教案應根據(jù)學生的學習水平和教學環(huán)境的實際情況進行調整和修改。編寫教案時,要注重教學資源的合理利用,包括教材、多媒體設備等。我們相信,這些教案范文可以給教師提供有益的借鑒和參考。
絕對值專題課教案篇一
(1)、借助數(shù)軸,初步理解絕對值的概念,能求一個數(shù)的絕對值,會利用絕對值比較兩個負數(shù)的大小。
(2)、通過應用絕對值解決實際問題,體會絕對值的意義和作用。
2、過程與方法目標:
(3)、通過對“做一做”“議一議”“試一試”的交流和討論,培養(yǎng)學生有條理地用語言表達解決問題的方法;通過用絕對值或數(shù)軸對兩個負數(shù)大小的比較,讓學生學會嘗試評價兩種不同方法之間的差異。
3、情感態(tài)度與價值觀:
借助數(shù)軸解決數(shù)學問題,有意識地形成“腦中有圖,心中有數(shù)”的數(shù)形結合思想。通過“做一做“議一議”“試一試”問題的思考及回答,培養(yǎng)學生積極參與數(shù)學活動,并在數(shù)學活動中體驗成功,鍛煉學生克服困難的意志,建立自信心,發(fā)展學生清晰地闡述自己觀點的能力以及培養(yǎng)學生合作探索、合作交流、合作學習的新型學習方式。
理解絕對值的概念;求一個數(shù)的絕對值;比較兩個負數(shù)的大小。
1、教師檢查組長學案學習情況,組長檢查組員學案學習情況。(約5分鐘)。
2、在組長的組織下進行討論、交流。(約5分鐘)。
3、小組分任務展示。(約25分鐘)。
4、達標檢測。(約5分鐘)。
5、總結(約5分鐘)。
(一)、溫故知新:。
(二)小組合作交流,探究新知。
1、觀察下圖,回答問題:(五組完成)。
大象距原點多遠?兩只小狗分別距原點多遠?
歸納:在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做這個數(shù)的。一個數(shù)a的絕對值記作:4的絕對值記作,它表示在上與的距離,所以|4|=。
2、做一做:
(1)、求下列各數(shù)的絕對值:(四組完成)-1.5,0,-7,2。
(2)、求下列各組數(shù)的絕對值:(一組完成)。
(1)4,-4;。
(2)0.8,-0.8;。
從上面的結果你發(fā)現(xiàn)了什么?
3、議一議:(八組完成)。
你能從中發(fā)現(xiàn)什么規(guī)律?
小結:正數(shù)的絕對值是它,負數(shù)的絕對值是它的,0的絕對值是。
4、試一試:(二組完成)。
若字母a表示一個有理數(shù),你知道a的絕對值等于什么嗎?
(通過上題例子,學生歸納總結出一個數(shù)的絕對值與這個數(shù)的關系。)。
5:做一做:(三組完成)。
1、
(1)在數(shù)軸上表示下列各數(shù),并比較它們的大小:
-3,-1。
(2)求出(1)中各數(shù)的絕對值,并比較它們的大小。
(3)你發(fā)現(xiàn)了什么?
2、比較下列每組數(shù)的大小。
(1)-1和–5;(五組完成)。
(2)-8和-3(七組完成)。
5和-2.7(六組完成)。
1、填空:
|+15|=()|–4|=()。
|0|=()|4|=()。
2、判斷。
(2)、一個數(shù)的絕對值一定是正數(shù)。()。
(3)、一個數(shù)的絕對值不可能是負數(shù)。()。
(4)、互為相反數(shù)的兩個數(shù),它們的絕對值一定相等。()。
(5)、一個數(shù)的絕對值越大,表示它的點在數(shù)軸上離原點越近。()。
1絕對值:在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值。
2絕對值的性質:正數(shù)的絕對值是它本身;負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。
3、會利用絕對值比較兩個負數(shù)的大小:兩個負數(shù)比較大小,絕對值大的反而小。
p50頁,知識技能第1,2題。
絕對值專題課教案篇二
(一)?教學內容:
《絕對值》是七年級數(shù)學教材上冊1.2.4節(jié)內容,此前,學生已經學習了有理數(shù)的分類,數(shù)軸與相反數(shù)等基礎知識,為本課學習的基礎。絕對值不僅可以使學生加深對有理數(shù)的認識,還會為以后學習兩個負數(shù)的大小比較以及有理數(shù)的運算做準備。所以本課在有理數(shù)一章起到承上啟下的作用。
(二)教學目標:
根據(jù)數(shù)學課程內容標準要求及教學內容的特點,以及學生的認知水平,確定本節(jié)課的教學目標如下:
1,理解、掌握絕對值概念.體會絕對值的作用與意義;
2,能正確求出一個數(shù)的絕對值;
(三)教學重、難點分析:
教學重點:掌握絕對值的概念會求已知數(shù)的絕對值.
教學難點:掌握有理數(shù)的概念及分類。
(四)教學輔助手段。
利用多媒體(實物投影)、學案進行輔助教學。
第二部分:教學設計。
教學過程。
師生互動。
設計意圖。
一、創(chuàng)設情境、引入新課。
二、合作交流、探索新知。
問題1:什么叫做絕對值?
怎么用數(shù)學符號表示一個數(shù)的絕對值?
問題2:互為相反數(shù)的絕對值的關系怎樣?
問題3:正數(shù)的絕對值是什么數(shù)?零的絕對值是什么數(shù)?負數(shù)的絕對值是什么數(shù)?
問題4:設?a表示一個數(shù),?|a|等于什么?
三、拓展提高、應用鞏固。
1.判斷下列說法是否正確:
(1)符號相反的數(shù)互為相反數(shù)(??).
(2)符號相反且絕對值相等的數(shù)互為相反數(shù)(??)。
(3)一個數(shù)的絕對值越大,表示它的點在數(shù)軸上越靠右.(??)。
(4)一個數(shù)的絕對值越大,表示它的點在數(shù)軸上離遠點越遠.(??)。
2.??求下列各數(shù)的絕對值:?,,0,,.
四、?概括總結、布置作業(yè)。
課堂小結:
1、?本節(jié)課收獲:由學生進行總結,其他同學幫忙補充,教師提示。
2、?對于本節(jié)課的知識,如果還有不明白的地方請?zhí)岢鰜恚瑢W和老師共同幫助解決。
布置作業(yè):
課本p11第1,2,3,??。
教師展示投影,甲乙兩車相向而行問題?,學生在學案上畫出數(shù)軸,并根據(jù)學案的要求,思考甲乙兩車行駛的距離引出的三個問題。
本環(huán)節(jié)教師關注重點:
學生能否區(qū)分方向和距離的不同。
學生能夠理解從距離角度看數(shù)即絕對值的意義。
學生口頭回答老師的問題。
對絕對值意義理解后教師讓學生用自己的語言概括絕對值的定義?
學生相互討論發(fā)言,教師進行補充并板書在黑板上,給出絕對值的數(shù)學符號書寫規(guī)范。
學生鞏固練習。
本環(huán)節(jié)教師關注重點:
學生是否正確理解了絕對值的概念并自己概括出來。
通過以下表格內容:
數(shù)值。
-3。
-2。
2
3
絕對值。
讓學生填寫表格后并通過表格小組討論這些數(shù)能發(fā)現(xiàn)哪些規(guī)律?
學生進行小組討論共同分析總結,得出組內結論。
本環(huán)節(jié)教師關注重點:
學生能否從正負數(shù)的角度看數(shù)的絕對值。
組織好小組討論,使小組能真正發(fā)揮作用。
教師根據(jù)小組結論內容進行提問,得出絕對值的規(guī)律。
教師提醒和引導從正負數(shù)零的角度來思考。
學生小組討論后教師進行補充。
給學生2分鐘時間完成習題。
學生完成后,教師在黑板上進行板演寫出完整的解題過程。
學生獨立完成,找兩名學生到黑板進行板演,對比過程的書寫并由學生進行糾錯,總結出完成的解題過程。
計算結果正確的學生舉手示意教師;
本環(huán)節(jié)教師關注重點:
(1)?學生對于絕對值概念的掌握及靈活應用。
(2)?培養(yǎng)學生的分類的數(shù)學思維。
有本題引出下節(jié)課所要研究的重點內容。
本環(huán)節(jié)教師關注重點:
(1)?注重學生數(shù)學思維的形成。
(2)?提高學生的解題能力。
學生總結本節(jié)課內容后,小組間互相提問,看哪組將問題處理的正確、清晰。
用一個小情境讓學生在興趣中體驗絕對值所代表的距離的意義,有實際問題引出絕對值的概念。
讓學生通過實際的意義來正確的了解絕對值的概念,并通過討論自己發(fā)表對絕對值概念的理解,發(fā)散學生的思維。
讓學生通過自主學習找答案,觀察數(shù)的規(guī)律自己總結不同數(shù)的絕對值的規(guī)律,提高學生的觀察力和思考能力。
讓學生自己總結,既鍛煉學生的語言表達能力,又能加深學生對知識的掌握和理解。培養(yǎng)學生的數(shù)學語言及分類的數(shù)學思維。
通過習題加深學生的記憶和對絕對值的概念的掌握。
通過總結和提問幫助學生記憶本節(jié)課知識點,并加深理解,進行實際運用。
絕對值專題課教案篇三
(1)掌握與()型的絕對值不等式的解法。
(2)掌握與()型的絕對值不等式的解法。
(3)通過用數(shù)軸來表示含絕對值不等式的解集,培養(yǎng)學生數(shù)形結合的能力;
設計。
在將看成一個整體的關鍵處點撥、啟發(fā),使學生主動地進行練習。
繼續(xù)強化將看成一個整體繼續(xù)強化解不等式時不要犯丟掉這部分解的錯誤。
三、課堂練習。
解下列不等式:
(1);
筆答。
(1);
檢查落實情況。
四、小結。
的解集是;的解集是。
解絕對值不等式注意不要丟掉這部分解集。
或型的絕對值不等式,若把看成一個整體一個字母,就可以歸結為或型絕對值不等式的解法。
五、作業(yè)。
1、閱讀課本含絕對值不等式解法。
2、習題2、3、4。
1、抓住解型絕對值不等式的關鍵是絕對值的意義,為此首先通過復習讓學生掌握好絕對值的意義,為解絕對值不等式打下牢固的基礎。
2、在解與絕對值不等式中的關鍵處設問、質疑、點撥,讓學生融會貫通的掌握它們解法之間的內在聯(lián)系,以達到提高學生解題能力的目的。
3、針對學生解()絕對值不等式容易出現(xiàn)丟掉這部分解集的錯誤,在教學中應根據(jù)絕對值的意義從數(shù)軸進行突破,并在練習中糾正這個錯誤,以提高學生的運算能力。
絕對值專題課教案篇四
1.使學生理解相反數(shù)的意義;。
2.給出一個數(shù),能求出它的相反數(shù);。
3.理解絕對值的意義,熟悉絕對值符號;。
4.給一個數(shù),能求它的絕對值。
教學重點、難點:
1.理解掌握雙重符號的化簡法則。
2.能正確理解絕對值在數(shù)軸上表示的意義。
教學過程。
一、交流與發(fā)現(xiàn):
1.相反數(shù)的概念:
同學們通過觀察思考可以總結出以下幾點:
(1)上面的這兩對數(shù)中,每一對數(shù),只有符號不同。
(2)這兩對數(shù)所對應的點中每一組中的兩個點,一個在原點的左邊,一個在原點的右邊,而且離開原點的距離相同。
練一練:請同學們舉出幾個相反數(shù)的例子。
(強調)我們還規(guī)定:0的相反數(shù)是0。
說明:
(1)注意理解相反數(shù)定義中“只有”的含義。
(2)相反數(shù)是相對而言的,即如果6是-6的相反數(shù),則-6也是6的相反數(shù),因而相反數(shù)全是成對出現(xiàn)的。
(3)兩個互為相反數(shù)的數(shù)在數(shù)軸上的對應點(除0外),在原點的兩旁,并且距離原點距離相等的兩個點,至于0的相反數(shù)是0的`幾何意義,可理解為這兩點距離原點都是零。
二、典型例題。
例(1)分別指出9和-7的相反數(shù);。
解:由相反數(shù)的定義可知:
(1)9的相反數(shù)是-9,-7的相反數(shù)是7;。
(2)-2.4是2.4的相反數(shù),
同學們思考交流,老師最后講解,學生交流得出:一個正數(shù)的相反數(shù)是一個負數(shù),而一個負數(shù)的相反數(shù)是一個正數(shù)。
三、實驗與探究。
同學們觀察數(shù)軸比思考下列問題。
(1)數(shù)軸上表示有理數(shù)5,2,0.5的點到原點的距離各是多少?
(2)數(shù)軸上表示有理數(shù)-5,-2,-0.5的點到原點的距離各是多少?
(3)數(shù)軸上表示0的點到原點的距離是多少?
學生思考回答,老師引導總結出絕對值的定義:
在數(shù)軸上,表示一個數(shù)的點到原點的距離叫做這個數(shù)的絕對值。通常把有理數(shù)a的絕對值,記作|a|。
如下圖所示:在數(shù)軸上表示-5的點與原點的距離是5,即-5的絕對值是5,記作|-5|=5。
下面咱們根據(jù)絕對值的定義,來看一組題目:
同學們觀察,完成題目然后總結規(guī)律:
(老師板書,總結歸納)。
(1)一個正數(shù)的絕對值是它本身。
(2)一個負數(shù)的絕對值是它的相反數(shù)。
因為正數(shù)可用a0來表示,負數(shù)可用a0來表示,所以上述三條可改寫成:
(1)如果a0,那么|a|=a,
(2)如果a0,那么|a|=-a,
(3)如果a=0,那么|a|=0,
上面這幾個式子可合并寫成:
由上面的幾個式子可以看出,不論a取何值,它的絕對值總是正數(shù)或0(通常也稱為非負數(shù))。
練一練。
(1)先分別求出它們的絕對值。
(2)得到結論:
交流總結:兩個負數(shù),絕對值大的負數(shù)反而小。
四、課后總結:
1.通過學習,了解相反數(shù)的意義及找到一個數(shù)的相反數(shù)的方法。
2.了解絕對值的代數(shù)意義和它在數(shù)軸上表示的意思。
3.理解兩個有理數(shù)大小比較的方法。
五:課后作業(yè)。
課本練習1、2、3。
將本文的word文檔下載到電腦,方便收藏和打印。
絕對值專題課教案篇五
師:字母可表示任意的數(shù),可以表示正數(shù),也可以表示負數(shù),也可以表示0.
教師引導學生用數(shù)學式子表示正數(shù)、負數(shù)、0,并再提問:這時的絕對值分別是多少?
學生活動:分組討論,教師加入討論,學生互相補充回答。
教師板書:
師強調:這種表示方法就相當于前面三句話,比較起來后者更通俗易懂。
【教法說明】用字母表示規(guī)律是難點。這時教師放手,讓學生有目的地考慮、分析,共同得出結論。
(四)歸納小結。
師:這節(jié)課我們學習了絕對值。
(1)一個數(shù)的絕對值是在數(shù)軸上表示這個數(shù)的點到原點的距離;(2)求一個數(shù)的絕對值必須先判斷是正數(shù)還是負數(shù)。
回顧反饋:
(出示投影2)。
1.-3的絕對值是在_____________上表示-3的點到__________的距離,-3的絕對值是____________.
2.絕對值是3的數(shù)有____________個,各是___________;絕對值是2.7的數(shù)有___________個,各是___________;絕對值是0的數(shù)有____________個,是____________.
八、隨堂練習。
1.判斷題。
(1)數(shù)的絕對值就是數(shù)軸上表示數(shù)的點與原點的距離()(2)負數(shù)沒有絕對值()。
2.填表。
九、布置作業(yè)。
課本第50頁2、4.
絕對值專題課教案篇六
借助于數(shù)軸理解相反數(shù)和絕對值的概念,會求一個數(shù)的絕對值,能借助絕對值比較兩個負數(shù)的大小。
【過程與方法】。
通過自主探索、小組討論、合作交流探索得到絕對值的過程,培養(yǎng)學生發(fā)現(xiàn)和解決問題的能力,鍛煉學生合作交流的意識。
【情感態(tài)度與價值觀】。
體會到數(shù)學和生活之間的聯(lián)系,提升學生學習數(shù)學的自信心和樂趣。
二、教學重難點。
【教學重點】。
【教學難點】。
求一個數(shù)的絕對值和相反數(shù);借助絕對值比較負數(shù)間的大小。
三、教學過程。
(一)引入新課。
教師回顧舊知并提問:上節(jié)課學習了哪些知識?
預設:學習了數(shù)軸,知道了有理數(shù)都可以用數(shù)軸上的點來表示。
多媒體出示,3與-3,5和-5等數(shù)字,再次提出問題:這些數(shù)有什么相同點,你能找到這些數(shù)在數(shù)軸上的位置嗎?引出新課。
(二)探索新知。
學生自主觀察,并寫出幾組類似的數(shù)字。
絕對值專題課教案篇七
(總結:)。
3.(1)若,則;
(2)若,則.。
八、隨堂練習。
1.判斷題。
(1)數(shù)的絕對值就是數(shù)軸上表示數(shù)的點與原點的距離()。
(4)如果甲數(shù)的絕對值比乙數(shù)的絕對值大,那么甲數(shù)一定比乙數(shù)大()。
(5)如果數(shù)的絕對值等于,那么一定是正數(shù)。
2.填表。
原數(shù)。
3
相反數(shù)。
絕對值專題課教案篇八
蘇軾,北宋大文學家、書畫家。字子瞻,號東坡居士,眉山(今屬四川)人。蘇洵子,蘇轍兄。嘉佑進士。北宋中期的文壇領袖,文學巨匠,唐宋八大家之一。其文縱橫恣肆,其詩題材廣闊,清新豪健,善用夸張、比喻,獨具風格。詞開豪放一派,與辛棄疾并稱“蘇辛”,有《東坡全集》、《東坡樂府》。
3、《浣溪沙》上闕寫景,描繪了哪三幅畫面?畫面有何特點?山下小溪邊,長著矮小嬌嫩的蘭草,山上松間沙路潔凈無塵,黃昏時瀟瀟細雨中杜鵑在啼叫。畫面清新優(yōu)美,淡雅寧靜。
4、下闕轉入抒懷,抒發(fā)了怎樣的情懷?由西流的溪水,想到青春可以永駐,大可不必為日月變遷、人生衰老而嘆息。表現(xiàn)了積極進取的人生態(tài)度。
5、作者寫此詞時,正是在政治上失意,生活處于逆境之時,能有如此積極的人生觀,豁達的胸懷,實在難能可貴。
6、齊讀并背誦這首詞。
學習《赤壁》。
1、教師范讀,學生跟讀。
2、簡介作者并解題。
杜牧(803-852)唐代詩人。字牧之,京兆萬年人。太和進士,和李商隱并稱“小李杜”。赤壁是東漢末年周瑜大敗曹操的地方,但杜牧所詠赤壁并非此處,而是湖北黃岡的赤鼻磯,所以說此詩雖為詠史詩,其實也是借題發(fā)揮。
3、《赤壁》開頭為什么從一把不起眼的折戟寫起,這樣寫有何作用?
與古代戰(zhàn)爭聯(lián)系起來,很自然的引起后文對歷史的詠嘆。但是,這兩句的作用主要不在于作為詩的引導,它本身也蘊涵著強烈的意念活動。沙里沉埋著鐵戟,點出此地曾有過歷史風云。折戟沉沙而仍未銷蝕,又暗寓歲月流逝而物存人非之慨。凡是在歷史上留下蹤跡地人物、事件,常會被無情地時光銷蝕掉,也易從人們的記憶中消逝,就像這鐵戟一樣沉淪埋沒,但又常因偶然的'機會被人記起,或引起懷念,或勾起深思。正由于發(fā)現(xiàn)了這片折戟,使詩人心緒無法平靜,因此他要磨洗并辨認一番,發(fā)現(xiàn)原來是“前朝”三國赤壁之戰(zhàn)時的遺物。因此,“認前朝”又進一步勃發(fā)了作者浮想聯(lián)翩的思緒,為后二句論史抒懷做了鋪墊。
4、全詩最精彩的是久為人們傳誦的末二句,這兩句議論感慨抒發(fā)了作者怎樣的思想感情?
這兩句詩人發(fā)表議論,“東風”不僅僅指的是自然界的風,而是含有建功立業(yè)各種條件和因素。曲折的反映出詩人的抑郁不平和豪爽胸襟??畤@歷史上英雄成名的機遇,是因為他自己生不逢時,有政治軍事才能而不得一展。似乎又有另一層意思:只要有機遇,相信自己總會有所作為,顯示出一種逼人的英氣。
5、齊讀、背誦。
四、課堂練習。
課后練習:對對子。
出:白對:黑出:來對:去出:美對:丑出:是對:非出:藍天對:白云。
五、布置作業(yè)。
1、背誦并默寫五首詩詞。
2、完成課后練習四作者郵箱:xxx。
絕對值專題課教案篇九
1、略2、+3千米,-2千米3、3,5,8;4、2,±2.
【課堂重點】。
5、(1)非負(2)06、3。
7、第5個最標準,第6個誤差最小,第7個誤差最大.
【課后鞏固】。
2、(1)18.6(2)7.49(3)-(4)3、8.
絕對值專題課教案篇十
各位專家領導:
你們好!
首先,我對本節(jié)教材進行一些分析:
一、教材分析(說教材):
(一)、教材所處的地位與作用:
本節(jié)內容在全書及章節(jié)的地位是:《絕對值》是七年級數(shù)學教材上冊1、2、4節(jié)內容。在此之前,學生已學習了有理數(shù),數(shù)軸與相反數(shù)等基礎內容,這為過渡到本節(jié)的學習起著鋪墊作用。絕對值不僅可以使學生加深對有理數(shù)的認識,還為以后學習兩個負數(shù)的比較大小以及有理數(shù)的運算作好必要的準備!所以說本講內容在有理數(shù)這一節(jié)中,占據(jù)了一個承上啟下的位置。
(二)、教育教學目標:
根據(jù)新課標的要求及七年級學生的認知水平我特制定的本節(jié)課的教學目標如下:
1、知識目標:。
1)使學生了解絕對值的表示法,會計算有理數(shù)的絕對值。
2)能利用數(shù)形結合思想來理解絕對值的幾何定義;理解絕對值非負的意義。
3)能利用分類討論思想來理解絕對值的代數(shù)定義;理解字母a的任意性。
2、能力目標:
通過教學初步培養(yǎng)學生分析問題,解決實際問題,讀圖分析、收集處理信息、團結協(xié)作、語言表達的能力,以及通過師生雙邊活動,初步培養(yǎng)學生運用知識的能力,培養(yǎng)學生加強理論聯(lián)系實際的能力。
3、思想目標:。
通過對絕對值的教學,讓學生初步認識到數(shù)學知識來源于實踐,引導學生從現(xiàn)實生活的經歷與體驗出發(fā),激發(fā)學生對數(shù)學問題的興趣,使學生了解數(shù)學知識的功能與價值,形成主動學習的態(tài)度。
(三):重點,難點以及確定的依據(jù):
本課中絕對值的兩種定義是重點,絕對值的代數(shù)定義是本課的難點,其理論依據(jù)是如何突破絕對值符號里字母a的任意性這一難點,由于學生年齡小,解決實際問題能力弱,對數(shù)學分類討論思想理解難度大。
下面,為了講清重難點,使學生能達到本節(jié)課設定的教學目標,我再從教法與學法上談談:
二、教學策略(說教法)。
(一)、教學手段:
由于七年級學生的理解能力與思維特征,他們往往需要依賴直觀具體形象的圖形的年齡特點,以及七年級學生剛剛學習有理數(shù)中的正負數(shù),相反數(shù),對正負數(shù),相反數(shù)的概念理解不一定非常深刻,許多學生容易造成知識遺忘,也為使課堂生動、有趣、高效,特將整節(jié)課以觀察、思考、討論貫穿于整個教學環(huán)節(jié)之中,采用啟發(fā)式教學法與師生互動式教學模式,注意師生之間的情感交流,并教給學生“多觀察、動腦想、大膽猜、勤鉆研”的研討式學習方法。
教學中積極利用多媒體課件,向學生提供更多的活動機會和空間,使學生在動腦、動手的過程中獲得充足的體驗與發(fā)展,從而培養(yǎng)學生的數(shù)形結合的思想。
為充分發(fā)揮學生的主體性與教師的主導輔助作用,教學過程中我設計了七個教學環(huán)節(jié):
1、溫故知新,激發(fā)情趣。
2、得出定義,揭示內涵。
3、手腦并用,深入理解。
4、啟發(fā)誘導,初步運用。
5、反饋矯正,注重參與。
6、歸納小結,強化思想。
7、布置作業(yè),引導預習。
(二)、教學方法及其理論依據(jù):
堅持“以學生為主體,以教師為主導”的原則,即“以學生活動為主,教師講述為輔,學生活動在前,教師點撥評價在后”的原則,根據(jù)七年級學生的心理發(fā)展規(guī)律,聯(lián)系實際安排教學內容。采用學生參與程度高的學導式討論教學法。在學生看書、討論基礎上,在教師啟發(fā)引導下,運用問題解決式教學法,師生交談法、問答法、課堂討論法,引導學生來理解教材中的理論知識。
在采用問答法時,特別注重不同難度的問題,提問不同層次的學生,面向全體,使基礎差的學生也能有表現(xiàn)的機會,培養(yǎng)其自信心,激發(fā)其學習熱情。有效地開發(fā)各層次學生的潛在智能,力求使每個學生都能在原有的基礎上得到發(fā)展。同時通過課堂練習和課后作業(yè),啟發(fā)學生從書本知識回到社會實踐,學以致用,落實教學目標。
三:學情分析:(說學法)。
1、知識掌握上,七年級學生剛剛學習有理數(shù)中的相反數(shù),對相反數(shù)的概念理解不一定非常深刻,許多學生容易造成知識遺忘,所以應全面系統(tǒng)的去講述。
2、學生學習本節(jié)課的知識障礙。學生對絕對值兩種概念,不易理解,容易出錯,所以教學中教師應予以簡單明白、深入淺出的分析。
3、由于七年級學生的理解能力和思維特征和生理特征,學生好動性,注意力易分散,愛發(fā)表見解,希望得到老師的表揚等特點,所以在教學中應抓住學生這一生理心理特點,一方面要運用多媒體課件,引發(fā)學生的興趣,使他們的注意力始終集中在課堂上;另一方面要創(chuàng)造條件和機會,讓學生發(fā)表見解,發(fā)揮學生學習的主動性。
4、心理上,學生對數(shù)學課的重視與興趣,老師應抓住這有利因素,引導學生認識到數(shù)學課的科學性,學好數(shù)學有利于其他學科的學習以及學科知識的滲透性。
最后我來具體談一談這一堂課的教學過程:
四、教學程序設計。
(一)、溫故知新,激發(fā)情趣:
首先打出第一張幻燈片復習提問:什么叫做相反數(shù)?學生回答后讓大家討論:你能找出互為相反數(shù)的兩個數(shù)在數(shù)軸上表示的點的共同特點嗎?學生會積極回答第一個問題,但第二個問題學生可能難以準確回答,于是打出第二張幻燈片引導學生仔細觀察,認真思考。從而引出課題:絕對值。結合實例使學生以輕松愉快的心情進入了本節(jié)課的學習,也使學生體會到數(shù)學來源于實踐,同時對新知識的學習有了期待,為順利完成教學任務作了思想上的準備。
(二)、得出定義,揭示內涵:
由于學生是第一次接觸絕對值這樣比較深奧的數(shù)學名詞,所以我利用數(shù)軸在第三張幻燈片里直接給出絕對值的幾何定義:一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值,(absolutevalue)這個定義學生接受起來比較容易。
給出定義后引導學生討論:“定義里的數(shù)a可以表示什么樣的數(shù)?
(通過教師親切的語言啟發(fā)學生,以培養(yǎng)師生間的默契)通過討論由師生共同得到絕對值定義里的數(shù)a可以是正數(shù),負數(shù)和0。
然后再回到第一張幻燈片里提出的問題:互為相反數(shù)的兩個數(shù)的絕對值有什么關系?
(三)、手腦并用,深入理解:
1、在上一環(huán)節(jié)與學生一起理解了絕對值的定義后,我再提出問題:如何由文字語言向數(shù)學符號語言的轉化,即如何簡單地標記絕對值,而不用漢字?在此不用提問學生,采取自問自答形式給出絕對值的記法。
2、為進一步強化概念,在對絕對值有了正確認識的基礎上,請學生做教材的課堂練習第一題,寫出一些數(shù)的絕對值??梢哉垖W生起立回答。我就學生的回答情況給出評價,如“非常好”“非常規(guī)范”“老師相信你,你一定行”等語言來激勵學生,以促進學生的發(fā)展;并再次強調絕對值的定義。
3、在完成第一題的練習后,我又給出一新的幻燈片,并提出問題:議一議一個數(shù)的絕對值與這個數(shù)有什么關系?啟發(fā)學生舉一些實際的例子來發(fā)現(xiàn)規(guī)律,并總結規(guī)律。從而引出絕對值的第二個定義。
(四)、啟發(fā)誘導,初步運用:
有了絕對值的兩個定義后,我安排了10道不同層次的判斷題讓學生思考。特別注重對于不同難度的問題,提問不同層次的學生,面向全體,使基礎差的學生也能有表現(xiàn)的機會,培養(yǎng)其自信心,激發(fā)其學習熱情。
(五)、反饋矯正,注重參與:
為鞏固本節(jié)的教學重點我再次給出三道問題:
1)絕對值是7的數(shù)有幾個?各是什么?有沒有絕對值是-2的數(shù)?
2)絕對值是0的數(shù)有幾個?各是什么?
3)絕對值小于3的整數(shù)一共有多少個?
先讓學生通過小組討論得出結果,通過以上練習使學生在掌握知識的基礎上達到靈活運用,形成一定的能力。
視學生的反饋情況以及剩余時間的多少我還預備了五道課堂升華的思考題,再次強化訓練,啟發(fā)學生的思維。
(六)、歸納小結,強化思想:
(七)、布置作業(yè),引導預習:
1、全體學生必做課本習題1、23,4,5,10。
2、選作兩道思考題:
總之,在教學過程中,我始終注意發(fā)揮學生的主體作用,讓學生通過自主、探究、合作學習來主動發(fā)現(xiàn)結論,實現(xiàn)師生互動,通過這樣的教學實踐取得了良好的教學效果,我認識到教師不僅要教給學生知識,更要培養(yǎng)學生良好的數(shù)學素養(yǎng)和學習習慣,讓學生學會學習,才能使自己真正成為一名受學生歡迎的好教師。
以上是我對本節(jié)課的設想,不足之處請老師們多多批評、指正,謝謝!
絕對值專題課教案篇十一
本節(jié)課我首先復習相反數(shù)的知識,從一對相反數(shù)在數(shù)軸上的位置,自然引出它們距離原點相等。接著舉例:出租車從車站出發(fā),向南行了10千米,又從車站出發(fā)向北行了5千米。如果用正負數(shù)表示兩次運行的情況,需要先規(guī)定一個正方向,假設向北為正,則分別是-10千米和+5千米。可是要想知道這兩次運行中,出租車一共用了多少油,與方向還有關系嗎?該與什么有關呢?面對這些問題,學生紛紛說出,只與從出發(fā)點到目的地的距離有關。
我及時給予鼓勵,并在黑板上板書“距離”二字。
(1)3到原點的距離是3個單位長度。
(2)-3到原點的距離是3個單位長度。
這時,我問學生,“這句話文字太多,想不想簡化一下?”
學生齊答“想”!
“好,那么用三個字就可以代替這句話?!庇械膶W生已經小聲說出了,是“絕對值”。
于是板書課題――絕對值。
接下來又問,“寫這三個字也有點麻煩,想不想再簡化一下?”
“想”,我看到學生已經笑了,好像這是很好玩的事,越來越簡單了。于是我又及時給出符號“||”的寫法。
到此時,學生已經明白“絕對值”就是“一個數(shù)到原點的距離”。學生自己總結出來了。
為了講清絕對值的意義,我設計了循序漸進的幾個例子。
(1)|-5|=(2)|7|=(3)|-1/3|=(4)|0|=。
當學生說出以上四個式子的結果后,又出示了第五個(5)|a|=。
很多學生沒有思考馬上就答出“等于a"。
針對學生的回答,我問“上節(jié)課,在學習相反數(shù)的時候,我告訴大家,字母可以表示哪些數(shù)?”
學生立即回答,“任意有理數(shù)”。那么這里的a也應該是任意有理數(shù)。
在此基礎上,我引導學生得出|a|的.三種情況。尤其當a0時,|a|=-a,讓學生明白,字母a中包含著一個看不見的“-”號。-a實際上是a的相反數(shù),也是一個正數(shù)。
就這樣,在我的預謀中,學生自然的明白了絕對值的意義,并學會了化簡絕對值的符號,也理解了非負數(shù)的含義。
再次面對初一的新生,我覺得很多非常熟悉的知識,可以用不同的說法讓學生理解,而且,教師一定要思路清晰。整個新知識的處理,要一氣呵成,讓學生在環(huán)環(huán)相扣的緊張狀態(tài)中,形成知識系統(tǒng),直到講完新課.
當所有的內容已經胸有成竹的時候,再來教給學生,竟然可以深入淺出,四兩拔千斤,尤其當你啟發(fā)點撥的到位,學生水到渠成的自己得出你想要講解的新課時,心里會有一種成就感,當然學生在不知不覺中自己掌握了新知識的主要內容,他們也不會覺得難以接受。
絕對值專題課教案篇十二
一、學習與導學目標:
情感態(tài)度:通過創(chuàng)設情境,初步感悟學習絕對值的必要性,促進責任心的形成。
二、學程與導程活動:
a、創(chuàng)設情境(幻燈片或掛圖)。
1、兩輛汽車,其一向東行駛10km,另一向西行駛8km。為了區(qū)別,可規(guī)定向東行駛為正,則分別記作+10km和-8km。但在計算出租車收費,汽車行駛所耗的汽油,起主要作用的是汽車行駛的路程,而不是行駛的方向。此時,行駛路程則分別記作10km和8km。
再如測量誤差問題、排球重量誰更接近標準問題……。
2、在討論數(shù)軸上的點與原點的距離時,只需要觀察它與原點相隔多少個單位長度,與位于原點何方無關。
b、學習概念:
1、我們把在數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值(absolutevalue),記作︱a︱(幻燈片)。因此,上述+10,-8的絕對值分別是10,8。
如在數(shù)軸上表示數(shù)-6的點和表示數(shù)6的點與原點的距離都是6,所以,-6和6的絕對值都是6,記作︱-6︱=6,︱6︱=6。(互為相反數(shù)的兩個數(shù)的絕對值相同)。
2、嘗試回答(1)︱+2︱=,︱1/5︱=,︱+8.2︱=;。
(2)︱-3︱=,︱-0.2︱=,︱-8.2︱=;。
(3)︱0︱=。(幻燈片)。
思考:你能從中發(fā)現(xiàn)什么規(guī)律?引導學生得出:(幻燈片)。
性質:一個正數(shù)的絕對值是它本身;。
如果用字母a表示有理數(shù),上述性質可表述為:
當a是正數(shù)時,︱a︱=a;。
當a是負數(shù)時,︱a︱=-a;。
當a=0時,︱a︱=0。
解答課本p19/7及p15練習,由p19/7體會絕對值在實際中的應用,由練習1體會上面的三個等式,由練習2中提到的絕對值大小、數(shù)軸,引出問題:
在引入負數(shù)以后,如何比較兩個數(shù)的大小,尤其是兩個負數(shù)的大小?
3、讓我們仍然回到實際中去看看有怎樣的啟發(fā),引導閱讀p16(幻燈片)。
顯然,結合問題的實際意義不難得到:-4-3-2-1012……。
因此,在數(shù)軸上你有何發(fā)現(xiàn)?生討論后發(fā)現(xiàn):從左往右表示的數(shù)越來越大。
再找?guī)讉€量試試是否如此?這些數(shù)的絕對值的大小如何?(可利用p19/6,8為素材)。
通過以上探究活動得到:正數(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù);。
4、師生活動比較下列各對數(shù)的大?。簆17例,p18練習。
5、師生小結歸納(幻燈片)。
三、筆記與板書提綱:
1、幻燈片。
2、師生板演練習p15/1。
四、練習與拓展選題:
p19/4,5,9,10。
絕對值專題課教案篇十三
《絕對值》是選自人教版初一數(shù)學第一章第二節(jié)第四部分的內容。這部分內容之前已經學習了有理數(shù)、數(shù)軸、相反數(shù)的內容,這是本節(jié)課學習的基礎。絕對值的內容主要包括含義及有理數(shù)之間的大小比較,這也為后面學習有理數(shù)的加減法奠定了基礎。
(六)教學目標。
根據(jù)對教材內容的分析,以及在新課改理念的指導下,制定了如下三維目標:
(一)知識與技能。
理解、掌握絕對值的含義,并且會比較有理數(shù)之間的大小。
(二)過程與方法。
運用數(shù)軸來推理數(shù)的絕對值,并在推理的過程中清晰的闡述自己的觀點,從而逐步發(fā)展發(fā)生的抽象思維。
(三)情感態(tài)度與價值觀。
體驗數(shù)學活動的探索性和創(chuàng)造性,感受數(shù)學的嚴謹性以及數(shù)學結論的確定性。
教學重難點。
通過以上對教材內容及教學目標的分析,以及學生已有的知識水平,本節(jié)課的教學重難點如下:
重點:絕對值的理解以及有理數(shù)的比較。
難點:負數(shù)的絕對值的理解及比較。
二、說學情。
以上就是我對教材的分析,由于教學目標及重難點的確定也是在學生情況的基礎上進行的,所以下面我對學情進行分析。
初一學生的抽象思維開始有了一定的發(fā)展,但還需一定的感性材料作支撐,同時思維比較活躍和積極,所以教學過程中會注重直觀材料的運用,然后引導學生自主思考并理解知識,以激發(fā)學生的學習興趣,調動學生的積極性和主動性。
三、說教材。
基于以上對教材、學情的分析,以及新課改的要求,我在本課中采用的教法有:講授法、演示法和引導歸納法。演示法中需要的教具有多媒體和溫度計。
四、說教法。
新課改理念告訴我們,學生不僅要學到具體的知識,更重要的是學生要學會怎樣自己學習,為終身學習奠定扎實的基礎。所以本課中我將引導學生通過自主探究、合作交流的學法來更好的掌握本節(jié)課的內容。
五、說教學程序。
為了更好的實現(xiàn)三維目標、突破重難點,我將本課的教學程序設計為以下五個環(huán)節(jié):
(一)情境導入。
出示溫度計,"北方某一城市的溫度是零下15攝氏度,南方某一城市的溫度是15攝氏度",學生在稿紙上畫一條數(shù)軸,標出這兩個溫度,并請一位學生畫在黑板上。
(二)新授。
1、從上面的問題中,我引出今天的"絕對值"概念,然后和學生一起從數(shù)軸上推導出絕對值。
2、使用多媒體呈現(xiàn)一組數(shù)字,包括幾個正數(shù),幾個負數(shù)。讓大家在數(shù)軸上畫出,并寫出每個數(shù)字的絕對值。然后學生來依次說出每個絕對值,以鞏固概念的掌握。
3、和大家一起寫出這些絕對值,把負數(shù)、正數(shù)、0的絕對值分別寫在三個地方,引導學生觀察這些絕對值,并思考其中的規(guī)律,然后和學生一起得出結論,即正數(shù)的絕對值是本身,負數(shù)的絕對值是它的相反數(shù),0的絕對值的0、得出這個結論后順勢提問:數(shù)a的絕對值是多少?進行分組討論,在討論一段時間后提醒學生剛剛的結論。
4、在每組的回答后,和學生一起總結出數(shù)a的絕對值,分三種情況,當a大于0,絕對值為a;等于0時,為0;小于0時,為-a、這三種情況的分析后,學生就充分理解了絕對值的含義。
5、回到大家畫的數(shù)軸,大家很容易比較出原點0右邊的正數(shù)的大小,那么左邊的.負數(shù)的大小怎么比較呢?提出這個問題后不急于讓學生回答,而是把學生引入一個情境,即把數(shù)軸上的數(shù)都看成是溫度,比較溫度的大小就比較容易,然后回到數(shù)的比較。在這個引導后,得出的結論是:離0越遠的數(shù),越小;也可以說絕對值越大的負數(shù)越小。
(三)鞏固練習。
在ppt上呈現(xiàn)一些數(shù)的絕對值,以及一些負數(shù)、正數(shù)、絕對值之間的比較的題。
(四)小結。
引導學生總結出今天的學習內容,培養(yǎng)學生的歸納以及邏輯思維能力。
(五)布置作業(yè)。
布置作業(yè)不是目的,目的是學生能夠更好的掌握并運用本節(jié)課的內容。所以我會布置這樣一個作業(yè):請學生回家可以在父母的幫助下,找出南方和北方分別三個城市的溫度,比較這些溫度的大小,并寫出每個溫度的絕對值并進行比較。
(六)說板書設計。
為了學生能夠更清晰的掌握內容,我用寫關鍵詞的方式來有邏輯性的呈現(xiàn)我的板書。
以上就是我說課的全部內容,謝謝!
絕對值專題課教案篇十四
在教學過程中,結合學生實際情況給枯燥的數(shù)學概念賦予生活的意味,貼近學生生活,使學生不再被動地接受知識,可以有自己獨到的見解,學生也可以大膽說出心中的想法。
2、激勵學生去發(fā)現(xiàn)問題、解決問題。
《新課程標準》明確地把“形成解決問題的一些基本策略”作為一個重要的課程目標。為此數(shù)學教學中設置一些具有挑戰(zhàn)性的問題情境,激發(fā)學生進行思考,提出具有一定跨度的問題串引導學生進行自主探索,用“試一試,你能行”、“請與同學交流你的想法”等語言鼓勵學生進行交流,使學生在探索的過程中進一步理解。
3、面向每一個學生,使每個人都獲得成功。
課堂教學中,我們投入一“石”,激起了學生學習的“千層浪”,使得課堂變成了學生思維操練的場所。教師引導學生去尋找和發(fā)現(xiàn),自己只是一個組織者和參與者,和學生一起共同探索。學生真正成為學習的主任,學生不僅積極地參與每一個教學環(huán)節(jié),情緒高昂,切身感受了學習的快樂,品嘗了學生求知、參與、成功、交流和自尊的需要。我鼓勵學生“你學會多少就匯報多少…..”這充分調動了學生學習的積極性、主動性,大大引發(fā)了學生潛在的創(chuàng)造動因,創(chuàng)設了有利于個性發(fā)展的情境,因而引出了不同的學習結果,激發(fā)了學生學習的興趣,提高了課堂效率。
將本文的word文檔下載到電腦,方便收藏和打印。
絕對值專題課教案篇十五
絕對值概念既【】是本節(jié)的又是。關于絕對值的概念,需要明確的是無論是絕對值的幾何定義,還是絕對值的代數(shù)定義,都揭示了絕對值的一個重要性質——非負性,也就是說,任何一個有理數(shù)的絕對值都是非負數(shù),即無論a取任意有理數(shù),都有。
教材上絕對值的定義是從幾何角度給出的,也就是從數(shù)軸上表示數(shù)的點在數(shù)軸上的位置出發(fā),得到的定義。這樣,數(shù)軸的概念、畫法、利用數(shù)軸比較有理數(shù)的大小、相反數(shù),以及絕對值,通過數(shù)軸,這些知識都聯(lián)系在一起了。此外,0的絕對值是0,從幾何定義出發(fā),就十分容易理解了。
絕對值的定義絕對值的表示方法用絕對值比較有理數(shù)的大小。
1.絕對值的代數(shù)定義。
一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);零的絕對值是零.。
2.絕對值的幾何定義。
在數(shù)軸上表示一個數(shù)的點離開原點的距離,叫做這個數(shù)的絕對值.。
3.絕對值的主要性質。
(4)兩個相反數(shù)的絕對值相等.。
1.兩個負數(shù)大小的比較,因為兩個負數(shù)在數(shù)軸上的位置關系是:絕對值較大的負數(shù)一定在絕對值較小的負數(shù)左邊,所以,兩個負數(shù),絕對值大的反而小。
比較兩個負數(shù)的方法步驟是:
(1)先分別求出兩個負數(shù)的絕對值;
(2)比較這兩個絕對值的大小;
(3)根據(jù)“兩個負數(shù),絕對值大的反而小”作出正確的判斷.。
絕對值專題課教案篇十六
表達解決問題的方法;通過用絕對值或數(shù)軸對兩個負數(shù)大小的比較,讓學生學會嘗試評價兩種不同方法之間的差異。
3、情感態(tài)度與價值觀:
借助數(shù)軸解決數(shù)學問題,有意識地形成“腦中有圖,心中有數(shù)”的數(shù)形結合思想。通過“做一做“議一議”“試一試”問題的思考及回答,培養(yǎng)學生積極參與數(shù)學活動,并在數(shù)學活動中體驗成功,鍛煉學生克服困難的意志,建立自信心,發(fā)展學生清晰地闡述自己觀點的能力以及培養(yǎng)學生合作探索、合作交流、合作學習的新型學習方式。
理解絕對值的概念;求一個數(shù)的絕對值;比較兩個負數(shù)的大小。
1、教師檢查組長學案學習情況,組長檢查組員學案學習情況。(約5分鐘)2.在組長的組織下進行討論、交流。(約5分鐘)3、小組分任務展示。(約25分鐘)4、達標檢測。(約5分鐘)5、總結(約5分鐘)。
(一)、溫故知新:。
(二)小組合作交流,探究新知。
1、觀察下圖,回答問題:(五組完成)。
大象距原點多遠?兩只小狗分別距原點多遠?
歸納:在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做這個數(shù)的。一個數(shù)a的絕對值記作:.
4的絕對值記作,它表示在上與的距離,所以|4|=。
2、做一做:
(1)、求下列各數(shù)的絕對值:(四組完成)-1.5,0,-7,2(2)、求下列各組數(shù)的絕對值:(一組完成)。
(1)4,-4;(2)0.8,-0.8;。
從上面的結果你發(fā)現(xiàn)了什么?
3、議一議:(八組完成)。
(1)|+2|=,
你能從中發(fā)現(xiàn)什么規(guī)律?
小結:正數(shù)的絕對值是它,負數(shù)的絕對值是它的,0的絕對值是。
4、試一試:(二組完成)。
若字母a表示一個有理數(shù),你知道a的絕對值等于什么嗎?
(通過上題例子,學生歸納總結出一個數(shù)的絕對值與這個數(shù)的關系。)。
5:做一做:(三組完成)。
1、(1)在數(shù)軸上表示下列各數(shù),并比較它們的大小:
-3,-1。
(2)求出(1)中各數(shù)的絕對值,并比較它們的大小。
(3)你發(fā)現(xiàn)了什么?
2、比較下列每組數(shù)的大小。
(1)-1和–5;(五組完成)(2)?
(3)-8和-3(七組完成)。
5和-2.7(六組完成)6五、達標檢測:
1:填空:
|+15|=()|–4|=()。
|0|=()|4|=()2:判斷(1)、絕對值最小的數(shù)是0。()(2)、一個數(shù)的絕對值一定是正數(shù)。()(3)、一個數(shù)的絕對值不可能是負數(shù)。()。
(4)、互為相反數(shù)的兩個數(shù),它們的絕對值一定相等。()(5)、一個數(shù)的絕對值越大,表示它的點在數(shù)軸上離原點越近。()。
1絕對值:在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值.
2.絕對值的性質:正數(shù)的絕對值是它本身;。
負數(shù)的絕對值是它的相反數(shù);0的絕對值是0.
3、會利用絕對值比較兩個負數(shù)的大?。簝蓚€負數(shù)比較大小,絕對值大的反而小.
p50頁,知識技能第1,2題.
【本文地址:http://m.aiweibaby.com/zuowen/8438488.html】