克+300克”“1.6千克-400克”等問(wèn)題,向?qū)W生提問(wèn)是否可以直接計(jì)算,并說(shuō)出原因。當(dāng)學(xué)生通過(guò)對(duì)問(wèn)題的深入思考,總結(jié)出“單位不同不能直接計(jì)算”的結(jié)論后,繼續(xù)向?qū)W生提問(wèn)小數(shù)計(jì)算中為什么每一位都要對(duì)齊,實(shí)現(xiàn)“計(jì)數(shù)單位統(tǒng)一后才能計(jì)算”這一數(shù)學(xué)模型的構(gòu)建。在這樣的教學(xué)過(guò)程中,學(xué)生可以加深對(duì)知識(shí)點(diǎn)的理解,實(shí)現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng)。
加強(qiáng)小學(xué)生數(shù)學(xué)建模思想的有效培養(yǎng),需要在具體的教學(xué)活動(dòng)開(kāi)展中注重對(duì)數(shù)學(xué)思想的靈活運(yùn)用,增強(qiáng)相關(guān)模型構(gòu)建的可靠性,促使學(xué)生在長(zhǎng)期的數(shù)學(xué)學(xué)習(xí)中能夠不斷提高自身的數(shù)學(xué)能力,運(yùn)用各種數(shù)學(xué)知識(shí)處理實(shí)際問(wèn)題。比如,在“角的度量”這部分內(nèi)容講解的過(guò)程中,為了提高學(xué)生對(duì)角的分類(lèi)及畫(huà)角相關(guān)知識(shí)點(diǎn)的深入理解,教師可以將所有的學(xué)生分為不同的小組,讓學(xué)生們通過(guò)小組討論的方式,對(duì)角的正確分類(lèi)及如何畫(huà)角有一定的了解,并讓每個(gè)小組代表在講臺(tái)上演示畫(huà)角的過(guò)程。此時(shí),教師可以通過(guò)對(duì)多媒體教學(xué)設(shè)備的合理運(yùn)用,利用動(dòng)態(tài)化的文字與圖片對(duì)其中的知識(shí)要點(diǎn)進(jìn)行展示,確保學(xué)生們能夠在良好的教學(xué)模式中提升自身的認(rèn)知水平,并在不斷的思考過(guò)程中逐漸形成良好的創(chuàng)造性思維,強(qiáng)化自身的創(chuàng)新意識(shí)。比如,在講解“圖形變換”中的軸對(duì)稱(chēng)、旋轉(zhuǎn)知識(shí)點(diǎn)的過(guò)程中,教師應(yīng)通過(guò)對(duì)學(xué)生的正確引導(dǎo),運(yùn)用三角板、圓柱等教學(xué)輔助工具,讓學(xué)生從不同的角度對(duì)各種軸對(duì)稱(chēng)圖形、旋轉(zhuǎn)后得到的圖形進(jìn)行深入思考,提高自身數(shù)學(xué)建模過(guò)程中的創(chuàng)新能力,從不同的角度深入理解圖像變換過(guò)程,對(duì)這部分內(nèi)容有更多的了解。因此,教師應(yīng)注重小學(xué)生數(shù)學(xué)建模思想培養(yǎng)中多方位思考方式的針對(duì)性培養(yǎng),提高學(xué)生的創(chuàng)新能力,優(yōu)化學(xué)生的思維方式,全面提升小學(xué)數(shù)學(xué)建模教學(xué)水平。
總之,加強(qiáng)小學(xué)生數(shù)學(xué)建模思想培養(yǎng)策略的制定與實(shí)施,有利于滿(mǎn)足素質(zhì)教育的更高要求,實(shí)現(xiàn)對(duì)小學(xué)生數(shù)學(xué)能力的有效鍛煉,確保相關(guān)的教學(xué)計(jì)劃能夠在規(guī)定的時(shí)間內(nèi)順利地完成。與此同時(shí),結(jié)合當(dāng)前小學(xué)數(shù)學(xué)教育教學(xué)的實(shí)際發(fā)展概況,可知靈活運(yùn)用各種科學(xué)的數(shù)學(xué)建模思想培養(yǎng)策略,有利于滿(mǎn)足學(xué)生數(shù)學(xué)建模學(xué)習(xí)中的多樣化需求,為相關(guān)教學(xué)目標(biāo)的順利實(shí)現(xiàn)提供可靠的保障。
[1]童小艷.小學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生建模思想的策略[j].學(xué)子(教育新理念),20xx(6).
[2]白寧.先學(xué)而后教——小學(xué)生數(shù)學(xué)建模思想培養(yǎng)的捷徑[j].數(shù)學(xué)學(xué)習(xí)與研究,20xx(16).
數(shù)學(xué)建模論文感悟篇八
計(jì)算數(shù)學(xué)建模是用數(shù)學(xué)的思考方式,采用數(shù)學(xué)的方法和語(yǔ)言,通過(guò)簡(jiǎn)化,抽象的方式來(lái)解決實(shí)際問(wèn)題的一種數(shù)學(xué)手段。數(shù)學(xué)建模所解決的問(wèn)題不止現(xiàn)實(shí)的,還包括對(duì)未來(lái)的一種預(yù)見(jiàn)。數(shù)學(xué)建??梢哉f(shuō)和我們的生活息息相關(guān),尤其是如今科技發(fā)達(dá)的今天。數(shù)學(xué)建模應(yīng)用領(lǐng)域超乎我們的想象,甚至達(dá)到無(wú)所不及的程度,隨著數(shù)學(xué)建模在大學(xué)教學(xué)中的廣泛使用,使數(shù)學(xué)建模不止成為一種學(xué)科,更重要的是指導(dǎo)新生代更好的利用現(xiàn)代科學(xué)技術(shù),成為高科技人才,把我國(guó)人才強(qiáng)國(guó),科教興國(guó)的戰(zhàn)略推向一個(gè)新的高度。
1.1數(shù)學(xué)建模引進(jìn)大學(xué)數(shù)學(xué)教學(xué)的必要。教學(xué)過(guò)程,是教師根據(jù)社會(huì)發(fā)展要求和當(dāng)代學(xué)生身心發(fā)展的特點(diǎn),借助教學(xué)條件,指導(dǎo)學(xué)生通過(guò)認(rèn)識(shí)教學(xué)內(nèi)容從而認(rèn)識(shí)客觀(guān)世界,并在此基礎(chǔ)之上發(fā)展自身的過(guò)程,即教學(xué)活動(dòng)的展開(kāi)過(guò)程。以往高工專(zhuān)的數(shù)學(xué)教學(xué)存在著知識(shí)單一,內(nèi)容陳舊,脫離實(shí)際等缺陷,已經(jīng)不能滿(mǎn)足時(shí)代的發(fā)展,如今的數(shù)學(xué)教學(xué)過(guò)程不是單純的傳授數(shù)學(xué)學(xué)科知識(shí),而是通過(guò)數(shù)學(xué)教學(xué)過(guò)程引導(dǎo)學(xué)生認(rèn)識(shí)科學(xué),理解科學(xué),從而指導(dǎo)實(shí)踐,促進(jìn)學(xué)生的德智體美勞全面的進(jìn)步和發(fā)展。因此數(shù)學(xué)建模成為一門(mén)學(xué)科,被各大高等院校廣泛引用和推廣,其實(shí)數(shù)學(xué)建模不止應(yīng)用在大學(xué)數(shù)學(xué)教學(xué)中,其他一切教學(xué)過(guò)程多可引進(jìn)數(shù)學(xué)建模。1.2數(shù)學(xué)建模在大學(xué)數(shù)學(xué)教學(xué)中的運(yùn)用。大學(xué)數(shù)學(xué)教師通過(guò)這個(gè)數(shù)學(xué)建模過(guò)程來(lái)引導(dǎo)學(xué)生解決問(wèn)題和指導(dǎo)實(shí)踐的能力。再次建模結(jié)果對(duì)現(xiàn)實(shí)生活的指導(dǎo),這是大學(xué)數(shù)學(xué)教學(xué)中數(shù)學(xué)建模所需要達(dá)到的效果和要求。不再停留在理論學(xué)習(xí),而是通過(guò)理論指導(dǎo)實(shí)踐,從而為科學(xué)的進(jìn)步和人才綜合水平的提高提供可能。
2.1數(shù)學(xué)建模對(duì)數(shù)學(xué)學(xué)科和其他學(xué)科學(xué)生的巨大影響力學(xué)習(xí)數(shù)學(xué)建模,能夠使一個(gè)單獨(dú)的數(shù)學(xué)家變成經(jīng)濟(jì)學(xué)家,物理學(xué)家還有金融學(xué)家,甚至是藝術(shù)家,只要正握數(shù)學(xué)建模就能指導(dǎo)學(xué)生通過(guò)掌握數(shù)學(xué)建模的思維和方法向其他領(lǐng)域?qū)W習(xí)和進(jìn)步。數(shù)學(xué)建模成為連接數(shù)學(xué)和其他領(lǐng)域的紐帶,是當(dāng)今數(shù)學(xué)科學(xué)在其他領(lǐng)導(dǎo)應(yīng)用的橋梁,是數(shù)學(xué)技術(shù)轉(zhuǎn)化為其他技術(shù)的途徑,數(shù)學(xué)建模在學(xué)生中越來(lái)越受到關(guān)注和歡迎,越來(lái)越多的學(xué)生開(kāi)始學(xué)習(xí)數(shù)學(xué)建模,尤其是數(shù)學(xué)界和工程界的學(xué)生,這成為當(dāng)今學(xué)生成為現(xiàn)代科技工作者必須掌握的只是能力之一。
2.2數(shù)學(xué)建模對(duì)學(xué)生綜合能力的提高數(shù)學(xué)建模是大學(xué)數(shù)學(xué)教師運(yùn)用數(shù)學(xué)科學(xué)去分析和解決實(shí)際問(wèn)題,在數(shù)學(xué)建模學(xué)習(xí)的過(guò)程中,大學(xué)生的數(shù)學(xué)能力得到提高,其分析問(wèn)題、解決問(wèn)題的能力得到提高,這對(duì)大學(xué)生畢業(yè)走向社會(huì)具有著重大意義。通過(guò)數(shù)學(xué)建模的學(xué)習(xí)和應(yīng)用,激發(fā)大學(xué)生學(xué)習(xí)數(shù)學(xué)和應(yīng)用數(shù)學(xué)的能力,運(yùn)用數(shù)學(xué)的思維和方法,利用現(xiàn)代計(jì)算機(jī)科學(xué),來(lái)解決數(shù)學(xué)及其他領(lǐng)域的問(wèn)題。
數(shù)學(xué)建模引入大學(xué)數(shù)學(xué)教學(xué),這是時(shí)代的進(jìn)步,是時(shí)代對(duì)當(dāng)代大學(xué)教師提出的新要求,尤其是大學(xué)數(shù)學(xué)教師,其不再停留在以往的單純的數(shù)學(xué)知識(shí)講授方向,而是將數(shù)學(xué)科學(xué)作為基礎(chǔ),引導(dǎo)當(dāng)代大學(xué)生發(fā)散思維,發(fā)揮主觀(guān)能動(dòng)性,從而學(xué)習(xí)數(shù)學(xué)科學(xué),并運(yùn)用數(shù)學(xué)科學(xué)解決現(xiàn)實(shí)問(wèn)題。在這個(gè)過(guò)程中大學(xué)教師的專(zhuān)業(yè)知識(shí)得到提高,其創(chuàng)新精神也得到了極大的豐富。大學(xué)數(shù)學(xué)教師不止完成數(shù)學(xué)教學(xué),更重要的是培養(yǎng)了高科技的人才,這對(duì)大學(xué)數(shù)學(xué)教師的社會(huì)地位也有了相應(yīng)的改變,在尊重人才,尊重科學(xué)的氛圍中,大學(xué)數(shù)學(xué)教師及其他學(xué)科的教師得到了鼓舞,得到了進(jìn)步,得到了認(rèn)可。數(shù)學(xué)建模越來(lái)越重要,關(guān)于數(shù)學(xué)建模的各種國(guó)內(nèi)國(guó)際大賽頻頻舉辦,這對(duì)大學(xué)數(shù)學(xué)教師在知識(shí),體力和創(chuàng)新性上都提出新的要求,為了更好的參與數(shù)學(xué)建模比賽,大學(xué)數(shù)學(xué)教師投入更多的時(shí)間和經(jīng)歷在學(xué)生教育和數(shù)學(xué)建模中,他們成為真正的臺(tái)前和幕后的指揮者。
隨著現(xiàn)代大學(xué)學(xué)科的豐富,尤其是計(jì)算機(jī)科學(xué)的廣泛應(yīng)用,大學(xué)數(shù)學(xué)教學(xué)的跨時(shí)代發(fā)展,數(shù)學(xué)建模成為各個(gè)高校數(shù)學(xué)教學(xué)的重點(diǎn)內(nèi)容,數(shù)學(xué)建模教學(xué)吸納數(shù)學(xué)家,計(jì)算機(jī)學(xué)家等多個(gè)學(xué)科專(zhuān)家的意見(jiàn),從而為培養(yǎng)出綜合行的高科技人才做好充分的準(zhǔn)備。可以說(shuō)數(shù)學(xué)建模教學(xué)是當(dāng)今大學(xué)數(shù)學(xué)教學(xué)的主旋律,是數(shù)學(xué)科學(xué)和其他科學(xué)進(jìn)步發(fā)展的方向和原動(dòng)力。
[1]李進(jìn)華.教育教學(xué)改革與教育創(chuàng)新探索.安徽:安徽大學(xué)出版社,20xx.8.
[2]于駿.現(xiàn)代數(shù)學(xué)思想方法.山東:石油大學(xué)出版社,1997.
數(shù)學(xué)建模論文感悟篇九
摘要:在新課改以后,要求教師要在教學(xué)中重視學(xué)生的主體地位,提升學(xué)生學(xué)習(xí)興趣,培養(yǎng)他們的自主學(xué)習(xí)能力。本文從小學(xué)數(shù)學(xué)教學(xué)過(guò)程中數(shù)學(xué)建模入手,對(duì)如何將數(shù)學(xué)建模運(yùn)用到學(xué)生解題過(guò)程中進(jìn)行了分析。
關(guān)鍵詞:小學(xué)數(shù)學(xué);建模;運(yùn)用
數(shù)學(xué)建模是指利用數(shù)學(xué)模型的形式去解決實(shí)際中遇到的問(wèn)題,換句話(huà)說(shuō),就是利用數(shù)學(xué)思維、數(shù)學(xué)方法解決各種數(shù)學(xué)問(wèn)題。數(shù)學(xué)建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過(guò)一段時(shí)間的觀(guān)察我們可以發(fā)現(xiàn),數(shù)學(xué)建模的方法能夠有效的提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的數(shù)學(xué)能力。這種方式能夠?qū)?fù)雜的數(shù)學(xué)問(wèn)題利用簡(jiǎn)單的方式找到解決方案,是提高小學(xué)數(shù)學(xué)課堂效率及課堂質(zhì)量的有效手段。小學(xué)數(shù)學(xué)是小學(xué)學(xué)習(xí)中的重要課程之一,也是培養(yǎng)學(xué)生數(shù)學(xué)思維的重要階段??梢哉f(shuō),小學(xué)數(shù)學(xué)的學(xué)習(xí)是學(xué)生學(xué)習(xí)數(shù)學(xué)的關(guān)鍵,對(duì)今后的學(xué)習(xí)起到極大的影響。因此,對(duì)于小學(xué)數(shù)學(xué)教師來(lái)說(shuō),不斷的完善教學(xué)手段,提高數(shù)學(xué)課堂質(zhì)量是教學(xué)工作中的重中之重。而數(shù)學(xué)建模就是為了解決數(shù)學(xué)在生活中的實(shí)際問(wèn)題,能夠讓學(xué)生感受到數(shù)學(xué)本身的魅力,培養(yǎng)他們的數(shù)學(xué)思維,提高數(shù)學(xué)學(xué)習(xí)能力,從而讓小學(xué)數(shù)學(xué)教學(xué)質(zhì)量也得到大幅度的提升。小學(xué)數(shù)學(xué)與數(shù)學(xué)建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進(jìn),如何有效的將數(shù)學(xué)建模運(yùn)用在小學(xué)數(shù)學(xué)教學(xué)過(guò)程中,是每個(gè)小學(xué)數(shù)學(xué)教師都值得思考的問(wèn)題。
一、培養(yǎng)學(xué)生數(shù)學(xué)建模意識(shí)
數(shù)學(xué)建模是為了解決數(shù)學(xué)中遇到的問(wèn)題,數(shù)學(xué)本身特別是小學(xué)數(shù)學(xué)也是一門(mén)較貼近學(xué)生生活的學(xué)科。因此在數(shù)學(xué)學(xué)習(xí)中,教師要首先培養(yǎng)學(xué)生的數(shù)學(xué)學(xué)習(xí)意識(shí),讓他們感受到數(shù)學(xué)與生活的緊密聯(lián)系,然后再引導(dǎo)學(xué)生用數(shù)學(xué)建模去解決遇到的問(wèn)題。在這一過(guò)程中,數(shù)學(xué)教師要注意以下兩個(gè)問(wèn)題:(一)在教學(xué)中一定要貼近學(xué)生的生活,課堂中所提出的問(wèn)題也必須要符合生活實(shí)際,讓學(xué)生對(duì)所學(xué)內(nèi)容感到親切。積極引導(dǎo)學(xué)生利用多種方式解決同一問(wèn)題,尤其是利用數(shù)學(xué)建模的方式,以達(dá)到培養(yǎng)他們的數(shù)學(xué)思維以及想象能力的目的。(二)在學(xué)生進(jìn)行數(shù)學(xué)建模的過(guò)程中要利用多鼓勵(lì)的方式調(diào)動(dòng)他們對(duì)數(shù)學(xué)學(xué)習(xí)的積極性,讓他們?cè)跀?shù)學(xué)建模中獲得成就感,增加自信心,以此來(lái)提高學(xué)生在今后學(xué)習(xí)中使用數(shù)學(xué)建模方法的熱情。
二、提高學(xué)生想象力,用數(shù)學(xué)建模簡(jiǎn)化問(wèn)題
對(duì)于小學(xué)生來(lái)說(shuō),他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學(xué)學(xué)習(xí)中,如果能將想象力與數(shù)學(xué)學(xué)習(xí)結(jié)合在一起,一定會(huì)得到意想不到的效果。教師可以根據(jù)小學(xué)生這一特點(diǎn),提高他們的想象力,然后再引導(dǎo)他們利用數(shù)學(xué)建模解決問(wèn)題,讓題目簡(jiǎn)單化。具體來(lái)說(shuō),就是在面對(duì)復(fù)雜的'數(shù)學(xué)問(wèn)題時(shí),教師可以先為學(xué)生創(chuàng)建教學(xué)情境,以這樣的方式提高學(xué)生的學(xué)習(xí)興趣,讓他們?cè)敢庵鲃?dòng)去深入的研究遇到的題目。之后教師再去對(duì)他們進(jìn)行引導(dǎo),讓他們能夠理解題目中所提問(wèn)題的含義,并能夠運(yùn)用他們的想象能力思考解決問(wèn)題的方式。最后再引導(dǎo)他們進(jìn)行數(shù)學(xué)建模,解決問(wèn)題。這樣的方式充分的利用了學(xué)生的想象能力,將所需解決的問(wèn)題簡(jiǎn)單化。
三、選擇合適的題目作為建模案例
在數(shù)學(xué)建模過(guò)程中,教師也要時(shí)刻牢記題目應(yīng)該貼近學(xué)生的生活,符合實(shí)際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學(xué)建模的過(guò)程中去,然后再反復(fù)練習(xí)之后達(dá)到提高他們建模能力的目的。在選擇數(shù)學(xué)建模案例時(shí)教師主要應(yīng)該注意以下兩點(diǎn):首先,教師在選擇建模案例時(shí)要盡量選擇比較典型的問(wèn)題,能夠讓學(xué)生在學(xué)習(xí)了該題目以后掌握這一類(lèi)的解題方法,達(dá)到小學(xué)數(shù)學(xué)教學(xué)的目的。所以,這就需要教師對(duì)題目進(jìn)行深入的分析,看是否在擁有趣味性、真實(shí)性的同時(shí)符合教學(xué)要求。其次,題目最好能夠擁有可變性,教師能夠通過(guò)對(duì)題目中已知條件的改變讓學(xué)生進(jìn)行不同方面的建模練習(xí),以此提高他們數(shù)學(xué)建模的能力。
四、引導(dǎo)學(xué)生主動(dòng)進(jìn)行數(shù)學(xué)建模
在教師經(jīng)過(guò)反復(fù)的教學(xué)后,學(xué)生都已經(jīng)擁有了基本的數(shù)學(xué)建模知識(shí),了解了數(shù)學(xué)建模過(guò)程,并且能夠在解題過(guò)程中簡(jiǎn)單的使用數(shù)學(xué)建模。此時(shí),教師在教學(xué)中就可以引導(dǎo)學(xué)生利用數(shù)學(xué)建模解決數(shù)學(xué)題目了。引導(dǎo)學(xué)生用數(shù)學(xué)建模方法解決數(shù)學(xué)問(wèn)題,就要在解題過(guò)程中多對(duì)學(xué)生進(jìn)行這一方面的鼓勵(lì),讓他們提高建模信心。在這一過(guò)程中,教師還可以嘗試讓學(xué)生之間利用合作的方式讓他們進(jìn)行數(shù)學(xué)建模方法的探討,并在探討的過(guò)程中吸取他人的經(jīng)驗(yàn),提高自己數(shù)學(xué)建模水平,同時(shí)這樣的方式能夠讓數(shù)學(xué)建模深入到每一個(gè)學(xué)生的心中,逐漸影響每一個(gè)學(xué)生的解題思路,讓他們能夠在解題過(guò)程中熟練運(yùn)用建模的方式,提高解題能力。數(shù)學(xué)建模的方法能夠有效的改變過(guò)去的傳統(tǒng)教學(xué)思路,增加學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)興趣,提高數(shù)學(xué)解題能力。這種教學(xué)方法對(duì)于小學(xué)數(shù)學(xué)教師來(lái)說(shuō),值得不斷的探討研究,并應(yīng)用在教學(xué)中,以此提高數(shù)學(xué)課堂的教學(xué)效率和教學(xué)質(zhì)量。
數(shù)學(xué)建模論文感悟篇十
一、在高等數(shù)學(xué)教學(xué)中運(yùn)用數(shù)學(xué)建模思想的重要性
(1)將教材中的數(shù)學(xué)知識(shí)運(yùn)用現(xiàn)實(shí)生活中的對(duì)象進(jìn)行還原,讓學(xué)生樹(shù)立數(shù)學(xué)知識(shí)來(lái)源于現(xiàn)實(shí)生活的思想觀(guān)念。
(2)數(shù)學(xué)建模思想要求學(xué)生能夠通過(guò)運(yùn)用相應(yīng)的數(shù)學(xué)工具和數(shù)學(xué)語(yǔ)言,對(duì)現(xiàn)實(shí)生活中的特定對(duì)象的信息、數(shù)據(jù)或者現(xiàn)象進(jìn)行簡(jiǎn)化,對(duì)抽象的數(shù)學(xué)對(duì)象進(jìn)行翻譯和歸納,將所求解的數(shù)學(xué)問(wèn)題中的數(shù)量關(guān)系運(yùn)用數(shù)學(xué)關(guān)系式、數(shù)學(xué)圖形或者數(shù)學(xué)表格等形式進(jìn)行表達(dá),這種方式有利于培養(yǎng)、鍛煉學(xué)生的數(shù)學(xué)表達(dá)能力。
(3)在運(yùn)用數(shù)學(xué)建模思想獲得實(shí)際的答案后,需要運(yùn)用現(xiàn)實(shí)生活對(duì)象的相關(guān)信息對(duì)其進(jìn)行檢驗(yàn),對(duì)計(jì)算結(jié)果的準(zhǔn)確性進(jìn)行檢驗(yàn)和確定。該流程能夠培養(yǎng)學(xué)生運(yùn)用合理的數(shù)學(xué)方法對(duì)數(shù)學(xué)問(wèn)題進(jìn)行主動(dòng)性、客觀(guān)性以及辯證性的分析,最后得到最有效的解決問(wèn)題的方法。
二、高等數(shù)學(xué)教學(xué)中數(shù)學(xué)建模能力的培養(yǎng)策略
1.教師要具備數(shù)學(xué)建模思想意識(shí)
在對(duì)高等數(shù)學(xué)進(jìn)行教學(xué)的過(guò)程中,培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)建模思想,首先教師要具備足夠的數(shù)學(xué)建模意識(shí)。教師在進(jìn)行高等數(shù)學(xué)教學(xué)之前,首先,要對(duì)所講數(shù)學(xué)內(nèi)容的相關(guān)實(shí)例進(jìn)行查找,有意識(shí)的實(shí)現(xiàn)高等數(shù)學(xué)內(nèi)容和各個(gè)不同領(lǐng)域之間的聯(lián)系;其次,教師要實(shí)現(xiàn)高等數(shù)學(xué)教學(xué)內(nèi)容與教學(xué)要求的轉(zhuǎn)變,及時(shí)的更新自身的教學(xué)觀(guān)念和教學(xué)思想。例如,教師細(xì)心發(fā)現(xiàn)現(xiàn)實(shí)生活中的小事,然后運(yùn)用這些小事建造相應(yīng)的數(shù)學(xué)模型,這樣不僅有利于營(yíng)造活躍的課堂環(huán)境,而且還有利于激發(fā)學(xué)生的學(xué)習(xí)興趣。
2.實(shí)現(xiàn)數(shù)學(xué)建模思想和高等數(shù)學(xué)教材的互相結(jié)合
教師在講解高等數(shù)學(xué)時(shí),對(duì)其中能夠引入數(shù)學(xué)模型的章節(jié),要構(gòu)建相關(guān)的數(shù)學(xué)模型,對(duì)其提出相應(yīng)的問(wèn)題,進(jìn)行分析和處理。在該基礎(chǔ)上,提出假設(shè),實(shí)現(xiàn)數(shù)學(xué)模型的完善。教師在高等數(shù)學(xué)的教學(xué)中融入建模意識(shí),讓學(xué)生潛移默化的感受到建模思想在高等數(shù)學(xué)教學(xué)中應(yīng)用的效果。這樣有利于提高學(xué)生數(shù)學(xué)知識(shí)的運(yùn)用能力和學(xué)習(xí)興趣。例如,在進(jìn)行教學(xué)時(shí),針對(duì)學(xué)生所學(xué)專(zhuān)業(yè)的特點(diǎn),選擇科學(xué)、合理的數(shù)學(xué)案例,運(yùn)用數(shù)學(xué)建模思想對(duì)其進(jìn)行相應(yīng)的加工后,作為高等數(shù)學(xué)講授的應(yīng)用例題。這樣不僅能夠讓學(xué)生發(fā)現(xiàn)數(shù)學(xué)發(fā)揮的巨大作用,而且還能夠有效的提高學(xué)生的數(shù)學(xué)解題水平。另外,數(shù)學(xué)課結(jié)束后,轉(zhuǎn)變以往的作業(yè)模式,給學(xué)生布置一些具有專(zhuān)業(yè)性、數(shù)學(xué)性的習(xí)題,讓學(xué)生充分利用網(wǎng)絡(luò)資源,自主建立數(shù)學(xué)模型,有效的解決問(wèn)題。
3.理清高等數(shù)學(xué)名詞的概念
教材中,導(dǎo)數(shù)和定積分是其中的比較重要的概念,因此,教師在進(jìn)行教學(xué)時(shí),要引導(dǎo)學(xué)生理清這兩個(gè)的概念。比如導(dǎo)數(shù)概念是由幾何曲線(xiàn)中的切線(xiàn)斜率引導(dǎo)出來(lái)的,定積分的概念是由局部取近似值引出的,將常量轉(zhuǎn)變?yōu)樽兞俊?/p>
4.加強(qiáng)數(shù)學(xué)應(yīng)用問(wèn)題的培養(yǎng)
高等數(shù)學(xué)中,主要有以下幾種應(yīng)用問(wèn)題:
(1)最值問(wèn)題
在高等數(shù)學(xué)教材中,最值問(wèn)題是導(dǎo)數(shù)應(yīng)用中最重要的問(wèn)題。教師在教學(xué)過(guò)程中通過(guò)對(duì)最值問(wèn)題的解題步驟進(jìn)行歸納,能夠有效地將數(shù)學(xué)建模的基本思想進(jìn)行反映。因此,在對(duì)這部分內(nèi)容進(jìn)行教學(xué)時(shí),要增加例題,加大學(xué)生的練習(xí),開(kāi)拓學(xué)生的思維,讓學(xué)生熟練掌握最值問(wèn)題的解決辦法。
(2)微分方程
在微分方程的教學(xué)中運(yùn)用數(shù)學(xué)建模思想,能夠有效地解決實(shí)際問(wèn)題。微分方程所構(gòu)建的數(shù)學(xué)模型不具有通用的規(guī)則。首先,要確定方程中的變量,對(duì)變量和變化率、微元之間的關(guān)系進(jìn)行分析,然后運(yùn)用相關(guān)的物理理論、化學(xué)理論或者工程學(xué)理論對(duì)其進(jìn)行實(shí)驗(yàn),運(yùn)用所得出的定理、規(guī)律來(lái)構(gòu)建微分方程;其次,對(duì)其進(jìn)行求解和驗(yàn)證結(jié)果。微分方程的概念主要從實(shí)際引入,堅(jiān)持由淺入深的原則,來(lái)對(duì)現(xiàn)實(shí)問(wèn)題進(jìn)行解決。例如,在對(duì)學(xué)生講解外有引力定律時(shí),讓學(xué)生對(duì)萬(wàn)有引力的提出、猜想進(jìn)行探究,了解到在其發(fā)展的整個(gè)過(guò)程中,數(shù)學(xué)發(fā)揮著十分重要的作用。
(3)定積分
微元法思想用途比較廣泛,其主要以定積分概念為基礎(chǔ),在數(shù)學(xué)中滲入定積分概念,讓學(xué)生對(duì)定積分概念的意義進(jìn)行分析和了解,這樣有利于在對(duì)實(shí)際問(wèn)題進(jìn)行解決時(shí),樹(shù)立“欲積先分”意識(shí),意識(shí)到運(yùn)用定積分是解決微元實(shí)際問(wèn)題的重要方法。教師在布置作業(yè)題時(shí),要增加該問(wèn)題的實(shí)例。
三、結(jié)語(yǔ)
總之,在高等數(shù)學(xué)中對(duì)學(xué)生的數(shù)學(xué)建模能力進(jìn)行培養(yǎng),讓學(xué)生在解題的過(guò)程中運(yùn)用數(shù)學(xué)建模思想和數(shù)學(xué)建模方法,能夠有效地激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的分析、解決問(wèn)題的能力以及提高學(xué)生數(shù)學(xué)知識(shí)的運(yùn)用能力。
數(shù)學(xué)建模論文感悟篇十一
高校數(shù)學(xué)教育是高等教育的基礎(chǔ)學(xué)科,占據(jù)重要的一席之地。如何改變學(xué)生對(duì)數(shù)學(xué)枯燥乏味的學(xué)習(xí)狀態(tài),讓學(xué)生輕松愉快地參與到數(shù)學(xué)學(xué)習(xí)中,是當(dāng)前高校數(shù)學(xué)教學(xué)者面臨的一個(gè)重要課題。在高校數(shù)學(xué)教學(xué)中開(kāi)展數(shù)學(xué)建模競(jìng)賽,不僅能培養(yǎng)學(xué)生的創(chuàng)新思維,還能有效提高提高學(xué)生的創(chuàng)新能力、綜合素質(zhì)和對(duì)數(shù)學(xué)的應(yīng)用能力。本文對(duì)高校開(kāi)展數(shù)學(xué)建模競(jìng)賽與創(chuàng)新思維培養(yǎng)進(jìn)行了分析闡述,并對(duì)此進(jìn)行了一定的思考。
數(shù)學(xué)建模是一種融合數(shù)學(xué)邏輯思想的思考方法,通過(guò)運(yùn)用抽象性的數(shù)學(xué)語(yǔ)言和數(shù)學(xué)邏輯思考方法,創(chuàng)造性的解決數(shù)學(xué)問(wèn)題。當(dāng)前很多高校中開(kāi)始引入數(shù)學(xué)建模思想來(lái)加強(qiáng)學(xué)生創(chuàng)新能力的培養(yǎng),可以使學(xué)生的邏輯思維能力和運(yùn)用數(shù)學(xué)邏輯創(chuàng)新解決問(wèn)題的能力得到提升。數(shù)學(xué)建模競(jìng)賽起源于1985年的美國(guó),幾年后國(guó)內(nèi)幾所高校數(shù)學(xué)建模教師組織學(xué)生開(kāi)始參與美國(guó)的數(shù)學(xué)建模大賽,促進(jìn)了數(shù)學(xué)建模思維的快速發(fā)展。直到1992中國(guó)首屆數(shù)學(xué)建模大賽召開(kāi),而后一發(fā)不可收拾,至今仍以每年20%左右的速度增長(zhǎng),呈現(xiàn)一派繁榮景象。
2.1數(shù)學(xué)建模競(jìng)賽自主性較強(qiáng)。自主性首先體現(xiàn)在在數(shù)學(xué)建模過(guò)程中學(xué)生可以根據(jù)自己的建模需要通過(guò)一切可以利用的資源、工具來(lái)進(jìn)行資料查閱和收集,建模比賽隊(duì)員可以根據(jù)自己的意見(jiàn)和思維進(jìn)行靈活自由解答,形式不拘一格。其次體現(xiàn)在數(shù)學(xué)建模競(jìng)賽的組織形式呈現(xiàn)多元化特點(diǎn),組織制度上也較為靈活多樣,數(shù)學(xué)建模主要側(cè)重于分析思想,沒(méi)有標(biāo)準(zhǔn)答案可以參考分享。2.2建模隊(duì)伍呈日益燎原之勢(shì)。1992年首屆中國(guó)數(shù)學(xué)建模大賽開(kāi)展以來(lái),其影響力與日俱增,高校和社會(huì)各界對(duì)數(shù)學(xué)建模頗為重視,參賽隊(duì)伍、參賽學(xué)生的質(zhì)量一直處于上升狀態(tài),數(shù)學(xué)模型也日漸合理科學(xué),學(xué)生團(tuán)隊(duì)在國(guó)際數(shù)學(xué)建模大賽中屢創(chuàng)驕人戰(zhàn)績(jī)。2.3組織培訓(xùn)日益加強(qiáng)。數(shù)學(xué)建模競(jìng)賽對(duì)學(xué)生數(shù)學(xué)知識(shí)的掌握及靈活運(yùn)用、口套表達(dá)、語(yǔ)言邏輯思維、綜合素質(zhì)都有著非常高的要求,因此高校遴選參賽選手都投入了很大的精力,組織培訓(xùn)的時(shí)間很長(zhǎng),培訓(xùn)內(nèi)容也很豐富,為數(shù)學(xué)建模競(jìng)賽取得好成績(jī)奠定了堅(jiān)實(shí)的基礎(chǔ)。
3.1學(xué)生的團(tuán)隊(duì)協(xié)作能力和意識(shí)得到增強(qiáng)。數(shù)學(xué)建模競(jìng)賽的團(tuán)隊(duì)組織形式活潑自由,通常采用學(xué)生組隊(duì)模式開(kāi)展,數(shù)學(xué)建模競(jìng)賽隊(duì)伍形成一個(gè)團(tuán)結(jié)戰(zhàn)斗的整體,代表著不僅僅是學(xué)校的聲譽(yù),還一定程度上展示著國(guó)家的形象。經(jīng)過(guò)長(zhǎng)時(shí)間的培訓(xùn),對(duì)數(shù)學(xué)模型的研究和分析,根據(jù)學(xué)生訓(xùn)練中的優(yōu)勢(shì)和特長(zhǎng),進(jìn)行合理科學(xué)的小組分工,讓學(xué)生快速高效地完成整個(gè)數(shù)學(xué)建模,在建模過(guò)程中學(xué)生統(tǒng)籌協(xié)作、密切配合,發(fā)揮各自的優(yōu)勢(shì)和長(zhǎng)處,確保數(shù)學(xué)建模取得最大效用,學(xué)生的團(tuán)隊(duì)協(xié)作能力和意識(shí)得到鍛煉,責(zé)任感和榮譽(yù)感進(jìn)一步增強(qiáng),通過(guò)建模競(jìng)賽彰顯團(tuán)隊(duì)的合作能力和中國(guó)數(shù)學(xué)建模方面的發(fā)展。
3.2高校學(xué)生參賽積極性高漲。近年來(lái)大學(xué)生數(shù)學(xué)建模競(jìng)賽的參與性高漲,參賽人數(shù)保持著20%左右的上漲幅度,參賽成績(jī)也較為理想,創(chuàng)新能力得到了較好的鍛煉和培養(yǎng),綜合素質(zhì)得到提高,數(shù)學(xué)的應(yīng)用能力提升。
3.3高校學(xué)生數(shù)學(xué)邏輯思維能力和靈活運(yùn)用知識(shí)的能力得到提升。數(shù)學(xué)建模競(jìng)賽充滿(mǎn)著刺激性和挑戰(zhàn)性,是學(xué)生各方面綜合能力的一個(gè)展示。在數(shù)學(xué)建模競(jìng)賽中,學(xué)生不僅要需要扎實(shí)豐厚的數(shù)學(xué)知識(shí)儲(chǔ)備,還需要具備清晰的數(shù)學(xué)邏輯思維和語(yǔ)言表達(dá)能力。同時(shí)要有機(jī)智的臨場(chǎng)發(fā)揮能力和應(yīng)變能力,不怯場(chǎng)、不驚慌,有充分的思想準(zhǔn)備,能輕松應(yīng)對(duì)其他參賽選手和評(píng)委的提問(wèn),能組織條理性、邏輯性的語(yǔ)言進(jìn)行表述,將參賽小組數(shù)學(xué)模型的含義和設(shè)計(jì)清晰完整的傳達(dá)給評(píng)委和其他參賽選手。在這個(gè)過(guò)程中,無(wú)疑會(huì)使學(xué)生的數(shù)學(xué)邏輯思維和語(yǔ)言表達(dá)能力及靈活運(yùn)用數(shù)學(xué)知識(shí)的能力有一個(gè)較大的提升。
3.4學(xué)生的自學(xué)能力和意志力得到鍛。數(shù)學(xué)建模競(jìng)賽對(duì)參賽學(xué)生的綜合知識(shí)和能力要求非常高,難度也非常大,需要與眾不同的智慧和能力??梢哉f(shuō)數(shù)學(xué)建模過(guò)程中,有許多高深的知識(shí)難于理解,有的日常學(xué)習(xí)過(guò)程中根本接觸不到,需要數(shù)學(xué)建模參賽小組成員的互助合作,充分發(fā)揮各自?xún)?yōu)勢(shì)和平時(shí)培訓(xùn)中的知識(shí)積淀,通過(guò)借助大量的工具書(shū)及參考資料,加上團(tuán)隊(duì)的`理解分析去摸索,探尋數(shù)學(xué)建模所需要的基礎(chǔ)知識(shí),無(wú)疑這對(duì)學(xué)生的自學(xué)能力培養(yǎng)是一個(gè)很好的鍛煉。另外,搜尋資料、學(xué)習(xí)數(shù)學(xué)建模知識(shí)的過(guò)程是枯燥乏味的,需要長(zhǎng)久的耐力和信心,無(wú)疑這對(duì)學(xué)生的堅(jiān)毅不畏難的品質(zhì)是一個(gè)很好的培養(yǎng)和磨煉。
3.5創(chuàng)新思維與能力得到有效提升。經(jīng)過(guò)艱苦復(fù)雜的數(shù)學(xué)建模訓(xùn)練,高校學(xué)生信息收集與處理復(fù)雜問(wèn)題的能力得到培養(yǎng)鍛煉,學(xué)生數(shù)量觀(guān)念得到增強(qiáng),能夠養(yǎng)成敏銳觀(guān)察事物數(shù)量變化的能力,數(shù)學(xué)的嚴(yán)謹(jǐn)推導(dǎo)也使學(xué)生養(yǎng)成認(rèn)真細(xì)心、一絲不茍的習(xí)慣,邏輯思維能力得到提高,思路變得更加富有條理性,能靈活地處理各種復(fù)雜問(wèn)題,有效解決數(shù)學(xué)疑難,數(shù)學(xué)理論能更好第應(yīng)用于實(shí)踐,數(shù)學(xué)素養(yǎng)進(jìn)一步得到提升。
綜上所述,高校學(xué)生數(shù)學(xué)建模競(jìng)賽的開(kāi)展,能較高地提升學(xué)生的創(chuàng)新能力和綜合素養(yǎng),團(tuán)隊(duì)合作能力、競(jìng)爭(zhēng)能力、表達(dá)交流能力、邏輯思維能力、意志品質(zhì)能力等都能得到良好的塑造。高校要積極組織和開(kāi)展數(shù)學(xué)建模競(jìng)賽,使學(xué)生的綜合素質(zhì)得到發(fā)展和鍛煉。學(xué)校用重視和鼓勵(lì)全體學(xué)生參與數(shù)學(xué)建模競(jìng)賽,通過(guò)競(jìng)賽實(shí)現(xiàn)學(xué)生各方面能力尤其是創(chuàng)新能力的培養(yǎng)。
[1]趙剛.高校數(shù)學(xué)建模競(jìng)賽與創(chuàng)新思維培養(yǎng)探究[j].才智,20xx(06).
[2]陳羽,徐小紅,房少梅.數(shù)學(xué)建模實(shí)踐及其對(duì)培養(yǎng)學(xué)生創(chuàng)新思維的影響分析[j].科技創(chuàng)業(yè)月刊,20xx(08).
[3]趙建英.數(shù)學(xué)建模競(jìng)賽對(duì)高校創(chuàng)新人才培養(yǎng)的促進(jìn)作用分析[j].科技展望,20xx(08)5.
[4]畢波,杜輝.關(guān)于高校開(kāi)展數(shù)學(xué)建模競(jìng)賽與創(chuàng)新思維培養(yǎng)的思考[j].中國(guó)校外教育,20xx(12).
數(shù)學(xué)建模論文感悟篇十二
走美杯”是“走進(jìn)美妙的數(shù)學(xué)花園”的簡(jiǎn)稱(chēng)。
“走進(jìn)美妙的數(shù)學(xué)花園”中國(guó)青少年數(shù)學(xué)論壇是中國(guó)少年科學(xué)院創(chuàng)新素質(zhì)教育的品牌活動(dòng)。20xx年,由國(guó)際數(shù)學(xué)家大會(huì)組委會(huì)、中國(guó)數(shù)學(xué)會(huì)、中國(guó)教育學(xué)會(huì)、中國(guó)少年科學(xué)院成功舉辦了首屆“走進(jìn)美妙的數(shù)學(xué)花園”中國(guó)少年數(shù)學(xué)論壇,至今已連續(xù)舉辦七屆,全國(guó)三十多個(gè)城市近三十萬(wàn)人參與了此項(xiàng)活動(dòng),在全國(guó)青少年中產(chǎn)生了巨大的影響?!白哌M(jìn)美妙的數(shù)學(xué)花園”中國(guó)青少年數(shù)學(xué)論壇活動(dòng)是一項(xiàng)面對(duì)小學(xué)三年級(jí)至初中二年級(jí)學(xué)生的綜合性數(shù)學(xué)活動(dòng)。通過(guò)“趣味數(shù)學(xué)解題技能展示”、“數(shù)學(xué)建模小論文答辯”、“數(shù)學(xué)益智游戲”、“團(tuán)體對(duì)抗賽”等一系列內(nèi)容豐富的活動(dòng)提高廣大中小學(xué)生的數(shù)學(xué)建模意識(shí)和數(shù)學(xué)應(yīng)用能力,培養(yǎng)他們一種正確的思想方法。著名數(shù)學(xué)家陳省身先生兩次為同學(xué)們親筆題詞“數(shù)學(xué)好玩”和“走進(jìn)美妙的數(shù)學(xué)花園”,大大鼓舞了廣大青少年攀登數(shù)學(xué)高峰的熱情和信心,使同學(xué)們自覺(jué)地成為學(xué)習(xí)的主人,實(shí)現(xiàn)從“學(xué)數(shù)學(xué)”到“用數(shù)學(xué)”過(guò)程的轉(zhuǎn)變,從而進(jìn)一步推動(dòng)我國(guó)數(shù)學(xué)文化的傳播與普及。
“走美”活動(dòng)已連續(xù)舉辦七屆,近30萬(wàn)青少年踴躍參與,已取得良好社會(huì)效果,并被寫(xiě)入全國(guó)少工委《少先隊(duì)輔導(dǎo)員工作綱要(試行)》,向全國(guó)少年兒童推廣。
“走美”作為數(shù)學(xué)競(jìng)賽中的后起之秀,憑借其新穎的考試形式以及較高的競(jìng)賽難度取得了非常迅速的發(fā)展,近年來(lái)在重點(diǎn)中學(xué)選拔中引起了廣泛的關(guān)注。客觀(guān)地說(shuō)“走美”一、二等獎(jiǎng)對(duì)小升初作用非常大,三等獎(jiǎng)作用不大。
1、活動(dòng)對(duì)象
全國(guó)各地小學(xué)三年級(jí)至初中二年級(jí)學(xué)生
2、總成績(jī)計(jì)算
總成績(jī)=筆試成績(jī)x70%+數(shù)學(xué)小論文x30%
筆試獲獎(jiǎng)率:
一等獎(jiǎng)5%,二等獎(jiǎng)10%,三等獎(jiǎng)15%。
3、筆試時(shí)間
每年3月上、中旬。
報(bào)名截止時(shí)間:每年12月底。
走美杯比賽流程
1、全國(guó)組委會(huì)下發(fā)通知,各地組委會(huì)開(kāi)始組織工作
2、學(xué)生到當(dāng)?shù)亟M委會(huì)報(bào)名,填寫(xiě)《報(bào)名表》
3、各地組委會(huì)將報(bào)名學(xué)生名單全部匯總至全國(guó)組委會(huì)
4、全國(guó)“走進(jìn)美妙的數(shù)學(xué)花園”趣味數(shù)學(xué)解題技能展示初賽(全國(guó)統(tǒng)一筆試)
5、學(xué)生撰寫(xiě)數(shù)學(xué)建模小論文
6、全國(guó)組委會(huì)公布初賽獲獎(jiǎng)名單并頒發(fā)獲獎(jiǎng)證書(shū)
7、獲得初賽一、二、三等獎(jiǎng)選手有資格報(bào)名參加暑期赴英國(guó)劍橋大學(xué)數(shù)學(xué)交流活動(dòng)。
8、各地按照組委會(huì)要求提交數(shù)學(xué)建模小論文
9、前各地組委會(huì)上報(bào)參加全國(guó)總論壇學(xué)生名單
10、全國(guó)總論壇和表彰活動(dòng)
數(shù)學(xué)建模論文感悟篇十三
數(shù)學(xué)建模是銜接數(shù)學(xué)與應(yīng)用問(wèn)題的橋梁,該課程主要培養(yǎng)學(xué)生的綜合素質(zhì)要求。本文針對(duì)于數(shù)學(xué)建模的課程考核問(wèn)題進(jìn)行探討,分析數(shù)學(xué)建模課程考核存在問(wèn)題,改革思路,并提出多層次綜合考核方式,應(yīng)用于數(shù)學(xué)建模的課程考核,效果良好。
數(shù)學(xué)建模;課程考核;創(chuàng)新能力
數(shù)學(xué)建模是一門(mén)介紹數(shù)學(xué)知識(shí)應(yīng)用于解決實(shí)際問(wèn)題的方法課程,該課程主要講授如何針對(duì)日常生活中的實(shí)際問(wèn)題,做假設(shè)簡(jiǎn)化并進(jìn)行抽象提取,然后用數(shù)學(xué)表達(dá)式或者數(shù)學(xué)公式等將該問(wèn)題表達(dá)出來(lái),并求解該問(wèn)題,從而達(dá)到解決實(shí)際問(wèn)題的目的。數(shù)學(xué)建模的教學(xué)內(nèi)容包含常見(jiàn)數(shù)學(xué)模型的介紹、數(shù)學(xué)軟件編程和處理實(shí)際問(wèn)題的數(shù)學(xué)方法。即數(shù)學(xué)建模是一門(mén)銜接數(shù)學(xué)與實(shí)際問(wèn)題的應(yīng)用型課程,其教學(xué)、考核等都與其他數(shù)學(xué)課程不同。中共中央國(guó)務(wù)院《關(guān)于深化教育改革全面推進(jìn)素質(zhì)教育的決定》明確指出:“高等教育要重視培養(yǎng)大學(xué)生的創(chuàng)新能力、實(shí)踐能力和創(chuàng)業(yè)精神,普遍提高大學(xué)生的人文素養(yǎng)和科學(xué)素質(zhì)?!碧貏e對(duì)于當(dāng)前處于經(jīng)濟(jì)結(jié)構(gòu)調(diào)整期,“中國(guó)制造”向“中國(guó)創(chuàng)造”轉(zhuǎn)型,國(guó)家需要大量的高素質(zhì)創(chuàng)新型人才。而高校是培養(yǎng)高素質(zhì)創(chuàng)新型人才的重要基地,需要改變?cè)械娜瞬排囵B(yǎng)模式,提高學(xué)生的動(dòng)手能力和綜合素質(zhì),培養(yǎng)適合經(jīng)濟(jì)發(fā)展需要的高素質(zhì)創(chuàng)新型人才。因此,本科教學(xué)中越來(lái)越重視培養(yǎng)學(xué)生收集處理信息的能力、獲取新知識(shí)的能力、分析和解決問(wèn)題的能力、語(yǔ)言文字表達(dá)能力以及團(tuán)結(jié)協(xié)作和社會(huì)活動(dòng)的能力。數(shù)學(xué)建模競(jìng)賽是利用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的競(jìng)賽活動(dòng),要求參賽學(xué)生利用三天三夜的時(shí)間完成數(shù)學(xué)建模競(jìng)賽,整個(gè)競(jìng)賽過(guò)程中學(xué)生需要分析問(wèn)題、查找資料、建立模型、編程求解、撰寫(xiě)建模論文等步驟。這些步驟要求參賽學(xué)生具有較強(qiáng)的信息收集、知識(shí)獲取、分析、編程、論文撰寫(xiě)、團(tuán)隊(duì)協(xié)作等能力。因此,數(shù)學(xué)建模競(jìng)賽活動(dòng)是培養(yǎng)學(xué)生各方面能力的競(jìng)賽,也是全國(guó)參與人數(shù)最多、受益面最廣、舉辦時(shí)間最長(zhǎng)的競(jìng)賽活動(dòng)之一。數(shù)學(xué)建模是信息與計(jì)算科學(xué)和應(yīng)用數(shù)學(xué)專(zhuān)業(yè)的專(zhuān)業(yè)必修課,參加數(shù)學(xué)建模競(jìng)賽的必須培訓(xùn)課程,數(shù)學(xué)建模的考核不僅僅是給出該課程的成績(jī),更重要的承擔(dān)為數(shù)學(xué)建模競(jìng)賽選拔參賽人員的任務(wù)。本文針對(duì)數(shù)學(xué)建模的考核問(wèn)題進(jìn)行討論。
(1)考核手段和目的存在誤區(qū)。傳統(tǒng)的考核方法注重于理論知識(shí)的檢驗(yàn),忽略了對(duì)學(xué)生創(chuàng)新意識(shí)、實(shí)踐能力的培養(yǎng)。同時(shí),教育主管部門(mén)對(duì)于該課程的考核要求與其他課程類(lèi)似,僅僅考核知識(shí)點(diǎn)的.掌握,忽視了該課程的開(kāi)設(shè)目地,從而使得部分學(xué)生的利用數(shù)學(xué)方法解決實(shí)際問(wèn)題的能力未能提高,沒(méi)有達(dá)到學(xué)習(xí)此課程的目的。(2)考核重結(jié)果,輕過(guò)程。目前,數(shù)學(xué)建模是考查課程,該課程的考核存在兩個(gè)極端:簡(jiǎn)單根據(jù)學(xué)生的數(shù)學(xué)建模論文給予成績(jī)或試卷考試成績(jī)??己私Y(jié)果忽略了對(duì)學(xué)生的各方面能力的考察,導(dǎo)致開(kāi)卷考試變成了學(xué)生的簡(jiǎn)單應(yīng)付了事;而且部分考核只看最后的結(jié)果,而忽略了數(shù)學(xué)建模的整個(gè)訓(xùn)練過(guò)程。(3)考核方式單一。數(shù)學(xué)建模課程牽涉數(shù)學(xué)方法、編程能力、論文的寫(xiě)作能力、及其綜合動(dòng)手能力等。單純從試卷或最終數(shù)學(xué)建模論文不能體現(xiàn)學(xué)生的各種能力。導(dǎo)致學(xué)生的某一種能力掩蓋了其他能力的展現(xiàn),導(dǎo)致數(shù)學(xué)建模競(jìng)賽學(xué)生選拔過(guò)程中存在一種現(xiàn)象:通過(guò)各種方式選拔的“優(yōu)秀”學(xué)生,真正參加數(shù)學(xué)建模競(jìng)賽時(shí),根本無(wú)法動(dòng)手。(4)教學(xué)改革需要。隨著大數(shù)據(jù)、人工智能、深度學(xué)習(xí)等領(lǐng)域的興起,數(shù)學(xué)知識(shí)是解決此類(lèi)實(shí)際問(wèn)題的必須工具,解決該類(lèi)問(wèn)題的過(guò)程其實(shí)就是數(shù)學(xué)建模的過(guò)程。隨著“新工科”培養(yǎng)計(jì)劃的興起,數(shù)學(xué)、編程、寫(xiě)作能力成為衡量人才的重要指標(biāo)。數(shù)學(xué)建模是銜接數(shù)學(xué)和實(shí)際問(wèn)題的橋梁,設(shè)置合理的考核方式,體現(xiàn)學(xué)生多方面能力是數(shù)學(xué)建模課程考核改革的動(dòng)力。
(1)轉(zhuǎn)變教育觀(guān)念,樹(shù)立科學(xué)考核。數(shù)學(xué)建模是一門(mén)利用數(shù)學(xué)方法、計(jì)算機(jī)編程、論文寫(xiě)作等方面知識(shí)解決實(shí)際問(wèn)題的課程。該課程主要培養(yǎng)學(xué)生利用數(shù)學(xué)建模方法解決實(shí)際問(wèn)題的能力。因此,任課教師改變課程考核等同于考試的觀(guān)念,將考核過(guò)程貫穿學(xué)生的學(xué)習(xí)階段,學(xué)習(xí)階段融入整個(gè)考核過(guò)程。從而避免教、考脫節(jié)的現(xiàn)象,形成教考相互融合,提高學(xué)生的積極性。(2)實(shí)施多元化考核,提高學(xué)生的動(dòng)手能力。數(shù)學(xué)建模課程是綜合利用各種能力解決實(shí)際問(wèn)題的方法論型課程,該課程的最終目的是培養(yǎng)學(xué)生的各種能力及其解決實(shí)際問(wèn)題的綜合能力。包含多個(gè)知識(shí)點(diǎn)的試卷測(cè)試是應(yīng)試教育的體現(xiàn),不足以反映學(xué)生的動(dòng)手能力。多元化的考核方式能促進(jìn)教學(xué)過(guò)程逐步向以訓(xùn)練學(xué)生的解決實(shí)際問(wèn)題能力為導(dǎo)向,激發(fā)學(xué)生的創(chuàng)新意識(shí)、鍛煉學(xué)生的實(shí)踐能力。(3)實(shí)施多元化考核,促進(jìn)學(xué)生學(xué)風(fēng)。多元化考核將教學(xué)和考核的過(guò)程相互融合,學(xué)生的學(xué)習(xí)和考核交替進(jìn)行,能夠促使學(xué)生、自我反省,發(fā)現(xiàn)自己學(xué)習(xí)的不足,及時(shí)改進(jìn)。同時(shí),教考融合能夠促使學(xué)生自發(fā)學(xué)習(xí),調(diào)到學(xué)生的學(xué)習(xí)積極性,避免出現(xiàn)“平時(shí)送、考前緊、考后忘”的現(xiàn)象。
鑒于數(shù)學(xué)建模是利用計(jì)算機(jī)、數(shù)學(xué)解決實(shí)際問(wèn)題的方法論文課程。該課程的教學(xué)過(guò)程包含介紹數(shù)學(xué)建模所用知識(shí)點(diǎn)和綜合利用各個(gè)知識(shí)點(diǎn)解決實(shí)際問(wèn)題兩個(gè)階段。該課程考核改革主要訓(xùn)練學(xué)生綜合利用知識(shí)解決實(shí)際問(wèn)題的能力,過(guò)程的訓(xùn)練是教學(xué)的重點(diǎn)。考試改革需貫穿于該課程的具體教學(xué)過(guò)程,因此將考核分為階段考核、綜合考核、結(jié)課考核、參賽考核四種方式。(1)階段考核。數(shù)學(xué)建模的教學(xué)內(nèi)容包括編程語(yǔ)言介紹、數(shù)學(xué)建模方法介紹和數(shù)學(xué)論文寫(xiě)作介紹幾個(gè)主要的方面。相應(yīng)地,編程能力、應(yīng)用數(shù)學(xué)建模能力和論文寫(xiě)作能力的訓(xùn)練是數(shù)學(xué)建模的根本目的。因此,本項(xiàng)目擬根據(jù)數(shù)學(xué)建模的教學(xué)大綱安排,對(duì)每種能力進(jìn)行單獨(dú)考核,結(jié)合每種能力的特點(diǎn),設(shè)置不同的題目,考核每種能力的得分。根據(jù)教學(xué)進(jìn)度發(fā)布測(cè)試題目,初步擬定每種能力的測(cè)試成績(jī)各占總成績(jī)的10%,共占總成績(jī)的30%。(2)綜合考核。數(shù)學(xué)建模是綜合運(yùn)用各種能力的解決實(shí)際問(wèn)題。在各種能力訓(xùn)練的基礎(chǔ)上,強(qiáng)化訓(xùn)練學(xué)生的綜合運(yùn)用各種知識(shí)的能力。在此階段,從歷年數(shù)學(xué)建模題目和日常生活中挑出2~3個(gè)題目,進(jìn)行適當(dāng)簡(jiǎn)化處理,促使學(xué)生利用3~5天的時(shí)間完成一篇論文,進(jìn)行點(diǎn)評(píng)評(píng)分,挑選部分典型論文進(jìn)行講解;然后要求學(xué)生繼續(xù)完善論文,再次點(diǎn)評(píng)評(píng)分,如此循環(huán)多次。每個(gè)題目的成績(jī)約占總成績(jī)的10%,該階段共占總成績(jī)的30%。(3)結(jié)課考核。針對(duì)數(shù)學(xué)建模授課期間的知識(shí)點(diǎn)訓(xùn)練和綜合訓(xùn)練,最后仿照數(shù)學(xué)建模的參賽組織形式,從實(shí)際生活中挑選2個(gè)側(cè)重點(diǎn)不同的題目;同時(shí),建議選課學(xué)生自由組合,3人一組,共同完成數(shù)學(xué)建模論文。該階段對(duì)前期訓(xùn)練的檢測(cè),同時(shí)考核學(xué)生的團(tuán)隊(duì)精神,最終論文的成績(jī)占總成績(jī)的40%。(4)參賽考核。數(shù)學(xué)建模課程可作為數(shù)學(xué)建模競(jìng)賽的前期培訓(xùn),從選課選手中選取部分成績(jī)優(yōu)秀的學(xué)生,組織他們參加全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽,競(jìng)賽獲國(guó)家級(jí)獎(jiǎng),最終成績(jī)直接評(píng)為優(yōu)秀;廣西區(qū)級(jí)獎(jiǎng)最終成績(jī)可直接評(píng)為良好。
該考核方案在信息與計(jì)算科學(xué)專(zhuān)業(yè)的數(shù)學(xué)建模課程試用。教學(xué)中將考核過(guò)程融入教學(xué)過(guò)程,教學(xué)過(guò)程穿插考核,這樣能夠防止“考核型學(xué)習(xí)現(xiàn)象”,促使學(xué)生逐步向“學(xué)習(xí)型考核”轉(zhuǎn)變。同時(shí),數(shù)學(xué)建模是應(yīng)用型課程,多元化考試能夠訓(xùn)練學(xué)生的應(yīng)用數(shù)學(xué)、計(jì)算機(jī)編程和論文書(shū)寫(xiě)能力,單一考核不再適應(yīng),多元化考核能夠發(fā)現(xiàn)學(xué)生的優(yōu)點(diǎn),促進(jìn)教學(xué)過(guò)程轉(zhuǎn)變?yōu)椤耙阅芰閷?dǎo)向”,符合當(dāng)前的教育改革理念。數(shù)學(xué)建模講授的內(nèi)容有:線(xiàn)性規(guī)劃模型、非線(xiàn)性規(guī)劃模型、圖論模型(最短路模型、生成樹(shù)模型、網(wǎng)絡(luò)圖模型)、微分方程模型、差分方程模型、插值模型、擬合模型、回歸分析模型、因子分析模型、統(tǒng)計(jì)檢驗(yàn)?zāi)P?、綜合評(píng)價(jià)模型、模擬仿真模型等模型及其相關(guān)算法的軟件編程。在教學(xué)安排中,對(duì)于數(shù)學(xué)模型部分盡可能講解數(shù)學(xué)建模中常見(jiàn)模型的建模方法、模型特點(diǎn)及其適應(yīng)范圍、該模型的求解算法等。對(duì)于涉及模型求解算法的理論及其具體的求解步驟略講或者不講解,對(duì)于調(diào)用軟件的算法集成命令及其調(diào)用方法等詳細(xì)介紹。對(duì)于數(shù)學(xué)建模論文寫(xiě)作方面,通過(guò)閱讀優(yōu)秀論文,特別是我校20xx年的“matlab創(chuàng)新獎(jiǎng)”論文。同時(shí),選取部分簡(jiǎn)單例題,根據(jù)完整數(shù)學(xué)建模論文的章節(jié)要求布置任務(wù),要求完成相應(yīng)論文。然后根據(jù)學(xué)生的完成情況,進(jìn)行詳細(xì)點(diǎn)評(píng),特別數(shù)學(xué)建模論文的寫(xiě)作及其注意事項(xiàng)。學(xué)生主動(dòng)完成平時(shí)練習(xí)的積極性高,80%的同學(xué)能夠按時(shí)完成布置的任務(wù)。剩下部分同學(xué)再經(jīng)過(guò)多次提醒之后也補(bǔ)交了布置的任務(wù)。從提交的作業(yè)發(fā)現(xiàn),大部分同學(xué)的作業(yè)都是自己認(rèn)真完成,少數(shù)同學(xué)是在參考他人的基礎(chǔ)之上完成。在課程結(jié)束后,參照數(shù)學(xué)建模的形式,要求同學(xué)們可以自由組隊(duì),隊(duì)員人數(shù)為1~3人,根據(jù)人數(shù)的多少,設(shè)置不同的評(píng)價(jià)標(biāo)準(zhǔn)。為考查學(xué)生的學(xué)習(xí)情況,本人給出幾道歷年真題或類(lèi)真題,這些題目是根據(jù)當(dāng)前的熱點(diǎn)新聞等經(jīng)過(guò)加工而提出。從學(xué)生提交的結(jié)課論文來(lái)看,已經(jīng)達(dá)到了預(yù)期效果,大部分同學(xué)具備了數(shù)學(xué)建模的基本素質(zhì),掌握了數(shù)學(xué)建模技巧,能夠完成數(shù)學(xué)建模論文。通過(guò)兩年的試用,信息與計(jì)算科學(xué)專(zhuān)業(yè)參加數(shù)學(xué)建模競(jìng)賽的人數(shù)比往年增加20%,而獲得?。▍^(qū))級(jí)獎(jiǎng)以上的獎(jiǎng)項(xiàng)比往年增加40%。因此,說(shuō)明數(shù)學(xué)建??己朔桨笇?duì)學(xué)生的評(píng)價(jià)具備一定的準(zhǔn)確性。
為配合考核方案的實(shí)施,特?cái)M定考核改革調(diào)查問(wèn)卷,本人共做了兩次問(wèn)卷調(diào)查,共收到近八十分問(wèn)卷。問(wèn)卷包括數(shù)學(xué)學(xué)習(xí)興趣、參加數(shù)學(xué)建模的積極性、考核嚴(yán)厲與否、考核方案認(rèn)同度等內(nèi)容。統(tǒng)計(jì)調(diào)查問(wèn)卷發(fā)現(xiàn),學(xué)生對(duì)數(shù)學(xué)知識(shí)的學(xué)習(xí)興趣明顯提高,參加數(shù)學(xué)建模競(jìng)賽的積極性也大幅度提高。并且大部分學(xué)生認(rèn)同考核方案,也贊成將考核過(guò)程與教學(xué)過(guò)程相結(jié)合。從調(diào)查問(wèn)卷的統(tǒng)計(jì)結(jié)果看:有近70%的學(xué)生認(rèn)為該課程應(yīng)該嚴(yán)格考核;76%的學(xué)生認(rèn)同該考核方案。由此可見(jiàn),數(shù)學(xué)建??己朔绞礁母锞哂幸欢ǖ耐茝V和實(shí)施價(jià)值(見(jiàn)圖1)。
根據(jù)實(shí)施《數(shù)學(xué)建?!房己烁母锓桨傅膶W(xué)生反饋情況,總的來(lái)看,學(xué)生對(duì)考核方案比較認(rèn)同,也同意嚴(yán)格考核。從學(xué)生的參賽人數(shù)和獲獎(jiǎng)比例也說(shuō)明了該考核方案能有效提升學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的各方面能力。
[2]謝發(fā)忠,楊彩霞,馬修水.創(chuàng)新人才培養(yǎng)與高校課程考試改革[j].合肥工業(yè)大學(xué)學(xué)報(bào),20xx.24(2):21-4.
[3]李紅枝,毛建文,古宏標(biāo),黃榕波,邢德剛.創(chuàng)新意識(shí)和創(chuàng)新能力培養(yǎng)中高校考試改革的探索[j].山西醫(yī)科大學(xué)學(xué)報(bào),20xx.13(4):397-400.
[5]蒲俊,張朝倫,李順初,付曉艦.地方綜合性大學(xué)理工科學(xué)生數(shù)學(xué)建模創(chuàng)新培養(yǎng)改革的探討[j].中國(guó)大學(xué)教學(xué),20xx.7:56-8.
數(shù)學(xué)建模論文感悟篇十四
隨著社會(huì)的不斷發(fā)展和科學(xué)技術(shù)的進(jìn)步,數(shù)學(xué)在現(xiàn)實(shí)生活中的應(yīng)用越來(lái)越廣泛,尤其是計(jì)算機(jī)技術(shù)的發(fā)展及廣泛應(yīng)用,使數(shù)學(xué)建模思想在解決社會(huì)各個(gè)領(lǐng)域中的實(shí)際問(wèn)題的應(yīng)用越來(lái)越深入。本文筆者簡(jiǎn)要談?wù)剶?shù)學(xué)建模思想融入大學(xué)數(shù)學(xué)類(lèi)課程的意義和方法。
所謂數(shù)學(xué)建模就是指構(gòu)造數(shù)學(xué)模型的過(guò)程,也就是說(shuō)用公式、符號(hào)和圖表等數(shù)學(xué)語(yǔ)言來(lái)刻畫(huà)和描述一個(gè)實(shí)際問(wèn)題,再經(jīng)過(guò)計(jì)算、迭代等數(shù)學(xué)處理得到定量的結(jié)果,從而供人們分析、預(yù)報(bào)、決策與控制。那么數(shù)學(xué)模型就是利用數(shù)學(xué)術(shù)語(yǔ)對(duì)一部分現(xiàn)實(shí)世界的描述。數(shù)學(xué)建模思想是指理論聯(lián)系實(shí)際,將實(shí)際的事物抽象成數(shù)學(xué)模型,然后利用所學(xué)的理論來(lái)解決問(wèn)題的一種思想。
在新形勢(shì)下,傳統(tǒng)的數(shù)學(xué)教學(xué)方法已經(jīng)無(wú)法適應(yīng)現(xiàn)在大學(xué)數(shù)學(xué)教育改革的需求,數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)類(lèi)課程教育融合成為目前高等院校數(shù)學(xué)教學(xué)改革的突破口。
(1)數(shù)學(xué)知識(shí)在各個(gè)領(lǐng)域的應(yīng)用越來(lái)越廣泛。如今數(shù)學(xué)知識(shí)在各個(gè)領(lǐng)域的應(yīng)用越來(lái)越廣泛,尤其是在經(jīng)濟(jì)學(xué)中的應(yīng)用最為顯著。自從1969年創(chuàng)設(shè)諾貝爾經(jīng)濟(jì)學(xué)獎(jiǎng)以來(lái),就有不少理論成果來(lái)自利用數(shù)學(xué)工具分析經(jīng)濟(jì)問(wèn)題。事實(shí)上,從1969年到20xx年這35年中,一共產(chǎn)生了53位獲獎(jiǎng)?wù)撸渲袚碛袛?shù)學(xué)學(xué)位的共有19人,所占比例為35.8%;其中擁有理工學(xué)位的有9人,所占比例為17%;二者共計(jì)占52.8%;其中共有29位諾貝爾經(jīng)濟(jì)學(xué)獎(jiǎng)的獲得者是以數(shù)學(xué)方法為主要的研究方法,約占總?cè)藬?shù)的63.1%。然而幾乎所有的諾貝爾經(jīng)濟(jì)學(xué)獎(jiǎng)獲得者都運(yùn)用了數(shù)學(xué)方法來(lái)研究經(jīng)濟(jì)學(xué)理論。除了在經(jīng)濟(jì)領(lǐng)域,數(shù)學(xué)建模思想也廣泛應(yīng)用于生物醫(yī)學(xué),包括超聲波、電磁診斷等方面。同時(shí)數(shù)學(xué)建模還將數(shù)學(xué)與生物學(xué)融合進(jìn)了基因科學(xué),例如基因表達(dá)的定型、基因組測(cè)序、基因分類(lèi)等等,在生物學(xué)領(lǐng)域需要建立大規(guī)模的模擬以及復(fù)雜的數(shù)學(xué)模型??梢?jiàn)數(shù)學(xué)建模思想的應(yīng)用是非常廣泛的,并對(duì)其他領(lǐng)域的發(fā)展起著重要的推動(dòng)作用。
(2)有利于激發(fā)學(xué)生的學(xué)習(xí)熱情,豐富大學(xué)數(shù)學(xué)課程。一般的數(shù)學(xué)課,通常只是重視理論知識(shí)的講解和傳授,對(duì)知識(shí)點(diǎn)的推理和思想方法的分析較少。而且多數(shù)學(xué)生為了應(yīng)付考試,也只是以“類(lèi)型題”的方式去復(fù)習(xí)知識(shí)點(diǎn)。這樣的方式雖然能夠讓學(xué)生掌握一部分?jǐn)?shù)學(xué)知識(shí),可是卻不能提高學(xué)生的數(shù)學(xué)素質(zhì),不能提高學(xué)生對(duì)大學(xué)數(shù)學(xué)的學(xué)習(xí)興趣。而數(shù)學(xué)建模思想運(yùn)用數(shù)學(xué)知識(shí)來(lái)解決生活中的實(shí)際問(wèn)題,這樣就使數(shù)學(xué)活了起來(lái),而不是死的理論知識(shí)。運(yùn)用數(shù)學(xué)建模思想能夠讓學(xué)生在數(shù)學(xué)中感悟生活,在生活中體會(huì)數(shù)學(xué)的價(jià)值,更容易吸引學(xué)生的學(xué)習(xí)興趣。而興趣是學(xué)習(xí)最有效的動(dòng)力,讓學(xué)生主動(dòng)參與學(xué)習(xí)而非被動(dòng)學(xué)習(xí),取得的教學(xué)效果會(huì)更好。
(3)是加強(qiáng)數(shù)學(xué)教學(xué)改革,適應(yīng)時(shí)代發(fā)展的需要。在大學(xué)數(shù)學(xué)教學(xué)活動(dòng)中,許多學(xué)生常常陷入這樣的困惑之中:花費(fèi)了大量的精力,做了很多習(xí)題,但是卻感受不到數(shù)學(xué)的作用和價(jià)值。而教師在教學(xué)中也總是告訴學(xué)生數(shù)學(xué)是一門(mén)很有用的課程,但是卻舉不出現(xiàn)實(shí)的例子。并且傳統(tǒng)的教學(xué)方式也只是教會(huì)學(xué)生掌握簡(jiǎn)單的理論知識(shí),并不能提高學(xué)生的數(shù)學(xué)素養(yǎng)和數(shù)學(xué)意識(shí)。而將數(shù)學(xué)建模思想融入到大學(xué)的數(shù)學(xué)類(lèi)課程之中就能很好地解決這些問(wèn)題。因?yàn)閷?shù)學(xué)建模思想運(yùn)用到數(shù)學(xué)類(lèi)課程中,就能夠讓學(xué)生在獨(dú)立思考和探索中感受到數(shù)學(xué)在現(xiàn)實(shí)生活中的實(shí)用價(jià)值,提高學(xué)生運(yùn)用數(shù)學(xué)的眼光去觀(guān)察、分析以及表示各種事物的空間關(guān)系、數(shù)量關(guān)系和數(shù)學(xué)信息的能力,提高學(xué)生的創(chuàng)造能力和創(chuàng)新意識(shí)。
(1)教師在教學(xué)過(guò)程中較少滲入數(shù)學(xué)建模思想。目前在高校數(shù)學(xué)教學(xué)中數(shù)學(xué)建模的思想應(yīng)用得仍然較少,重視程度不夠。不少高校的教師在開(kāi)展大學(xué)數(shù)學(xué)類(lèi)課程時(shí),仍然只是停留在數(shù)學(xué)知識(shí)的教學(xué)方面,并沒(méi)有對(duì)學(xué)生進(jìn)行研究性學(xué)習(xí)探索。據(jù)調(diào)查,大多數(shù)高校教師對(duì)日常的教學(xué)工作能夠認(rèn)真完成規(guī)定的教學(xué)任務(wù),但能夠真正創(chuàng)造性地把數(shù)學(xué)建模思想融入到數(shù)學(xué)教學(xué)任務(wù)中的教師較少。大多數(shù)高校數(shù)學(xué)老師都意識(shí)到探索式的數(shù)學(xué)建模教學(xué)很重要,但真正將數(shù)學(xué)建模思想與數(shù)學(xué)教學(xué)融合的嘗試和探索卻很少??梢?jiàn)多數(shù)高校教師雖然明白數(shù)學(xué)建模思想的重要性,但是由于缺乏足夠的數(shù)學(xué)建模教學(xué)的相關(guān)知識(shí)及經(jīng)驗(yàn),在實(shí)際教學(xué)中數(shù)學(xué)建模思想仍未得到充分的運(yùn)用。
(2)開(kāi)設(shè)的有關(guān)數(shù)學(xué)建模的課程和活動(dòng)較少。雖然數(shù)學(xué)建模思想得到了越來(lái)越廣泛的應(yīng)用,但是在高校中實(shí)際開(kāi)設(shè)的有關(guān)數(shù)學(xué)建模的課程并不多,尤其是應(yīng)用數(shù)學(xué)、數(shù)學(xué)實(shí)驗(yàn)以及計(jì)算機(jī)應(yīng)用等一些需要滲入數(shù)學(xué)建模思想的課程在實(shí)際的教學(xué)過(guò)程中并沒(méi)有創(chuàng)造性地運(yùn)用數(shù)學(xué)建模思想。另一方面,校內(nèi)自主開(kāi)展的有關(guān)數(shù)學(xué)建模競(jìng)賽和活動(dòng)并不多,宣傳力度也不夠,無(wú)法讓更多的學(xué)生了解數(shù)學(xué)建模的意義和價(jià)值,更無(wú)法參與到數(shù)學(xué)建?;顒?dòng)中去。
(3)學(xué)生對(duì)數(shù)學(xué)的態(tài)度和觀(guān)念還未改變,對(duì)數(shù)學(xué)建模缺乏深入的了解。大學(xué)數(shù)學(xué)是一門(mén)較為抽象的學(xué)科,其概念、定理和性質(zhì)都不容易掌握,由于其具有一定的難度,所以不少學(xué)生對(duì)大學(xué)數(shù)學(xué)類(lèi)課程以及數(shù)學(xué)建模沒(méi)有興趣。并且這些學(xué)生在初中和高中階段也學(xué)習(xí)數(shù)學(xué),但是不少學(xué)生是為了應(yīng)付考試,并沒(méi)有見(jiàn)識(shí)到數(shù)學(xué)的應(yīng)用性,覺(jué)得數(shù)學(xué)是一門(mén)純理論的課程,沒(méi)有實(shí)用價(jià)值。同時(shí)很多學(xué)生對(duì)數(shù)學(xué)建模思想的運(yùn)用并不夠了解,不知道如何將數(shù)學(xué)知識(shí)和數(shù)學(xué)方法應(yīng)用到實(shí)際的生活中去,覺(jué)得數(shù)學(xué)沒(méi)有用,也沒(méi)有深入學(xué)習(xí)的意義。
(1)提高課堂教學(xué)質(zhì)量,創(chuàng)造性地運(yùn)用數(shù)學(xué)建模思想。大學(xué)的數(shù)學(xué)類(lèi)課程主要有“線(xiàn)性代數(shù)”、“高等數(shù)學(xué)”、“運(yùn)籌學(xué)”、“數(shù)學(xué)建?!?、“概率論與數(shù)理統(tǒng)計(jì)”等,這些課程的核心部分都跟高等數(shù)學(xué)有關(guān),所以要注重提高數(shù)學(xué)類(lèi)課程的教學(xué)質(zhì)量關(guān)鍵就在于高等數(shù)學(xué),而要提高高等數(shù)學(xué)的教學(xué)質(zhì)量就必須在教學(xué)過(guò)程中創(chuàng)造性地應(yīng)用數(shù)學(xué)建模思想。對(duì)于主修數(shù)學(xué)的學(xué)生,要加強(qiáng)對(duì)計(jì)算機(jī)軟件和語(yǔ)言的學(xué)習(xí),系統(tǒng)性地對(duì)數(shù)學(xué)原理進(jìn)行剖解和分析,合理運(yùn)用數(shù)學(xué)知識(shí)和數(shù)學(xué)方法解決社會(huì)實(shí)際問(wèn)題。在教學(xué)中多引導(dǎo)、啟發(fā)學(xué)生利用對(duì)生活問(wèn)題和科學(xué)問(wèn)題的深入研究,主動(dòng)結(jié)合自己的課程理論知識(shí)和數(shù)學(xué)建模,使數(shù)學(xué)建模思想融入到學(xué)生的整個(gè)學(xué)習(xí)過(guò)程中去。對(duì)于非數(shù)學(xué)領(lǐng)域的問(wèn)題,要啟發(fā)學(xué)生運(yùn)用計(jì)算機(jī)軟件建模,從而解決不同領(lǐng)域中的數(shù)學(xué)建模問(wèn)題。
(2)多開(kāi)設(shè)跟數(shù)學(xué)建模有關(guān)的數(shù)學(xué)類(lèi)課程。例如除了開(kāi)設(shè)跟數(shù)學(xué)建模有關(guān)的必修課,還可以開(kāi)設(shè)一些跟數(shù)學(xué)建模有關(guān)的選修課,為其他專(zhuān)業(yè)的學(xué)生提供接觸和了解數(shù)學(xué)建模思想的機(jī)會(huì),為學(xué)生拓展知識(shí)領(lǐng)域,為其解決該領(lǐng)域的問(wèn)題提供有效的方法。例如,經(jīng)濟(jì)學(xué)有關(guān)專(zhuān)業(yè)的學(xué)生就可以通過(guò)選修跟數(shù)學(xué)建模有關(guān)的課程,解決其在經(jīng)濟(jì)學(xué)中遇到的問(wèn)題,因?yàn)楹芏喔?jīng)濟(jì)學(xué)有關(guān)的問(wèn)題僅僅靠經(jīng)濟(jì)學(xué)的知識(shí)是無(wú)法解決的,像貸款計(jì)算這樣的問(wèn)題就要將數(shù)學(xué)與經(jīng)濟(jì)學(xué)聯(lián)系起來(lái)才能解決實(shí)際問(wèn)題。
(3)廣泛宣傳,讓學(xué)生了解數(shù)學(xué)建模的意義和價(jià)值。學(xué)生是教學(xué)過(guò)程中的主體,目前,大學(xué)數(shù)學(xué)建模課程開(kāi)設(shè)效果不佳,學(xué)生參與度低的主要原因就是學(xué)生缺乏對(duì)數(shù)學(xué)建模的深入了解。那么,要提高學(xué)生的參與性,促進(jìn)數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)類(lèi)課程的融合就必須加強(qiáng)宣傳,讓學(xué)生深入了解什么是數(shù)學(xué)建模。同時(shí),在課堂上就是也要轉(zhuǎn)變傳統(tǒng)枯燥的教學(xué)方式,多使用啟發(fā)式教學(xué)和探索式教學(xué),吸引學(xué)生的學(xué)習(xí)興趣,讓他們發(fā)現(xiàn)數(shù)學(xué)對(duì)社會(huì)實(shí)際生活的重要作用,轉(zhuǎn)變他們對(duì)數(shù)學(xué)的態(tài)度,并引導(dǎo)學(xué)生對(duì)數(shù)學(xué)建模和數(shù)學(xué)課程感興趣。
(4)轉(zhuǎn)變數(shù)學(xué)教育理念及教育方式。要轉(zhuǎn)變傳統(tǒng)的教育方式,將教學(xué)的重點(diǎn)放在數(shù)學(xué)知識(shí)在生活中的應(yīng)用問(wèn)題上,而不是將知識(shí)與實(shí)際生活割裂開(kāi)來(lái)。同時(shí)在教學(xué)中要注重證明和推理,加強(qiáng)學(xué)生對(duì)數(shù)學(xué)方法的掌握注重培養(yǎng)學(xué)生對(duì)實(shí)際問(wèn)題的邏輯分析、簡(jiǎn)化、抽象并運(yùn)用數(shù)學(xué)語(yǔ)言表達(dá)的能力。也就是說(shuō)教學(xué)的重點(diǎn)在于提高學(xué)生的數(shù)學(xué)學(xué)習(xí)能力和加強(qiáng)數(shù)學(xué)意識(shí)和數(shù)學(xué)方法的應(yīng)用,這樣才能夠培養(yǎng)出具有創(chuàng)新能力和創(chuàng)新意識(shí)的人才。
(5)多開(kāi)展數(shù)學(xué)建?;顒?dòng)和競(jìng)賽,提高學(xué)生參與性。在高校內(nèi)部要多開(kāi)展跟數(shù)學(xué)有關(guān)的活動(dòng)和競(jìng)賽以及專(zhuān)家講座等,一方面加強(qiáng)學(xué)生對(duì)數(shù)學(xué)建模的認(rèn)識(shí),另一方面也提高了學(xué)生的參與性。通過(guò)專(zhuān)家講座,不僅可以讓學(xué)生更深入地了解數(shù)學(xué)建模的價(jià)值,也加強(qiáng)了學(xué)術(shù)交流,提高學(xué)生的數(shù)學(xué)建模應(yīng)用能力。通過(guò)數(shù)學(xué)建模競(jìng)賽,為學(xué)生提供展示自己智慧、充分發(fā)揮其能力的平臺(tái)。同時(shí),競(jìng)賽也可以讓學(xué)生在競(jìng)賽中發(fā)現(xiàn)自己的不足,在交流中不斷完善自己的缺陷,拓展學(xué)生的思維。而且,在數(shù)學(xué)建模比賽中,通過(guò)讓學(xué)生探究跟生活實(shí)際有關(guān)的例子,提高學(xué)生對(duì)數(shù)學(xué)建模的興趣,加強(qiáng)學(xué)生對(duì)模型應(yīng)用的直觀(guān)性認(rèn)識(shí),促進(jìn)學(xué)校應(yīng)用型人才的培養(yǎng)。
總之,數(shù)學(xué)建模思想和高校數(shù)學(xué)類(lèi)課程的融合,對(duì)于高等數(shù)學(xué)教學(xué)改革具有非常重要的意義。把數(shù)學(xué)建模思想融入到高等數(shù)學(xué)教學(xué)中,可以更好地提高學(xué)生的數(shù)學(xué)學(xué)習(xí)能力,提高他們運(yùn)用數(shù)學(xué)思想和數(shù)學(xué)方法分析問(wèn)題、解決問(wèn)題和抽象思維的能力。高校教師要加強(qiáng)數(shù)學(xué)建模思想的應(yīng)用,讓學(xué)生初步掌握從實(shí)際問(wèn)題中總結(jié)數(shù)學(xué)內(nèi)涵的方法,提高學(xué)生的數(shù)學(xué)學(xué)習(xí)興趣,為高校學(xué)生專(zhuān)業(yè)課的學(xué)習(xí)奠定堅(jiān)實(shí)的數(shù)學(xué)基礎(chǔ)。
數(shù)學(xué)建模論文感悟篇十五
(一)教學(xué)觀(guān)念陳舊化
就當(dāng)前高等數(shù)學(xué)的教育教學(xué)而言,高數(shù)老師對(duì)學(xué)生的計(jì)算能力、思考能力以及邏輯思維能力過(guò)于重視,一切以課本為基礎(chǔ)開(kāi)展教學(xué)活動(dòng)。作為一門(mén)充滿(mǎn)活力并讓人感到新奇的學(xué)科,由于教育觀(guān)念和思想的落后,課堂教學(xué)之中沒(méi)有穿插應(yīng)用實(shí)例,在工作的時(shí)候?qū)W生不知道怎樣把問(wèn)題解決,工作效率無(wú)法進(jìn)一步提升,不僅如此,陳舊的教學(xué)理念和思想讓學(xué)生漸漸的失去學(xué)習(xí)的興趣和動(dòng)力。
(二)教學(xué)方法傳統(tǒng)化
教學(xué)方法的優(yōu)秀與否在學(xué)生學(xué)習(xí)的過(guò)程中發(fā)揮著重要的作用,也直接影響著學(xué)生的學(xué)習(xí)成績(jī)。一般高數(shù)老師在授課的時(shí)候都是以課本的順次進(jìn)行,也就意味著老師“由定義到定理”、“由習(xí)題到練習(xí)”,這種默守陳規(guī)的教學(xué)方式無(wú)法為學(xué)生營(yíng)造活躍的學(xué)習(xí)氛圍,讓學(xué)生獨(dú)自學(xué)習(xí)、思考的能力進(jìn)一步下降。這就要求教師致力于和諧課堂氛圍營(yíng)造以及使用新穎的教育教學(xué)方法,讓學(xué)生在課堂中主動(dòng)參與學(xué)習(xí)。
二、建模在高等數(shù)學(xué)教學(xué)中的作用
對(duì)學(xué)生的想象力、觀(guān)察力、發(fā)現(xiàn)、分析并解決問(wèn)題的能力進(jìn)行培養(yǎng)的過(guò)程中,數(shù)學(xué)建模發(fā)揮著重要的作用。最近幾年,國(guó)內(nèi)出現(xiàn)很多以數(shù)學(xué)建模為主體的賽事活動(dòng)以及教研活動(dòng),其在學(xué)生學(xué)習(xí)興趣的提升、激發(fā)學(xué)生主動(dòng)學(xué)習(xí)的積極性上扮演著重要的角色,發(fā)揮著突出的作用,在高等數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模還能培養(yǎng)學(xué)生不畏困難的品質(zhì),培養(yǎng)踏實(shí)的工作精神,在協(xié)調(diào)學(xué)生學(xué)習(xí)的知識(shí)、實(shí)際應(yīng)用能力等上有突出的作用。雖然國(guó)內(nèi)高等院校大都開(kāi)設(shè)了數(shù)學(xué)建模選修課或者培訓(xùn)班,但是由于課程的要求和學(xué)生的認(rèn)知水平差異較大,所以課程無(wú)法普及為大眾化的教育。如今,高等院校都在積極的尋找一種載體,對(duì)學(xué)生的整體素質(zhì)進(jìn)行培養(yǎng),提升學(xué)生的創(chuàng)新精神以及創(chuàng)造力,讓學(xué)生滿(mǎn)足社會(huì)對(duì)復(fù)合型人才的需求,而最好的載體則是高等數(shù)學(xué)。
高等數(shù)學(xué)作為工科類(lèi)學(xué)生的一門(mén)基礎(chǔ)課,由于其必修課的性質(zhì),把數(shù)學(xué)建模引入高等數(shù)學(xué)課堂中具有較廣的影響力。把數(shù)學(xué)建模思想滲入高等數(shù)學(xué)教學(xué)中,不僅能讓數(shù)學(xué)知識(shí)的本來(lái)面貌得以還原,更讓學(xué)生在日常中應(yīng)用數(shù)學(xué)知識(shí)的能力得到很好的培養(yǎng)。數(shù)學(xué)建模要求學(xué)生在簡(jiǎn)化、抽象、翻譯部分現(xiàn)實(shí)世界信息的過(guò)程中使用數(shù)學(xué)的語(yǔ)言以及工具,把內(nèi)在的聯(lián)系使用圖形、表格等方式表現(xiàn)出來(lái),以便于提升學(xué)生的表達(dá)能力。在實(shí)際的學(xué)習(xí)數(shù)學(xué)建模之后,需要檢驗(yàn)現(xiàn)實(shí)的信息,確定最后的結(jié)果是否正確,通過(guò)這一過(guò)程中的鍛煉,學(xué)生在分析問(wèn)題的過(guò)程中可以主動(dòng)地、客觀(guān)的辯證的運(yùn)用數(shù)學(xué)方法,最終得出解決問(wèn)題的最好方法。因此,在高等數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模思想具有重要的意義。
三、將建模思想應(yīng)用在高等數(shù)學(xué)教學(xué)中的具體措施
(一)在公式中使用建模思想
在高數(shù)教材中占有重要位置的是公式,也是要求學(xué)生必須掌握的內(nèi)容之一。為了讓教師的'教學(xué)效果進(jìn)一步提升,在課堂上老師不僅要讓學(xué)生對(duì)計(jì)算的技巧進(jìn)一步提升之余,還要和建模思想結(jié)合在一起,讓解題難度更容易,還讓課堂氛圍更活躍。為了讓學(xué)生對(duì)公式中使用建模思想理解的更透徹,老師還應(yīng)該結(jié)合實(shí)例開(kāi)展教學(xué)。
(二)講解習(xí)題的時(shí)候使用數(shù)學(xué)模型的方式
課本例題使用建模思想進(jìn)行解決,老師通過(guò)對(duì)例題的講解,很好的講述使用數(shù)學(xué)建模解決問(wèn)題的方式,讓學(xué)生清醒的認(rèn)識(shí)在解決問(wèn)題的過(guò)程中怎樣使用數(shù)學(xué)建模。完成每章學(xué)習(xí)的內(nèi)容之后,充分的利用時(shí)間為學(xué)生解疑答惑,以學(xué)生所學(xué)的專(zhuān)業(yè)情況和學(xué)生水平的高低選擇合適的例題,完成建模、解決問(wèn)題的全部過(guò)程,提升學(xué)生解決問(wèn)題的效率。
(三)組織學(xué)生積極參加數(shù)學(xué)建模競(jìng)賽
一般而言,在競(jìng)賽中可以很好地鍛煉學(xué)生競(jìng)爭(zhēng)意識(shí)以及獨(dú)立思考的能力。這就要求學(xué)校充分的利用資源并廣泛的宣傳,讓學(xué)生積極的參加競(jìng)賽,在實(shí)踐中鍛煉學(xué)生的實(shí)際能力。在日常生活中使用數(shù)學(xué)建模解決問(wèn)題,讓學(xué)生獨(dú)自思考,然后在競(jìng)爭(zhēng)的過(guò)程中意識(shí)到自己的不足,今后也會(huì)努力學(xué)習(xí),改正錯(cuò)誤,提升自身的能力。
四、結(jié)束語(yǔ)
高等數(shù)學(xué)主要對(duì)學(xué)生從理論學(xué)習(xí)走向解決實(shí)際問(wèn)題的能力進(jìn)行培養(yǎng),在高等數(shù)學(xué)中應(yīng)用建模思想,促使學(xué)生對(duì)高數(shù)知識(shí)更充分的理解,學(xué)習(xí)的難度進(jìn)一步降低,提升應(yīng)用能力和探索能力。當(dāng)前,在高等教學(xué)過(guò)程中引入建模思想還存在一定的不足,需要高校高等數(shù)學(xué)老師進(jìn)行深入的研究和探索的同時(shí)也需要學(xué)生很好的配合,以便于今后的教學(xué)中進(jìn)一步提升教學(xué)的質(zhì)量。
參考文獻(xiàn)
[1]謝鳳艷,楊永艷。高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想[j]。齊齊哈爾師范高等專(zhuān)科學(xué)校學(xué)報(bào),20xx(02):119—120。
[2]李薇。在高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想的探索與實(shí)踐[j]。教育實(shí)踐與改革,20xx(04):177—178,189。
[3]楊四香。淺析高等數(shù)學(xué)教學(xué)中數(shù)學(xué)建模思想的滲透[j]。長(zhǎng)春教育學(xué)院學(xué)報(bào),20xx(30):89,95。
[4]劉合財(cái)。在高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想[j]。貴陽(yáng)學(xué)院學(xué)報(bào),20xx(03):63—65。
數(shù)學(xué)建模論文感悟篇十六
數(shù)學(xué),源于人們對(duì)生產(chǎn)與生活實(shí)際問(wèn)題,抽象出的數(shù)量關(guān)系與空間結(jié)構(gòu)發(fā)展而成的.近年來(lái),信息技術(shù)飛速發(fā)展,推動(dòng)了應(yīng)用數(shù)學(xué)的發(fā)展,使數(shù)學(xué)日益滲透到社會(huì)各個(gè)領(lǐng)域.中考實(shí)際應(yīng)用題目更貼近日常生活,具有時(shí)代性、靈活性,涉及的模型有方程、函數(shù)、不等式、統(tǒng)計(jì)、幾何等模型.數(shù)學(xué)課程標(biāo)準(zhǔn)指出,教師在教學(xué)中應(yīng)引導(dǎo)學(xué)生從實(shí)際背景中理清數(shù)學(xué)關(guān)系、把握變化規(guī)律,能從實(shí)際問(wèn)題中建立數(shù)學(xué)模型.教師要為學(xué)生創(chuàng)造用數(shù)學(xué)的氛圍,引導(dǎo)學(xué)生參與自主學(xué)習(xí)、自主探索、自主提問(wèn)、自主解決,體驗(yàn)做數(shù)學(xué)的過(guò)程,從而提高解決實(shí)際問(wèn)題的能力.
一、影響數(shù)學(xué)建模教學(xué)的成因探析
一是教師未能實(shí)現(xiàn)角色轉(zhuǎn)換.建模教學(xué)離不開(kāi)學(xué)生“做”數(shù)學(xué)的過(guò)程,因而教師在教學(xué)中要留有讓學(xué)生思考、想象的空間,讓他們自主選擇方法.然而部分教師對(duì)學(xué)生缺乏信任,由“引導(dǎo)者”變?yōu)椤肮噍斦摺?,將解題過(guò)程直接教給學(xué)生,影響了學(xué)生建模能力的提高.二是教師的專(zhuān)業(yè)素養(yǎng)有待提高.開(kāi)展建模教學(xué),需要教師具有一定的專(zhuān)業(yè)素養(yǎng),能駕馭課堂教學(xué),激發(fā)學(xué)生的興趣,啟發(fā)學(xué)生進(jìn)行思考,誘發(fā)學(xué)生進(jìn)行探索,但是部分教師專(zhuān)業(yè)素養(yǎng)有待提高,或認(rèn)為建模就是解應(yīng)用題,或重生活味輕數(shù)學(xué)味,或使討論活動(dòng)流于形式.三是學(xué)生的抽象能力較差.在建模教學(xué)中,教師須呈現(xiàn)生活中的實(shí)際問(wèn)題,其題目長(zhǎng)、信息量大、數(shù)據(jù)多,需要學(xué)生經(jīng)歷閱讀提取有用的信息,但是部分學(xué)生感悟能力差,不能明析已知與未知之間的關(guān)系,影響了學(xué)生成功建模.
二、數(shù)學(xué)建模教學(xué)的有效原則
1.自主探索原則.
學(xué)生長(zhǎng)期處于師講、生聽(tīng)的教學(xué)模式,淪為被動(dòng)接受知識(shí)的“容器”,難有創(chuàng)造的意識(shí).在教學(xué)中,教師要為學(xué)生創(chuàng)設(shè)輕松愉悅的探究氛圍,讓學(xué)生手腦并用,在探索、交流、操作中提高解決問(wèn)題的`能力.
2.因材施教原則.
教師要著眼于學(xué)生原有的認(rèn)知結(jié)構(gòu),要貼近學(xué)生的最近發(fā)展區(qū),引導(dǎo)他們從舊知的角度思考,找出問(wèn)題的解決方法。
3.可接受性原則.
數(shù)學(xué)建模內(nèi)容的設(shè)計(jì),要符合學(xué)生的年齡特點(diǎn)和認(rèn)知能力,能讓學(xué)生理解所探究的內(nèi)容.若設(shè)計(jì)的問(wèn)題不切實(shí)際,往往會(huì)扼殺學(xué)生的興趣,教師要密切聯(lián)系教學(xué)內(nèi)容、生活實(shí)際,讓學(xué)生有能力解決問(wèn)題.
數(shù)學(xué)建模論文感悟篇十七
1.1提高學(xué)生的語(yǔ)言和文字表達(dá)能力
1.2提高學(xué)生發(fā)現(xiàn)問(wèn)題和應(yīng)用計(jì)算機(jī)的能力
1.3培養(yǎng)學(xué)生自主團(tuán)結(jié)協(xié)作的團(tuán)隊(duì)精神
1.4培養(yǎng)學(xué)生的創(chuàng)新能力
2學(xué)生數(shù)學(xué)建模能力的培養(yǎng)措施
2.1在教學(xué)中注重滲透數(shù)學(xué)建模思想
2.2開(kāi)設(shè)數(shù)學(xué)建模公選課
2.3利用課外實(shí)踐活動(dòng)提升數(shù)學(xué)建模影響力
數(shù)學(xué)建模論文感悟篇十八
大量的應(yīng)用型技能型人才,有效滿(mǎn)足了社會(huì)各行各業(yè)的用工需求。隨著國(guó)家對(duì)高職教育的重視和不斷投入,提高教育的教學(xué)質(zhì)量勢(shì)在必行[1]。數(shù)學(xué)建模的核心是以數(shù)學(xué)模型為基礎(chǔ)的實(shí)際運(yùn)用,鑒于數(shù)學(xué)建模的這種特點(diǎn),國(guó)內(nèi)高職數(shù)學(xué)教育逐步把數(shù)學(xué)建模理念融入到課題教學(xué)中,提高學(xué)生的應(yīng)用能力。以數(shù)學(xué)建模理念的告知書(shū)明確教學(xué)改革要求學(xué)生結(jié)合計(jì)算機(jī)技術(shù),靈活運(yùn)用數(shù)學(xué)的思想和方法獨(dú)立地分析和解決問(wèn)題,不僅能培養(yǎng)學(xué)生的探索精神和創(chuàng)新意識(shí),而且能培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作、不怕困難、求實(shí)嚴(yán)謹(jǐn)?shù)淖黠L(fēng)[2]。筆者結(jié)合自身的教學(xué)工作經(jīng)驗(yàn),對(duì)基于數(shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革進(jìn)行了探索,對(duì)教學(xué)實(shí)踐中出現(xiàn)的問(wèn)題進(jìn)行了分析梳理,以期為高職數(shù)學(xué)教學(xué)改革提供新思路,推動(dòng)高職數(shù)學(xué)教學(xué)水平的不斷提高,培養(yǎng)出具有良好數(shù)學(xué)素養(yǎng)和專(zhuān)業(yè)技能的新型高職人才。
近年來(lái),隨著國(guó)內(nèi)產(chǎn)業(yè)結(jié)構(gòu)的不斷調(diào)整,對(duì)于高等職業(yè)技術(shù)人才需求不斷增大,社會(huì)對(duì)高等職業(yè)技術(shù)教育寄予厚望。但是傳統(tǒng)的高職教育由于專(zhuān)業(yè)設(shè)置不合理,使用教材落后,實(shí)訓(xùn)實(shí)踐場(chǎng)地不足,培養(yǎng)出的學(xué)生動(dòng)手能力差、專(zhuān)業(yè)能力不足,面對(duì)社會(huì)發(fā)展的新形勢(shì),高職教育必須進(jìn)行教學(xué)改革,提高學(xué)生的職業(yè)能力和就業(yè)競(jìng)爭(zhēng)力。高職教育不同于普通本科教育,它有以下幾方面的特點(diǎn)。
1人才培養(yǎng)目標(biāo)不同
高職教育和本科教育人才培養(yǎng)目標(biāo)不同,高職教育是以技術(shù)應(yīng)用型高技能人才為培養(yǎng)目標(biāo),所有的教學(xué)課程設(shè)計(jì)和人才培養(yǎng)體系設(shè)計(jì)都是基于此目標(biāo)展開(kāi)的,高職教育主要是為了向產(chǎn)業(yè)發(fā)展提供生產(chǎn)、服務(wù)、管理等一線(xiàn)工作的高級(jí)技術(shù)應(yīng)用型人才,專(zhuān)業(yè)能力培養(yǎng)和目標(biāo)職業(yè)匹配度高,所以高職教育教學(xué)成果最直接的評(píng)價(jià)就是畢業(yè)生的就業(yè)競(jìng)爭(zhēng)力和上崗后的適應(yīng)能力。
2兩者的教學(xué)內(nèi)容不同
高職教育的教學(xué)重點(diǎn)是學(xué)生要掌握與實(shí)踐工作關(guān)系較為密切的業(yè)務(wù)處理能力、動(dòng)手能力與交流能力,把學(xué)生的職業(yè)能力建設(shè)列為教學(xué)重點(diǎn),課程設(shè)計(jì)專(zhuān)業(yè)性強(qiáng),一旦就業(yè)能為企業(yè)創(chuàng)造明顯的效益,高職教育各專(zhuān)業(yè)課程差別較大。
3生源情況不同
在當(dāng)前的教育教學(xué)體系下,高職教育的生源普遍較差,大多是沒(méi)有希望考上大學(xué),轉(zhuǎn)而進(jìn)入高職學(xué)習(xí),希望通過(guò)掌握一定的技術(shù)來(lái)實(shí)現(xiàn)就業(yè),所以高職學(xué)生的基礎(chǔ)知識(shí)普遍較差,學(xué)習(xí)興趣不高。數(shù)學(xué)建模給高職數(shù)學(xué)教學(xué)改革開(kāi)辟了新思路,數(shù)學(xué)建模為數(shù)學(xué)理論學(xué)習(xí)和工程實(shí)踐應(yīng)用搭建了橋梁,在工學(xué)結(jié)合的基本原則下,采取數(shù)學(xué)建模教學(xué)理念,培養(yǎng)學(xué)生的數(shù)學(xué)素養(yǎng)及動(dòng)手應(yīng)用能力是一個(gè)非常有效的手段[3]。
1數(shù)學(xué)建模的概念數(shù)學(xué)建模是將數(shù)學(xué)理論和現(xiàn)實(shí)問(wèn)題相結(jié)合的一門(mén)科學(xué),它將實(shí)際問(wèn)題抽象、歸納成為相應(yīng)的數(shù)學(xué)模型,在此基礎(chǔ)上應(yīng)用數(shù)學(xué)概念、數(shù)學(xué)定理、數(shù)學(xué)方法等手段研究處理實(shí)際問(wèn)題,從定性或者定理的角度給出科學(xué)的結(jié)果[4]。數(shù)學(xué)建模的發(fā)展為數(shù)學(xué)知識(shí)的應(yīng)用提供了途徑,對(duì)于現(xiàn)實(shí)中的特點(diǎn)問(wèn)題,可以用數(shù)學(xué)語(yǔ)言來(lái)描述其內(nèi)在規(guī)律和問(wèn)題,運(yùn)用數(shù)學(xué)研究的成果,結(jié)合計(jì)算機(jī)專(zhuān)業(yè)軟件,通過(guò)抽象、簡(jiǎn)化、假設(shè)、引進(jìn)變量等處理過(guò)程后,將實(shí)際問(wèn)題用數(shù)學(xué)方式表達(dá),轉(zhuǎn)化成為數(shù)學(xué)問(wèn)題,借助數(shù)學(xué)思想建立起數(shù)學(xué)模型,從而解決實(shí)際問(wèn)題。2基于數(shù)學(xué)建模思想的教學(xué)理念基于數(shù)學(xué)建模的這種學(xué)科特點(diǎn),可以把數(shù)學(xué)知識(shí)應(yīng)用化,因此,基于數(shù)學(xué)建模思想的教學(xué)理念可以概括為三個(gè)層次:首先,確立提高學(xué)生數(shù)學(xué)應(yīng)用能力為目標(biāo),以提高學(xué)生數(shù)學(xué)學(xué)習(xí)興趣為手段,以學(xué)習(xí)數(shù)學(xué)建模為途徑;其次,結(jié)合教學(xué)內(nèi)容,開(kāi)發(fā)相應(yīng)的數(shù)學(xué)建模案例,因地制宜、因生制宜,根據(jù)專(zhuān)業(yè)不同編寫(xiě)相應(yīng)的校本教材;最后,改進(jìn)教學(xué)方法,創(chuàng)新課堂教學(xué)模式,建立課外數(shù)學(xué)建模學(xué)習(xí)興趣小組,帶領(lǐng)學(xué)生進(jìn)行數(shù)學(xué)應(yīng)用實(shí)踐活動(dòng),鼓勵(lì)學(xué)生參加各種數(shù)學(xué)建模競(jìng)賽[5]。
傳統(tǒng)的數(shù)學(xué)教學(xué)模式以教師課堂講授為中心,學(xué)生只能被動(dòng)的接受,由于學(xué)生的基礎(chǔ)知識(shí)水平不同,掌握新知識(shí)的能力也不同,這種沒(méi)有區(qū)分的教學(xué)模式教學(xué)效果差,往往帶來(lái)的結(jié)果是造成基礎(chǔ)差的學(xué)生跟不上,對(duì)數(shù)學(xué)感興趣的學(xué)生失去興趣?;跀?shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革,是以學(xué)生數(shù)學(xué)應(yīng)用能力提高為目標(biāo),以數(shù)學(xué)學(xué)習(xí)興趣培養(yǎng)為出發(fā)點(diǎn),以數(shù)學(xué)建模為途徑,以教學(xué)方式改革為保障,打造高職數(shù)學(xué)教學(xué)改革新模式,全面提高高職教育應(yīng)用型人才培養(yǎng)水平。
1結(jié)合專(zhuān)業(yè)特色,突出數(shù)學(xué)教育的應(yīng)用性
數(shù)學(xué)作為高職教育的基礎(chǔ)性學(xué)科,理論性強(qiáng),體系性強(qiáng),對(duì)于基礎(chǔ)知識(shí)薄弱、學(xué)習(xí)興趣差的高職生來(lái)說(shuō)感覺(jué)難學(xué)、枯燥,這是因?yàn)楦呗殧?shù)學(xué)教育沒(méi)有教會(huì)學(xué)生如何在專(zhuān)業(yè)學(xué)習(xí)中和以后的工作中如何去用學(xué)到的數(shù)學(xué)知識(shí),學(xué)生感覺(jué)知識(shí)無(wú)用自然也就不會(huì)主動(dòng)去學(xué),之所以引入數(shù)學(xué)建模的思想就是為了讓學(xué)生利用學(xué)到的數(shù)學(xué)知識(shí)去解決實(shí)際問(wèn)題,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)不只是紙面上的寫(xiě)寫(xiě)算算,數(shù)學(xué)可以把實(shí)際問(wèn)題抽象化,變成數(shù)學(xué)問(wèn)題,利用數(shù)學(xué)的研究方法給實(shí)際問(wèn)題進(jìn)行科學(xué)的指導(dǎo),這樣高職數(shù)學(xué)教育就不再是課堂上的照本宣科,課下的演算作業(yè),將基礎(chǔ)數(shù)學(xué)教育和學(xué)生的專(zhuān)業(yè)教育相結(jié)合,帶來(lái)學(xué)生用數(shù)學(xué)解決專(zhuān)業(yè)問(wèn)題是大幅度提高學(xué)生專(zhuān)業(yè)能力的有效途徑。
2結(jié)合學(xué)生能力,因材施教、因地制宜
高職學(xué)校的生源不如普通高校,一般學(xué)習(xí)基礎(chǔ)較差,對(duì)于專(zhuān)業(yè)實(shí)訓(xùn)課并不明顯,但是在基礎(chǔ)學(xué)科教學(xué)過(guò)程特別突出,很多基礎(chǔ)知識(shí)掌握不牢,甚至一點(diǎn)印象都沒(méi)有,教師在上課時(shí)要充分考慮到這種情況,在課堂授課時(shí)給予實(shí)時(shí)的補(bǔ)充,以助于知識(shí)的過(guò)渡。因材施教是我國(guó)傳統(tǒng)的教育思想,在掌握學(xué)生知識(shí)水平的基礎(chǔ)上,教師要根據(jù)不同學(xué)習(xí)層次學(xué)生的具體情況,安排教學(xué)內(nèi)容和設(shè)置教學(xué)目標(biāo),對(duì)于基礎(chǔ)知識(shí)水平不高、學(xué)習(xí)興趣較差、學(xué)習(xí)能力較弱的學(xué)生要進(jìn)行課外輔導(dǎo)。高職基礎(chǔ)課教育是專(zhuān)業(yè)課學(xué)習(xí)的基礎(chǔ),授課教師要根據(jù)學(xué)生的專(zhuān)業(yè)學(xué)習(xí)情況和專(zhuān)業(yè)特點(diǎn),把遷移知識(shí)運(yùn)用能力在課堂上結(jié)合學(xué)生的專(zhuān)業(yè)背景進(jìn)行輔導(dǎo),高職數(shù)學(xué)教育不僅僅是為了學(xué)習(xí)數(shù)學(xué),更多的是發(fā)揮數(shù)學(xué)知識(shí)在其專(zhuān)業(yè)能力培養(yǎng)中的作用。
3培養(yǎng)學(xué)生學(xué)習(xí)興趣,促進(jìn)整體教學(xué)質(zhì)量提高
高職學(xué)校的學(xué)生學(xué)習(xí)興趣普遍不高,尤其是對(duì)于學(xué)了十幾年都感覺(jué)頭痛的數(shù)學(xué),要想提高數(shù)學(xué)的教學(xué)質(zhì)量,首先必須要培養(yǎng)學(xué)生的學(xué)習(xí)興趣,長(zhǎng)期以來(lái)學(xué)生在數(shù)學(xué)學(xué)習(xí)上已經(jīng)有了根深蒂固的認(rèn)識(shí),培養(yǎng)數(shù)學(xué)學(xué)習(xí)興趣很難,但是如果學(xué)生沒(méi)有學(xué)習(xí)興趣,教師授課內(nèi)容、授課方式改革都起不了太大的作用,學(xué)生對(duì)于數(shù)學(xué)學(xué)習(xí)興趣低由于低年級(jí)學(xué)習(xí)時(shí)受到的挫敗感,因此要讓學(xué)生建立學(xué)習(xí)數(shù)學(xué)的自信心,讓他們體驗(yàn)學(xué)會(huì)數(shù)學(xué)的成就感,這樣才能逐步培養(yǎng)他們的學(xué)習(xí)興趣。教師可以采取以點(diǎn)帶面的方式,先選擇有一定基礎(chǔ)的學(xué)生,再?gòu)娜空n程學(xué)習(xí)中發(fā)現(xiàn)表現(xiàn)優(yōu)秀的個(gè)體,組織參加建模競(jìng)賽,進(jìn)行單獨(dú)賽前加強(qiáng)指導(dǎo),用這些榜樣的力量提高全體同學(xué)的學(xué)習(xí)積極性。數(shù)學(xué)建模作為提高高職數(shù)學(xué)教育教學(xué)水平的“點(diǎn)”,能夠以其趣味性強(qiáng),帶動(dòng)學(xué)生的學(xué)習(xí)興趣,促進(jìn)高職數(shù)學(xué)教育教學(xué)水平的全面提高。
4改革教學(xué)及評(píng)價(jià)方式,建立面向應(yīng)用的數(shù)學(xué)教育體系
由于基于數(shù)學(xué)建模思想的高職數(shù)學(xué)教學(xué)改革打破了以往的課堂教學(xué)方式和考核方式,學(xué)生面對(duì)的不再是期末的一張?jiān)嚲恚且粋€(gè)個(gè)數(shù)學(xué)建模案例,需要學(xué)生運(yùn)用本學(xué)期學(xué)到的數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題,教師根據(jù)學(xué)生對(duì)案例的理解程度,數(shù)學(xué)模型運(yùn)用能力,實(shí)際過(guò)程分析和解題技巧等多方面給出評(píng)價(jià),同時(shí)積極評(píng)價(jià)、鼓勵(lì)學(xué)生的創(chuàng)新思維,并將其納入到考核體系當(dāng)中。通過(guò)以上各個(gè)方面評(píng)價(jià)的加權(quán)作為最后的評(píng)價(jià)指標(biāo)。這種以數(shù)學(xué)知識(shí)應(yīng)用為基礎(chǔ),直接面向應(yīng)用的高職數(shù)學(xué)教育模式能極大的激發(fā)學(xué)生的學(xué)習(xí)積極性和知識(shí)應(yīng)用能力,符合高職應(yīng)用型人才培養(yǎng)理念,對(duì)提高高職學(xué)生的專(zhuān)業(yè)能力也打下了堅(jiān)實(shí)的基礎(chǔ)?;跀?shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革是推動(dòng)高職應(yīng)用型人才培養(yǎng)體系建設(shè)的新舉措,也是推動(dòng)高職基礎(chǔ)課教學(xué)水平的重要內(nèi)容,能有效解決學(xué)生學(xué)習(xí)興趣低,基礎(chǔ)知識(shí)掌握不牢,數(shù)學(xué)知識(shí)應(yīng)用能力低等問(wèn)題,通過(guò)“案例驅(qū)動(dòng)法+討論法”,引導(dǎo)學(xué)生再次對(duì)課本知識(shí)進(jìn)行思考和應(yīng)用,有利于培養(yǎng)學(xué)生的創(chuàng)新思維和應(yīng)用能力。引入數(shù)學(xué)建模理念教學(xué),把課堂學(xué)習(xí)的主動(dòng)權(quán)交回給學(xué)生,既保證了高等數(shù)學(xué)原有的知識(shí)體系的完整,也可以提高教學(xué)效率。通過(guò)教學(xué)方式和評(píng)價(jià)方式改革,學(xué)生的學(xué)習(xí)主動(dòng)性增強(qiáng),也改變了以往對(duì)于數(shù)學(xué)學(xué)習(xí)的學(xué)習(xí)態(tài)度。高等數(shù)學(xué)作為高職教育學(xué)生必修的基礎(chǔ)課,在培養(yǎng)學(xué)生基本數(shù)學(xué)素養(yǎng)上具有重要作用,是理工類(lèi)專(zhuān)業(yè)課程體系的重要組成部分,基于數(shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革也為同類(lèi)基礎(chǔ)理論課改革提供了新思路和范例。
[1]孫麗.在高職數(shù)學(xué)教學(xué)改革中應(yīng)注重?cái)?shù)學(xué)建模思想的滲透[j].科技資訊,20xx(22):188.
數(shù)學(xué)建模論文感悟篇十九
摘要:數(shù)學(xué)作為很多學(xué)科的計(jì)算工具,可以說(shuō)是現(xiàn)代科學(xué)的基礎(chǔ),要想利用數(shù)學(xué)來(lái)解決實(shí)際問(wèn)題,首先要建立相應(yīng)的數(shù)學(xué)模型,本文在數(shù)學(xué)建模思想概念和特點(diǎn)的基礎(chǔ)上,從計(jì)算機(jī)軟件、實(shí)際生活中的應(yīng)用等方面,對(duì)其應(yīng)用的發(fā)展進(jìn)行了分析,最后從分析問(wèn)題、建立模型、校驗(yàn)?zāi)P腿齻€(gè)階段,對(duì)數(shù)學(xué)建模的方法,進(jìn)行了深入的研究。
關(guān)鍵詞:數(shù)學(xué)建模;思想;應(yīng)用;方法;分析
引言
隨著自然科學(xué)的發(fā)展,利用數(shù)學(xué)等思想來(lái)解決實(shí)際問(wèn)題,越來(lái)越受到人們的重視,數(shù)學(xué)作為一門(mén)歷史悠久的自然科學(xué),是在實(shí)際應(yīng)用的基礎(chǔ)上發(fā)展起來(lái),但是隨著理論研究的深入,現(xiàn)在數(shù)學(xué)理論已經(jīng)非常先進(jìn),很多理論都無(wú)法付諸實(shí)踐,在這種背景下,如何利用現(xiàn)有的數(shù)學(xué)理論來(lái)解決實(shí)際問(wèn)題,成為了很多專(zhuān)家和學(xué)者研究的問(wèn)題。通過(guò)實(shí)際的調(diào)查發(fā)現(xiàn),要想利用數(shù)學(xué)來(lái)解決實(shí)際問(wèn)題,首先要建立相應(yīng)的數(shù)學(xué)模型,將實(shí)際的問(wèn)題轉(zhuǎn)化成數(shù)學(xué)符號(hào)的表達(dá)方式,這樣才能夠通過(guò)數(shù)學(xué)計(jì)算,來(lái)解決一些實(shí)際問(wèn)題,從某種意義上來(lái)說(shuō),計(jì)算機(jī)就是由若干個(gè)數(shù)學(xué)模型組成的,計(jì)算機(jī)軟件之所以能夠解決實(shí)際問(wèn)題,就是根據(jù)實(shí)際應(yīng)用的需要,建立了一個(gè)相應(yīng)的數(shù)學(xué)模型,這樣才能夠讓計(jì)算機(jī)來(lái)解決。
1數(shù)學(xué)建模思想分析
1.1數(shù)學(xué)建模思想的概念
數(shù)學(xué)是一門(mén)歷史悠久的自然科學(xué),在古時(shí)候,由于實(shí)際應(yīng)用的需要,人們就已經(jīng)開(kāi)始使用數(shù)學(xué)來(lái)解決實(shí)際問(wèn)題,但是受到當(dāng)時(shí)技術(shù)條件的限制,數(shù)學(xué)理論的水平比較低,只是利用數(shù)學(xué)來(lái)進(jìn)行計(jì)數(shù)等,隨著經(jīng)濟(jì)和科技水平的提高,尤其是在工業(yè)革命之后,自然科學(xué)得到了極大的發(fā)展,對(duì)于利用自然科學(xué)來(lái)解決實(shí)際問(wèn)題,也成為了人們研究的重點(diǎn),在市場(chǎng)經(jīng)濟(jì)的推動(dòng)下,人們將這些理論知識(shí)轉(zhuǎn)化成為產(chǎn)品。計(jì)算機(jī)就是在這種背景下產(chǎn)生的,在數(shù)學(xué)理論的基礎(chǔ)上,將電路的通和不通兩種狀態(tài),與數(shù)學(xué)的二進(jìn)制相結(jié)合,這樣就能夠讓計(jì)算機(jī)來(lái)處理實(shí)際問(wèn)題,從本質(zhì)上來(lái)說(shuō),這就是數(shù)學(xué)建模思想的范疇,但是在計(jì)算機(jī)出現(xiàn)的早期,數(shù)學(xué)建模的理論還沒(méi)有形成,隨著計(jì)算機(jī)軟件技術(shù)的發(fā)展,人們逐漸的意識(shí)到數(shù)學(xué)建模的重要性,發(fā)現(xiàn)利用數(shù)學(xué)建模思想,可以解決很多實(shí)際的問(wèn)題,而數(shù)學(xué)建模的概念,就是將遇到的實(shí)際問(wèn)題,利用特定的數(shù)學(xué)符號(hào)進(jìn)行描述,這樣實(shí)際問(wèn)題就轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,可以利用數(shù)學(xué)的計(jì)算方法來(lái)解決。
1.2數(shù)學(xué)建模思想的特點(diǎn)
如何解決實(shí)際問(wèn)題,從有人類(lèi)文明開(kāi)始,就成為了人們研究的重點(diǎn),隨著自然科學(xué)的發(fā)展,出現(xiàn)了很多具體的學(xué)科,利用這些不同的學(xué)科,可以解決不同的實(shí)際問(wèn)題,而數(shù)學(xué)就是其中最重要的一門(mén)學(xué)科,而且是其他學(xué)科的基礎(chǔ),如物理學(xué)科中,數(shù)學(xué)就是一個(gè)計(jì)算的工具,由此可以看出數(shù)學(xué)的重要性,進(jìn)入到信息時(shí)代后,計(jì)算機(jī)得到了普及應(yīng)用,無(wú)論是日常生活中還是工作中,計(jì)算機(jī)都有非常重要的應(yīng)用,而在信息時(shí)代,注重的是解決問(wèn)題的效率。與其他解決問(wèn)題的方式相比,數(shù)學(xué)建模顯然更加科學(xué),現(xiàn)在數(shù)學(xué)建模已經(jīng)成為了一門(mén)獨(dú)立的學(xué)科,很多高校中都開(kāi)設(shè)了這門(mén)課程,為了培養(yǎng)學(xué)生們利用數(shù)學(xué)解決實(shí)際問(wèn)題的能力,我國(guó)每年都會(huì)舉辦全國(guó)性的數(shù)學(xué)建模大賽,采用開(kāi)放式的參賽方式,對(duì)學(xué)生們的數(shù)學(xué)建模能力進(jìn)行考驗(yàn),而大賽的題目,很多都是一些實(shí)際問(wèn)題,對(duì)于比賽的結(jié)果,每個(gè)參賽隊(duì)伍的建模方式都有一定的差異,其中選出一個(gè)最有效的方式成為冠軍。由此可以看出,對(duì)于一個(gè)實(shí)際的問(wèn)題,可以建立多個(gè)數(shù)學(xué)模型進(jìn)行解決,但是執(zhí)行的效率具有一定的差異,如有些計(jì)算的步驟較少,而有些計(jì)算的過(guò)程比較簡(jiǎn)單,而如何評(píng)價(jià)一個(gè)模型的效率,必須從各個(gè)方面進(jìn)行綜合的考慮。
2數(shù)學(xué)建模思想的應(yīng)用
2.1計(jì)算機(jī)軟件中數(shù)學(xué)建模思想的應(yīng)用
通過(guò)深入的分析可以知道,計(jì)算機(jī)之所以能夠解決實(shí)際問(wèn)題,很大程度上依賴(lài)與計(jì)算機(jī)軟件,而計(jì)算機(jī)軟件自身就是一個(gè)或幾個(gè)數(shù)學(xué)模型,在軟件開(kāi)發(fā)的過(guò)程中,首先要進(jìn)行需求的分析,這其實(shí)就是數(shù)學(xué)建模的第一個(gè)環(huán)節(jié),對(duì)問(wèn)題進(jìn)行分析,在了解到問(wèn)題之后,就要通過(guò)計(jì)算機(jī)語(yǔ)言,對(duì)問(wèn)題進(jìn)行描述,而計(jì)算機(jī)語(yǔ)言是人與計(jì)算機(jī)進(jìn)行溝通的語(yǔ)言,最終這些語(yǔ)言都要轉(zhuǎn)化成0和1二進(jìn)制的方式,這樣計(jì)算機(jī)才能夠進(jìn)行具體的計(jì)算。由此可以看出,計(jì)算機(jī)就是依靠數(shù)學(xué)來(lái)解決實(shí)際問(wèn)題,而每個(gè)計(jì)算機(jī)軟件,都可以認(rèn)為是一個(gè)數(shù)學(xué)模型,如在早期的計(jì)算機(jī)程序設(shè)計(jì)中,受到當(dāng)時(shí)計(jì)算機(jī)技術(shù)水平的限制,采用的還是低級(jí)語(yǔ)言,由于低級(jí)語(yǔ)言人們很難理解,因此在程序編寫(xiě)之前,都會(huì)先建立一個(gè)數(shù)學(xué)模型,然后將這個(gè)模型轉(zhuǎn)化成相應(yīng)的計(jì)算機(jī)語(yǔ)言,這樣計(jì)算機(jī)就可以解決實(shí)際的問(wèn)題,由于計(jì)算機(jī)能夠自行計(jì)算的特點(diǎn),只要輸入相應(yīng)的參數(shù)后,就可以直接得到結(jié)果,不再需要人為的計(jì)算。
2.2數(shù)學(xué)建模思想直接解決實(shí)際問(wèn)題
經(jīng)過(guò)了多年的發(fā)展,現(xiàn)在數(shù)學(xué)建模自身已經(jīng)非常完善,為了培養(yǎng)我國(guó)的數(shù)學(xué)建模人才,從1992年開(kāi)始,每年我國(guó)都會(huì)舉辦一屆全國(guó)數(shù)學(xué)建模大賽,所有的高校學(xué)生都可以參加,大賽采用了開(kāi)放性的參賽方式,通常情況下,對(duì)于題目設(shè)置的也比較靈活,會(huì)有多個(gè)題目提供給隊(duì)員選擇,學(xué)生可以根據(jù)自己的實(shí)際情況,來(lái)選擇一個(gè)最適合自己的問(wèn)題。而數(shù)學(xué)建模大賽舉辦的主要目的,就是讓學(xué)生們掌握如何利用數(shù)學(xué)理論,來(lái)解決實(shí)際問(wèn)題,在學(xué)習(xí)數(shù)學(xué)知識(shí)的過(guò)程中,很多學(xué)生會(huì)認(rèn)為,數(shù)學(xué)與實(shí)踐的距離很遠(yuǎn),學(xué)習(xí)的都是純理論的知識(shí),學(xué)習(xí)的興趣很低,與一些實(shí)踐密切相關(guān)的學(xué)科相比,選擇數(shù)學(xué)專(zhuān)業(yè)的學(xué)生很少,而數(shù)學(xué)建模的出現(xiàn),在很大程度上改善了這種情況,讓人們真正的了解數(shù)學(xué),并利用數(shù)學(xué)來(lái)解決復(fù)雜的問(wèn)題。受到特殊的歷史因素影響,我國(guó)自然科學(xué)發(fā)展的起步較晚,在建國(guó)后經(jīng)歷了很長(zhǎng)一段時(shí)間封,閉發(fā)展,與西方發(fā)達(dá)國(guó)家之間的交流比較少,因此對(duì)于數(shù)學(xué)建模等現(xiàn)代科學(xué),研究的時(shí)間比較短,導(dǎo)致目前我國(guó)很少會(huì)利用數(shù)學(xué)建模來(lái)解決實(shí)際問(wèn)題,相比之下,發(fā)達(dá)國(guó)家在很多領(lǐng)域中,經(jīng)常會(huì)用到數(shù)學(xué)建模的知識(shí),如在企業(yè)日常運(yùn)營(yíng)中,需要進(jìn)行市場(chǎng)調(diào)研等工作,而對(duì)于這些調(diào)研工作的處理,在進(jìn)行之前都會(huì)建立一個(gè)數(shù)學(xué)模型,然后按照這個(gè)建立的模型來(lái)處理。
2.3數(shù)學(xué)建模思想應(yīng)用的發(fā)展
從本質(zhì)上來(lái)說(shuō),數(shù)學(xué)是在實(shí)際應(yīng)用的基礎(chǔ)上,逐漸形成的一門(mén)學(xué)科,但是受到當(dāng)時(shí)技術(shù)水平的限制,雖然人們已經(jīng)懂得去計(jì)算,卻并知道自己使用的是數(shù)學(xué)知識(shí),隨著自然科學(xué)的發(fā)展,對(duì)數(shù)學(xué)的應(yīng)用越來(lái)越多,而數(shù)學(xué)自身理論的發(fā)展速度很快,遠(yuǎn)遠(yuǎn)超過(guò)了實(shí)際應(yīng)用的范圍,同時(shí)隨著其他學(xué)科的發(fā)展,數(shù)學(xué)變成了一種計(jì)算的工具,因此數(shù)學(xué)應(yīng)用的第一個(gè)階段中,主要是作為一種工具。隨著電子計(jì)算機(jī)的出現(xiàn),對(duì)數(shù)學(xué)的應(yīng)用達(dá)到了一個(gè)極限,人們?cè)跀?shù)學(xué)和物理的基礎(chǔ)上,制作出了能夠自動(dòng)計(jì)算的機(jī)器,在計(jì)算機(jī)出現(xiàn)的早期,受到性能和體積上的限制,只能進(jìn)行一些簡(jiǎn)單的數(shù)學(xué)計(jì)算,還不能解決實(shí)際的問(wèn)題,但是計(jì)算機(jī)語(yǔ)言和軟件技術(shù)的.發(fā)展,使其在很多領(lǐng)域得到了應(yīng)用,在計(jì)算的基礎(chǔ)上,能夠解決很多問(wèn)題,而軟件程序的開(kāi)發(fā),其實(shí)就是建立數(shù)學(xué)模型的過(guò)程,由此可以看出,數(shù)學(xué)建模思想應(yīng)用的第二階段中,主要是以現(xiàn)代計(jì)算機(jī)等電子設(shè)備的方式,來(lái)解決實(shí)際的問(wèn)題。
3數(shù)學(xué)建模思想應(yīng)用的方法
3.1分析問(wèn)題
數(shù)學(xué)模型的應(yīng)用都是為了解決實(shí)際問(wèn)題,雖然很多問(wèn)題都可以通過(guò)建模的方式來(lái)解決,但是并不是所有的問(wèn)題,因此在遇到實(shí)際問(wèn)題時(shí),首先要對(duì)問(wèn)題進(jìn)行具體的分析,首先就是看是否能夠轉(zhuǎn)化成數(shù)學(xué)符號(hào),如果能夠直接用數(shù)學(xué)語(yǔ)言來(lái)進(jìn)行描述,那么就可以容易的建立相應(yīng)的數(shù)學(xué)模型,但是通過(guò)實(shí)際的調(diào)查發(fā)現(xiàn),隨著經(jīng)濟(jì)和科技的發(fā)展,遇到的問(wèn)題越來(lái)越復(fù)雜,其中很多都無(wú)法直接用數(shù)學(xué)語(yǔ)言來(lái)描述,這就增加了數(shù)學(xué)建模的難度。由此可以看出,分析問(wèn)題作為數(shù)學(xué)建模的第一個(gè)環(huán)節(jié),也是最重要的一個(gè)環(huán)節(jié),如果問(wèn)題分析的不夠具體,那么將無(wú)法建立出數(shù)學(xué)模型,同時(shí)對(duì)數(shù)學(xué)模型的建立也具有非常重要的影響,通過(guò)實(shí)際的調(diào)查發(fā)現(xiàn),能夠建立高效率的數(shù)學(xué)模型,都是對(duì)問(wèn)題分析的比較徹底,甚至有些獨(dú)特的理解,只有這樣才能夠采用建立一個(gè)最簡(jiǎn)單的模型,而隨著數(shù)學(xué)建模自身的發(fā)展,現(xiàn)在建立模型的過(guò)程中,對(duì)于一個(gè)實(shí)際的問(wèn)題,經(jīng)常需要建立多個(gè)模型,這樣通過(guò)多個(gè)數(shù)學(xué)模型協(xié)同來(lái)解決一個(gè)問(wèn)題。
3.2數(shù)學(xué)模型的建立
在分析實(shí)際問(wèn)題后,就要用數(shù)學(xué)符號(hào)來(lái)描述要解決的問(wèn)題,這是建立數(shù)學(xué)模型的準(zhǔn)備環(huán)節(jié),要想利用數(shù)學(xué)來(lái)解決實(shí)際問(wèn)題,無(wú)論采用哪種方式,都要轉(zhuǎn)化成數(shù)學(xué)語(yǔ)言,然后才能夠通過(guò)計(jì)算的方式解決,而數(shù)學(xué)模型的過(guò)程,就是在描述完成后,建立相應(yīng)的數(shù)學(xué)表達(dá)式,通常情況下,在分析問(wèn)題時(shí),都能夠發(fā)現(xiàn)某種內(nèi)在的規(guī)律,這個(gè)規(guī)律是數(shù)學(xué)建模的基礎(chǔ)。如果無(wú)法找到這個(gè)規(guī)律,顯然就不能利用現(xiàn)有的一些數(shù)學(xué)定律,從而建立相應(yīng)的表達(dá)式,最后解決相應(yīng)的問(wèn)題,由此可以看出,分析問(wèn)題的內(nèi)在規(guī)律,是影響數(shù)學(xué)建模的重要因素,而這個(gè)規(guī)律的發(fā)現(xiàn),除了在現(xiàn)有的數(shù)學(xué)知識(shí)外,也可以結(jié)合其他學(xué)科的知識(shí),尤其是現(xiàn)在遇到的問(wèn)題越來(lái)越復(fù)雜,對(duì)于以往簡(jiǎn)單的問(wèn)題,只需要建立一個(gè)簡(jiǎn)單的模型即可解決,而現(xiàn)在復(fù)雜的問(wèn)題,經(jīng)常需要建立多個(gè)模型。因此現(xiàn)在數(shù)學(xué)建模的難度越來(lái)越大,從近些年全國(guó)數(shù)學(xué)建模大賽的題目就可以看出,對(duì)于問(wèn)題的描述越來(lái)越模糊,甚至出現(xiàn)了一些歷史上的難題,而不同學(xué)生根據(jù)自己的理解,建立的模型也具有很大的差異,其中一些模型非常新穎,為實(shí)際問(wèn)題的解決提供了良好的參考,目前我國(guó)對(duì)數(shù)學(xué)建模的研究有限,尤其是與西方發(fā)達(dá)國(guó)家相比,實(shí)踐的機(jī)會(huì)還比較少。
3.3數(shù)學(xué)模型的校驗(yàn)
在數(shù)學(xué)模型建立之后,對(duì)于這個(gè)模型是否能夠解決實(shí)際問(wèn)題,具體的執(zhí)行效率如何,都需要進(jìn)行校驗(yàn),因此檢驗(yàn)是數(shù)學(xué)模型建立最后的一個(gè)環(huán)節(jié),也是非常重要的一個(gè)步驟,通常情況下,經(jīng)過(guò)校驗(yàn)都能夠發(fā)現(xiàn)模型中存在的一些問(wèn)題,從而進(jìn)行完善,這樣才能夠保證嚴(yán)謹(jǐn)性,在實(shí)際校驗(yàn)的過(guò)程中,要對(duì)數(shù)學(xué)模型的每個(gè)部分進(jìn)行驗(yàn)證,通過(guò)輸入特定的數(shù)據(jù),看得到的結(jié)果是否符合理論值,如果沒(méi)有問(wèn)題,就說(shuō)明該模型可以解決實(shí)際問(wèn)題。除了檢驗(yàn)?zāi)P偷臏?zhǔn)確外,校驗(yàn)還有另外一個(gè)作用,就是優(yōu)化模型,在選定數(shù)據(jù)后,能夠看到數(shù)學(xué)模型計(jì)算的整個(gè)過(guò)程,這時(shí)就可以對(duì)具體的細(xì)節(jié)進(jìn)行優(yōu)化,如哪部分可以減少計(jì)算的步驟,或者簡(jiǎn)化計(jì)算的方式等,這樣可以使整個(gè)模型更加科學(xué)、合理,由此可以看出,校驗(yàn)工作對(duì)于數(shù)學(xué)模型的建立,具有非常重要的意義。
4結(jié)語(yǔ)
通過(guò)全文的分析可以知道,對(duì)于數(shù)學(xué)理論的應(yīng)用,從很久之前就已經(jīng)開(kāi)始了,但是數(shù)學(xué)建模思想的出現(xiàn),卻是隨著計(jì)算機(jī)技術(shù)的發(fā)展,逐漸形成的一門(mén)學(xué)科,電子計(jì)算機(jī)的出現(xiàn),在很大程度上改變了處理事情的方式,利用計(jì)算機(jī)軟件,只要輸入相應(yīng)的參數(shù),就可以直接得到結(jié)果,這正是數(shù)學(xué)模型完成的任務(wù),只是計(jì)算機(jī)的出現(xiàn),省略了中間的計(jì)算過(guò)程,因此計(jì)算機(jī)軟件的方式,是數(shù)學(xué)建模思想最好的應(yīng)用方法,要想解決不同的問(wèn)題,只要建立不同的模型,然后編寫(xiě)相應(yīng)的程序。
數(shù)學(xué)建模論文感悟篇二十
1培養(yǎng)創(chuàng)造性思維學(xué)生在學(xué)習(xí)數(shù)學(xué)知識(shí)的過(guò)程中,雖然其接受的知識(shí)和經(jīng)驗(yàn)是前人研究和發(fā)現(xiàn)的成果,但對(duì)于學(xué)生來(lái)說(shuō),其處于知識(shí)再發(fā)現(xiàn)的地位。教師向?qū)W生教授數(shù)學(xué)發(fā)現(xiàn)的思維和方法,換言之就是重點(diǎn)引導(dǎo)學(xué)生重溫?cái)?shù)學(xué)經(jīng)驗(yàn)和知識(shí)的研究道路,進(jìn)而保證學(xué)生的再發(fā)現(xiàn)能夠順利實(shí)現(xiàn)。這也是培養(yǎng)學(xué)生創(chuàng)新思維和能力的一個(gè)重要途徑。利用數(shù)學(xué)建模能夠有效地彌補(bǔ)數(shù)學(xué)教學(xué)過(guò)程中存在的缺陷,使學(xué)生充分體會(huì)到數(shù)學(xué)發(fā)現(xiàn)過(guò)程中的樂(lè)趣,進(jìn)而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情和積極性,培養(yǎng)其創(chuàng)造性思維。
2選擇經(jīng)典案例開(kāi)展數(shù)學(xué)建模討論、分析教師在實(shí)際的數(shù)學(xué)課堂教學(xué)中,可選擇一些社會(huì)實(shí)際案例為講授分析的主要對(duì)象,如實(shí)際生活和高科技的熱點(diǎn)話(huà)題。教師可對(duì)此類(lèi)實(shí)例進(jìn)行必要的分析與講解,在此過(guò)程中,積極引導(dǎo)學(xué)生獨(dú)立鉆研和研究問(wèn)題,并培養(yǎng)學(xué)生主動(dòng)查閱相關(guān)資料、自主討論的能力。與此同時(shí),教師還要及時(shí)與學(xué)生進(jìn)行交流,答疑釋難,并要求學(xué)生在自己實(shí)際能力的基礎(chǔ)上構(gòu)建恰當(dāng)?shù)哪P?,由易到難,循序漸進(jìn)。除此之外,還要使學(xué)生充分發(fā)揮其主觀(guān)能動(dòng)性,培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題,思考問(wèn)題以及處理問(wèn)題的能力。以微積分方程為例,教師在課堂教學(xué)中,可以“經(jīng)濟(jì)增長(zhǎng)”作為主要案例,向?qū)W生系統(tǒng)地闡述微積分方程的實(shí)際應(yīng)用過(guò)程,進(jìn)一步加深學(xué)生對(duì)知識(shí)的理解、掌握和應(yīng)用。
3同時(shí)開(kāi)設(shè)數(shù)學(xué)建模與高等數(shù)學(xué)課程在職業(yè)院校數(shù)學(xué)教學(xué)過(guò)程中,同時(shí)開(kāi)設(shè)數(shù)學(xué)建模與高等數(shù)學(xué)課程,能夠有效提高學(xué)生對(duì)基礎(chǔ)知識(shí)的理解能力和掌握程度,促進(jìn)學(xué)生實(shí)踐動(dòng)手能力的培養(yǎng)。在數(shù)學(xué)建模課程的開(kāi)設(shè)中,應(yīng)該在教師的指導(dǎo)下,充分利用教學(xué)軟件,引導(dǎo)學(xué)生動(dòng)手實(shí)驗(yàn)和計(jì)算,加深學(xué)生對(duì)知識(shí)的掌握。在此過(guò)程中,使學(xué)生充分了解到運(yùn)用數(shù)學(xué)理論和方法去分析和解決實(shí)際問(wèn)題的全過(guò)程,進(jìn)一步提高學(xué)生的積極性和思維意識(shí)能力,使他們意識(shí)到數(shù)學(xué)在實(shí)際生活應(yīng)用中的關(guān)鍵作用。同時(shí),促使學(xué)生將計(jì)算機(jī)技術(shù)融入數(shù)學(xué)學(xué)習(xí)中去,以現(xiàn)代化的高新科技為媒介,著手實(shí)際社會(huì)問(wèn)題的解決。
4創(chuàng)新教學(xué)模式根據(jù)職業(yè)院校學(xué)生學(xué)習(xí)的特點(diǎn)和知識(shí)水平,重點(diǎn)提高學(xué)生運(yùn)用數(shù)學(xué)的技能和思維方式來(lái)處理實(shí)際生活和專(zhuān)業(yè)問(wèn)題的能力。要想從根本上培養(yǎng)學(xué)生的創(chuàng)新能力,一定要改變?cè)瓉?lái)單一固定的教學(xué)模式,嘗試和探索基于學(xué)生實(shí)際情況的教學(xué)措施和方式。經(jīng)過(guò)長(zhǎng)期的實(shí)踐經(jīng)驗(yàn)研究,討論式教學(xué)和雙向教學(xué)方式對(duì)培養(yǎng)學(xué)生的能力非常有效。這兩種教學(xué)模式能夠加深學(xué)生參與課堂教學(xué)的程度,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的'主動(dòng)性,最終達(dá)到提高教學(xué)效率的目的。所以,數(shù)學(xué)建??梢砸跃唧w問(wèn)題為媒介,采用小組集體討論解決問(wèn)題的方法,培養(yǎng)學(xué)生的創(chuàng)新能力和意識(shí),進(jìn)一步加快職業(yè)技術(shù)院校數(shù)學(xué)教學(xué)模式的創(chuàng)新。
5組建數(shù)學(xué)建模團(tuán)隊(duì)在實(shí)際的數(shù)學(xué)教學(xué)中,教師可引導(dǎo)學(xué)生構(gòu)建數(shù)學(xué)建模團(tuán)隊(duì)。在教師對(duì)數(shù)學(xué)建模的深入分析為基礎(chǔ),充分調(diào)動(dòng)學(xué)生參與問(wèn)題解決的主動(dòng)性,師生積極互動(dòng),最終完成數(shù)學(xué)建模。如此一來(lái),不僅能夠有效培養(yǎng)學(xué)生積極進(jìn)取的良好學(xué)習(xí)態(tài)度,而且還能夠促進(jìn)學(xué)生數(shù)學(xué)邏輯思維能力的提高。
6搭建校內(nèi)數(shù)學(xué)建模網(wǎng)絡(luò)平臺(tái)在職業(yè)技術(shù)院校中構(gòu)建校內(nèi)數(shù)學(xué)建模網(wǎng)絡(luò)平臺(tái),積極宣傳與數(shù)學(xué)建模有關(guān)的知識(shí)經(jīng)驗(yàn),為學(xué)生主動(dòng)獲取數(shù)學(xué)建模信息提供各種數(shù)據(jù)資料。數(shù)學(xué)建模網(wǎng)絡(luò)平臺(tái)的搭建,能夠有效促進(jìn)教師和學(xué)生,學(xué)生與學(xué)生之間的交流與溝通,大大縮短學(xué)生和數(shù)學(xué)建模之間的距離,進(jìn)而促進(jìn)學(xué)生自主學(xué)習(xí)能力的提高和培養(yǎng)。
總而言之,數(shù)學(xué)建模思想是學(xué)生將基礎(chǔ)理論知識(shí)與實(shí)際解決問(wèn)題的方法相結(jié)合的最佳途徑。將數(shù)學(xué)建模融入職業(yè)院校數(shù)學(xué)中,全面培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和數(shù)學(xué)應(yīng)用能力,進(jìn)一步使數(shù)學(xué)為達(dá)成學(xué)院的教學(xué)和培養(yǎng)計(jì)劃奠定基礎(chǔ),為培養(yǎng)更多更優(yōu)秀的現(xiàn)代化社會(huì)人才服務(wù)。
數(shù)學(xué)建模論文感悟篇二十一
在高等教育事業(yè)改革不斷深化的背景下,為了提升教育教學(xué)質(zhì)量,新時(shí)期對(duì)大學(xué)數(shù)學(xué)教學(xué)提出了更高的要求。大學(xué)數(shù)學(xué)作為課堂教學(xué)的主體,教師在傳授知識(shí)的同時(shí),要注重學(xué)生學(xué)習(xí)能力和解決問(wèn)題能力的培養(yǎng)。
數(shù)學(xué)知識(shí)來(lái)源于生活,應(yīng)用于生活,如微積分作為高等數(shù)學(xué)知識(shí)中的典型代表,在各個(gè)行業(yè)中具有不可或缺的作用。為此,任課教師在大學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、分析問(wèn)題和解決問(wèn)題的能力十分重要,在傳授知識(shí)的過(guò)程中幫助學(xué)生利用所學(xué)知識(shí)來(lái)解決實(shí)際問(wèn)題。一般情況下,教師著重介紹相關(guān)數(shù)學(xué)概念和原理,推導(dǎo)常用公式,促使學(xué)生能夠記住公式,學(xué)會(huì)公式的應(yīng)用過(guò)程,逐漸掌握解題技巧。
因此,如何能夠在傳授知識(shí)的同時(shí),促使學(xué)生掌握數(shù)學(xué)學(xué)習(xí)方法,將所學(xué)知識(shí)應(yīng)用到實(shí)踐中來(lái)解決數(shù)學(xué)問(wèn)題是一個(gè)首要問(wèn)題。從大量教學(xué)實(shí)踐中可以了解到,在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想十分重要,有助于激發(fā)學(xué)生的學(xué)習(xí)興趣,促使學(xué)生積極投入其中,切實(shí)提升學(xué)生的數(shù)學(xué)專(zhuān)業(yè)水平。
在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想,應(yīng)該結(jié)合實(shí)際情況,深入挖掘數(shù)學(xué)知識(shí)。在教學(xué)中,教師應(yīng)該充分發(fā)揮自身引導(dǎo)作用,聯(lián)系學(xué)生數(shù)學(xué)知識(shí)實(shí)際學(xué)習(xí)情況,有針對(duì)性地整合數(shù)學(xué)知識(shí),了解相關(guān)數(shù)學(xué)內(nèi)容,這樣不僅可以豐富教學(xué)內(nèi)容,還可以為課堂教學(xué)注入新的活力,有效激發(fā)學(xué)生的學(xué)習(xí)興趣,提升學(xué)習(xí)成效。具體表現(xiàn)在以下方面:
(一)閉區(qū)間連續(xù)函數(shù)的性質(zhì)
閉區(qū)間連續(xù)函數(shù)的性質(zhì)內(nèi)容是大學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,由于知識(shí)理論性較強(qiáng),知識(shí)較為抽象,學(xué)習(xí)難度較大,在講解完相關(guān)理論知識(shí)后,可以引入椅子的穩(wěn)定問(wèn)題,創(chuàng)建數(shù)學(xué)模型,提問(wèn)學(xué)生如何在不平穩(wěn)的地面上平穩(wěn)地放置椅子。學(xué)生可以了解到這一問(wèn)題同所學(xué)知識(shí)相關(guān)聯(lián),閉區(qū)間連續(xù)函數(shù)的性質(zhì)可以解決這一問(wèn)題。學(xué)生整合所學(xué)知識(shí),通過(guò)對(duì)問(wèn)題的分析,可以了解到利用介值定理來(lái)解決問(wèn)題。通過(guò)建立數(shù)學(xué)模型,學(xué)生更加充分地掌握了閉區(qū)間連續(xù)函數(shù)的`性質(zhì),提升了學(xué)習(xí)成效,為后續(xù)知識(shí)學(xué)習(xí)打下了堅(jiān)實(shí)的基礎(chǔ)。
(二)定積分
定積分是高等數(shù)學(xué)教學(xué)中的重要組成部分,在解決幾何問(wèn)題時(shí)均有所應(yīng)用,并且被廣泛應(yīng)用在實(shí)際生活中。如,在一道全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽題目中,計(jì)算煤矸石的堆積,煤礦采煤時(shí)所產(chǎn)生的煤矸石,為了處理煤矸石就需要征用土地來(lái)堆放煤矸石,根據(jù)上級(jí)主管部門(mén)的年產(chǎn)量計(jì)劃和經(jīng)費(fèi)如何堆放煤矸石?題目中的關(guān)鍵點(diǎn)在于堆放煤矸石的征地費(fèi)用和電費(fèi)的計(jì)算。征地費(fèi)計(jì)算難度較小,但是煤矸石堆積的電費(fèi)計(jì)算難度較高,但此項(xiàng)內(nèi)容涉及定積分中的變力做功知識(shí)點(diǎn)。學(xué)生掌握這些內(nèi)容后就可以建立數(shù)學(xué)模型,更加高效地了解如何根據(jù)預(yù)期開(kāi)采量來(lái)堆放煤矸石。通過(guò)數(shù)學(xué)模型,學(xué)生也可以了解到定積分內(nèi)容同實(shí)際生活之間的聯(lián)系,學(xué)習(xí)積極性就會(huì)大大提升。
(三)最值問(wèn)題
在高等數(shù)學(xué)中,最值問(wèn)題占比比較大,同時(shí)在實(shí)際生活中應(yīng)用較為普遍,導(dǎo)數(shù)知識(shí)可以解決實(shí)際生活中的最值問(wèn)題,這就需要提高對(duì)導(dǎo)數(shù)知識(shí)實(shí)際應(yīng)用的重視程度。教師在為學(xué)生講解完導(dǎo)數(shù)的相關(guān)概念知識(shí)后,通過(guò)建立關(guān)于天空的采空模型,提問(wèn)學(xué)生為什么雨后太陽(yáng)出來(lái)了,雨滴還在空中,那么將為人們呈現(xiàn)出什么樣的景色?學(xué)生回答彩虹。繼續(xù)提問(wèn)彩虹為什么有顏色,是什么決定了天空中彩虹的高度?對(duì)此,學(xué)生的興趣較為濃厚,可以分為若干個(gè)小組進(jìn)行討論。通過(guò)分析可以得出,雨滴可以反射太陽(yáng)光,形成彩虹。結(jié)合光線(xiàn)的反射和折射定律,借助所學(xué)的導(dǎo)數(shù)知識(shí)來(lái)計(jì)算得出太陽(yáng)光偏轉(zhuǎn)角度的最值,有效解決實(shí)際學(xué)習(xí)的問(wèn)題,加深對(duì)知識(shí)的理解和記憶,提升數(shù)學(xué)知識(shí)學(xué)習(xí)成效。
(四)微分方程
微分方程知識(shí)同實(shí)際生活之間息息相關(guān),建立微分方程可以有效解決實(shí)際生活中的問(wèn)題。這就需要學(xué)生在了解微分方程知識(shí)的基礎(chǔ)上,進(jìn)一步建立數(shù)學(xué)模型來(lái)解決問(wèn)題。如,在當(dāng)前社會(huì)進(jìn)步和發(fā)展下,人均物質(zhì)生活水平顯著提升,肥胖成為危害人們身體健康的主要問(wèn)題之一,受到社會(huì)各界廣泛的關(guān)注和重視。通過(guò)問(wèn)題精簡(jiǎn)化和假設(shè),可以得到微分方程模型,在分析方程中飲食控制和運(yùn)動(dòng)鍛煉兩個(gè)關(guān)鍵要素后,有助于避免人們走入減肥誤區(qū),幫助他們樹(shù)立正確的減肥理念。
(五)矩陣
在高等數(shù)學(xué)教學(xué)中,矩陣的概念較為抽象和復(fù)雜,在講解問(wèn)題之前,應(yīng)該根據(jù)知識(shí)點(diǎn)來(lái)創(chuàng)設(shè)教學(xué)情境,輔助教學(xué)活動(dòng)。通過(guò)引入企業(yè)工廠(chǎng)生產(chǎn)總成本模型,充分描述工廠(chǎng)生產(chǎn)中需要的原材料和勞動(dòng)力,并且詳細(xì)記錄管理費(fèi)用。這有助于加深人們對(duì)矩陣概念的認(rèn)知和理解,提升學(xué)習(xí)成效,同時(shí)幫助學(xué)生深入理解和記憶,鍛煉學(xué)生的數(shù)學(xué)解題思維,加深概念理解和記憶,掌握解題技巧和方法,從而提升學(xué)生的數(shù)學(xué)建模意識(shí)。
綜上所述,在大學(xué)數(shù)學(xué)教學(xué)中,可以通過(guò)數(shù)學(xué)建模思想來(lái)引導(dǎo)學(xué)生養(yǎng)成良好的自主學(xué)習(xí)能力,發(fā)揮自身的主體能動(dòng)性和創(chuàng)新能力,提升學(xué)生解決問(wèn)題的能力,將所學(xué)知識(shí)靈活運(yùn)用到實(shí)際生活中,養(yǎng)成良好的數(shù)學(xué)素養(yǎng)。
數(shù)學(xué)建模論文感悟篇二十二
高校學(xué)生社團(tuán)是一種具有共同興趣愛(ài)好的學(xué)生自發(fā)組織的開(kāi)展一些藝術(shù)、娛樂(lè)和學(xué)術(shù)型的活動(dòng)的團(tuán)體。學(xué)生社團(tuán)以其鮮明的開(kāi)放性、自主性以及多樣性等特點(diǎn),為一些有特長(zhǎng)的學(xué)生提供了廣闊的舞臺(tái),讓這些學(xué)生可以更好的發(fā)揮自己的才能,促進(jìn)其更好的成才。全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽是最早由教育部工業(yè)與數(shù)學(xué)應(yīng)用學(xué)會(huì)共同承辦的一個(gè)科技性的賽事,該比賽要通過(guò)數(shù)學(xué)和計(jì)算機(jī)的知識(shí)來(lái)解決實(shí)際生活中的問(wèn)題,由于其特有的比賽形式,使得高職院校在全校范圍內(nèi)直接選拔參賽隊(duì)員是件費(fèi)神的事情,因此,為了更好的為數(shù)學(xué)建模競(jìng)賽選拔人才,激發(fā)學(xué)生的學(xué)習(xí)興趣,學(xué)術(shù)性社團(tuán)“數(shù)學(xué)建模協(xié)會(huì)”也就應(yīng)運(yùn)而生。數(shù)學(xué)建模協(xié)會(huì)的成立,可以更好的為學(xué)生提供一個(gè)展示自己的機(jī)會(huì),可以增強(qiáng)學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)興趣,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)解決實(shí)際問(wèn)題的能力,激發(fā)學(xué)生的創(chuàng)新思維,為數(shù)學(xué)建模競(jìng)賽選拔人才。本文主要以西安航空職業(yè)技術(shù)學(xué)院數(shù)學(xué)建模協(xié)會(huì)為例,探討高職數(shù)學(xué)建模社團(tuán)活動(dòng)開(kāi)展的形式和意義。
(一)數(shù)學(xué)建模社團(tuán)有利于數(shù)學(xué)建模競(jìng)賽的開(kāi)展。高職數(shù)學(xué)建模協(xié)會(huì)為數(shù)學(xué)建模競(jìng)賽搭建了一個(gè)平臺(tái),是數(shù)學(xué)建模競(jìng)賽強(qiáng)有力的后盾,數(shù)學(xué)建模競(jìng)賽成績(jī)的取得與這個(gè)平臺(tái)密不可分,只有充分發(fā)揮數(shù)學(xué)建模社團(tuán)的作用,才能源源不斷的為數(shù)學(xué)建模提供人力和智力保障,才能更好的推動(dòng)高職數(shù)學(xué)的學(xué)習(xí)氛圍。1、數(shù)學(xué)建模協(xié)會(huì)起著動(dòng)員宣傳的作用從沒(méi)聽(tīng)過(guò),到知道,在到熟悉,只有通過(guò)大力宣傳和動(dòng)員,才能讓更多的人了解數(shù)學(xué)建模,讓更多優(yōu)秀學(xué)生參加到數(shù)學(xué)建模競(jìng)賽中。大學(xué)校園中有許多數(shù)學(xué)愛(ài)好者,他們對(duì)數(shù)學(xué)建模也有一定的認(rèn)識(shí),只要有參加數(shù)學(xué)建?;顒?dòng)的愿望的,都可以利用數(shù)學(xué)建模協(xié)會(huì)招新的機(jī)會(huì),加入數(shù)學(xué)建模創(chuàng)新協(xié)會(huì)。將成績(jī)優(yōu)秀的學(xué)生邀請(qǐng)加入數(shù)學(xué)建模協(xié)會(huì),對(duì)進(jìn)一步擴(kuò)大數(shù)學(xué)建模協(xié)會(huì),夯實(shí)數(shù)學(xué)建?;A(chǔ),起著舉足輕重的作用。2、數(shù)學(xué)建模協(xié)會(huì)起著知識(shí)傳播的作用高職院校學(xué)生在校學(xué)習(xí)時(shí)間較短,學(xué)業(yè)較為繁重,課余時(shí)間較少,數(shù)學(xué)建模培訓(xùn)的時(shí)間不足,無(wú)法讓學(xué)生在短時(shí)期內(nèi)掌握較多的數(shù)學(xué)建模相關(guān)知識(shí)。因此,利用數(shù)學(xué)建模協(xié)會(huì)活動(dòng)可以開(kāi)展數(shù)學(xué)建模課程的培訓(xùn)工作,普及數(shù)學(xué)建模相關(guān)知識(shí)。采用“老帶新”的模式進(jìn)行數(shù)學(xué)建模知識(shí)的普及。通過(guò)制定系統(tǒng)的培訓(xùn)方案,在每年秋季競(jìng)賽后,參加過(guò)競(jìng)賽的同學(xué)對(duì)新入?yún)f(xié)會(huì)的成員可以進(jìn)行初級(jí)培訓(xùn),為今后的競(jìng)賽奠定基礎(chǔ)。3、數(shù)學(xué)建模社團(tuán)起著選拔學(xué)生的作用每年數(shù)學(xué)建模競(jìng)賽的隊(duì)員需要通過(guò)校內(nèi)賽等形式進(jìn)行選拔,此時(shí),數(shù)學(xué)建模協(xié)會(huì)就起著校內(nèi)賽命題及選拔隊(duì)員的作用,當(dāng)然這種選拔方式也有的弊端,就是所有隊(duì)員都是來(lái)自校內(nèi)賽成績(jī)優(yōu)秀的學(xué)生,而校內(nèi)賽發(fā)揮不理想但建模能力突出或計(jì)算機(jī)技術(shù)水平優(yōu)秀的學(xué)生就沒(méi)法參加數(shù)學(xué)建模競(jìng)賽。為確保每一位有能力的學(xué)生都能夠加入到建模競(jìng)賽隊(duì)伍中來(lái),可以通過(guò)校內(nèi)競(jìng)賽與建模協(xié)會(huì)推薦兩者相結(jié)合的方式選拔建模競(jìng)賽學(xué)生,以確保最優(yōu)優(yōu)秀的學(xué)生參加數(shù)學(xué)建模競(jìng)賽。(二)數(shù)學(xué)建模社團(tuán)有利于大學(xué)生綜合素質(zhì)的培養(yǎng)。(1)數(shù)學(xué)建模社團(tuán)屬于專(zhuān)業(yè)的學(xué)術(shù)性社團(tuán),成立的目的是為了參加全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽,數(shù)學(xué)建模社團(tuán)活動(dòng)的趣味性和實(shí)踐性可以提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生自主學(xué)習(xí)的能力,增加學(xué)生參與競(jìng)賽的熱情。社團(tuán)活動(dòng)中的培訓(xùn)使學(xué)生可以更好的應(yīng)對(duì)競(jìng)賽,取得更好的成績(jī)。另外,競(jìng)賽之余還可以進(jìn)行其他領(lǐng)域的學(xué)術(shù)交流,比如計(jì)算機(jī),經(jīng)濟(jì),工程等領(lǐng)域,良好的交流氛圍激發(fā)學(xué)生的創(chuàng)新思維和意識(shí),從而培養(yǎng)他們的創(chuàng)新能力。(2)數(shù)學(xué)建模社團(tuán)是學(xué)生自發(fā)組織的服務(wù)學(xué)生的群體,除了學(xué)術(shù)研究之外,還可以進(jìn)行一些創(chuàng)新創(chuàng)業(yè)的活動(dòng),具有更多的實(shí)踐的機(jī)會(huì)。比如,可以利用平時(shí)社團(tuán)所學(xué)的知識(shí),以團(tuán)體的形式進(jìn)行一些數(shù)據(jù)處理的校企合作;也可以以微信平臺(tái)和微信群等發(fā)布一些數(shù)學(xué)建模相關(guān)的微課等,進(jìn)行一些微信群講座等等。這樣可以讓學(xué)生真正體會(huì)到數(shù)學(xué)的用處,達(dá)到學(xué)以致用的效果。(3)數(shù)學(xué)建模社團(tuán)是學(xué)生自發(fā)組織的學(xué)術(shù)性社團(tuán),社團(tuán)的組織機(jī)構(gòu)都是學(xué)生在擔(dān)任,社團(tuán)的活動(dòng)也都是學(xué)生在協(xié)調(diào)策劃,甚至很多時(shí)候社團(tuán)的老成員都可以輔助老師進(jìn)行社團(tuán)的一些學(xué)術(shù)性的講座。因此,在學(xué)習(xí)的同時(shí)還鍛煉了他們的處事應(yīng)變能力團(tuán)隊(duì)合作的能力,可以說(shuō)提高了學(xué)生的綜合素質(zhì)。
(一)數(shù)學(xué)建模社團(tuán)的管理形式。數(shù)學(xué)建模協(xié)會(huì)作為一個(gè)學(xué)生群體組織,需要好的制度和管理模式。以筆者所在學(xué)校為例,數(shù)學(xué)建模創(chuàng)新協(xié)會(huì)具有自己的一套規(guī)章管理制度;在管理形式方面是以“三個(gè)管理面”來(lái)進(jìn)行社團(tuán)管理和學(xué)術(shù)交流的,具體如下:1、學(xué)術(shù)交流面這個(gè)主要是通過(guò)“社團(tuán)內(nèi)部進(jìn)行學(xué)術(shù)交流活動(dòng)”和“老帶新培訓(xùn)”兩部分組成,內(nèi)部的交流活動(dòng)主要是學(xué)生之間的相互溝通和交流,以及不定期的邀請(qǐng)指導(dǎo)教師和外校專(zhuān)家做一些數(shù)學(xué)建模報(bào)告。老帶新培訓(xùn)是指社團(tuán)主席團(tuán)成員(一般是參加過(guò)前一年全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽的學(xué)生)為新入社團(tuán)的學(xué)生進(jìn)行培訓(xùn),培訓(xùn)的內(nèi)容基本上都是之前指導(dǎo)教師對(duì)他們集訓(xùn)時(shí)的內(nèi)容,這種培訓(xùn)方式可以提升社團(tuán)成員的授課和理解問(wèn)題的能力,對(duì)于在校大學(xué)生來(lái)說(shuō)是一次很好的鍛煉。2、網(wǎng)絡(luò)交流面采用qq群,網(wǎng)絡(luò)空間和微信公眾平臺(tái)等開(kāi)展社團(tuán)成員之間的交流互動(dòng),社團(tuán)宣傳。筆者所在學(xué)校的數(shù)學(xué)建模創(chuàng)新協(xié)會(huì)每一屆社團(tuán)都有相應(yīng)的qq群,另外,在20xx年也積極申請(qǐng)了微信平臺(tái),目前的'關(guān)注量也在800余人,微信平臺(tái)的建立可以更方面使大學(xué)生關(guān)注數(shù)學(xué)建模相關(guān)信息,尤其是對(duì)大一新生可以更多的取了解數(shù)學(xué)建模,擴(kuò)大數(shù)學(xué)建模的受益面和影響力。力求在大學(xué)生中營(yíng)造一種“人人知數(shù)模,人人愛(ài)數(shù)模,人人參與數(shù)?!钡牧己玫慕逃h(huán)境,使建模活動(dòng)廣泛化、群眾化。3、交流互訪(fǎng)面開(kāi)展研討會(huì),專(zhuān)家報(bào)告會(huì),社團(tuán)聯(lián)誼會(huì)等交流活動(dòng),既可以豐富數(shù)學(xué)建模社團(tuán)學(xué)生的知識(shí)面,又能促進(jìn)數(shù)學(xué)知識(shí)的理解和吸收,通過(guò)與其他社團(tuán)的聯(lián)誼,豐富了社團(tuán)學(xué)生的業(yè)余生活,又能學(xué)習(xí)其他社團(tuán)好的管理經(jīng)驗(yàn),促進(jìn)社團(tuán)管理的制度化、規(guī)范化、專(zhuān)業(yè)化,也只有通過(guò)不斷的學(xué)習(xí),不斷的交流,才能真正“走出去”,建立一個(gè)管理完善,富有成效的學(xué)生社團(tuán)。(二)數(shù)學(xué)建模社團(tuán)的特色活動(dòng)。數(shù)學(xué)建模社團(tuán)在開(kāi)展學(xué)術(shù)活動(dòng)和輔助教師進(jìn)行競(jìng)賽培訓(xùn)的同時(shí),還不定期的舉行一些活動(dòng),在提高學(xué)生學(xué)習(xí)興趣的同時(shí)也以擴(kuò)大了數(shù)學(xué)建模的影響力。以筆者坐在學(xué)校為例,每年可以開(kāi)展一系列的數(shù)學(xué)建模活動(dòng)。比如,數(shù)學(xué)建模創(chuàng)新協(xié)會(huì)納新,數(shù)學(xué)建模創(chuàng)新協(xié)會(huì)趣味運(yùn)動(dòng)會(huì),數(shù)學(xué)科技節(jié),趣味數(shù)學(xué)知識(shí)競(jìng)賽,數(shù)學(xué)建模經(jīng)驗(yàn)交流會(huì),數(shù)學(xué)建模校內(nèi)賽,數(shù)學(xué)輔導(dǎo)周,數(shù)學(xué)建模專(zhuān)題講座。這些社團(tuán)活動(dòng)貫穿整個(gè)學(xué)年,不僅可以“由點(diǎn)及面、由淺入深”的對(duì)全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽進(jìn)行宣傳,在最大的范圍內(nèi),提升數(shù)學(xué)建模大賽的影響力及參與度,成效較好。而且讓枯燥的學(xué)術(shù)型社團(tuán)變得豐富多彩,成為學(xué)生課后獲取知識(shí)的一種平臺(tái),同時(shí)也是社團(tuán)蓬勃發(fā)展的利器。
總之,數(shù)學(xué)建模社團(tuán)活動(dòng)的開(kāi)展,有利于培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和思維,有利于激發(fā)了學(xué)生的學(xué)習(xí)興趣,有利于豐富學(xué)生的課后生活,有利于調(diào)動(dòng)了學(xué)生參加學(xué)術(shù)型社團(tuán)的積極性,同時(shí)也是高職院校組織參加數(shù)學(xué)建模競(jìng)賽的強(qiáng)有力的后盾。
[1]胡建茹,王搖娟.加強(qiáng)專(zhuān)業(yè)社團(tuán)建設(shè)推進(jìn)大學(xué)生創(chuàng)新實(shí)踐能力培養(yǎng)[j].中國(guó)石油大學(xué)學(xué)報(bào):社會(huì)科學(xué)版,20xx(12)
[2]王珍娥,宋維,孫潔.?dāng)?shù)學(xué)社團(tuán)建設(shè)的探索與實(shí)踐[j].機(jī)械職業(yè)教育,20xx(7)
[3]李湘玲,王泳興.大學(xué)生社團(tuán)發(fā)展與創(chuàng)新型人才培養(yǎng)互動(dòng)機(jī)制研究:以吉首大學(xué)為例[j].黑龍江教育,20xx(11)
[4]孫浩,葉正麟.西北工業(yè)大學(xué)數(shù)學(xué)建模創(chuàng)新教育之探索[j].高等數(shù)學(xué)研究,20xx(4)
作者:張?zhí)m單位:西安航空職業(yè)技術(shù)學(xué)院通識(shí)教育學(xué)院
【本文地址:http://m.aiweibaby.com/zuowen/6722243.html】