高一數(shù)學(xué)必修一教案大全(21篇)

格式:DOC 上傳日期:2023-11-15 05:47:13
高一數(shù)學(xué)必修一教案大全(21篇)
時(shí)間:2023-11-15 05:47:13     小編:薇兒

編寫(xiě)教案需要教師結(jié)合自身的教學(xué)經(jīng)驗(yàn)和專業(yè)知識(shí),不斷進(jìn)行反思和改進(jìn)。教案中的教學(xué)內(nèi)容應(yīng)注重知識(shí)的系統(tǒng)性和邏輯性,能夠幫助學(xué)生建立起知識(shí)的框架。教案范文中的特色模塊和創(chuàng)新點(diǎn)能夠啟發(fā)教師的教學(xué)思路和方法。

高一數(shù)學(xué)必修一教案篇一

三、在細(xì)胞質(zhì)中,除了細(xì)胞器外,還有呈膠質(zhì)狀態(tài)的細(xì)胞質(zhì)基質(zhì)。

細(xì)胞質(zhì):包括細(xì)胞器和細(xì)胞質(zhì)基質(zhì)。

四、電子顯微鏡下看到的是亞顯微結(jié)構(gòu),普通顯微鏡下看到顯微結(jié)構(gòu)。

光鏡能看到:細(xì)胞質(zhì),線粒體,葉綠體,液泡,細(xì)胞壁。

實(shí)驗(yàn):用高倍顯微鏡觀察葉綠體和線粒體。

健那綠染液是將活細(xì)胞中線粒體染色的專一性染料,可以使活細(xì)胞中的線粒體呈現(xiàn)藍(lán)綠色。

材料:新鮮的蘚類的葉(葉片薄,直接觀察)。

菠菜葉稍帶葉肉的下表皮(上表皮起保護(hù)作用,幾乎無(wú)葉綠體;下表皮海綿組織,有氣孔保衛(wèi)細(xì)胞,有葉綠體)。

五、分泌蛋白的合成和運(yùn)輸。

有些蛋白質(zhì)是在細(xì)胞內(nèi)合成后,分泌到細(xì)胞外起作用,這類蛋白叫分泌蛋白。如消化酶(催化作用)、抗體(免疫)和一部分激素(信息傳遞)。

核糖體內(nèi)質(zhì)網(wǎng)高爾基體細(xì)胞膜。

(合成肽鏈)(加工成蛋白質(zhì))(進(jìn)一步加工)(囊泡與細(xì)胞膜融合,蛋白質(zhì)釋放)。

分泌蛋白從合成至分泌到細(xì)胞外利用到的細(xì)胞器?

答:核糖體、內(nèi)質(zhì)網(wǎng)、高爾基體、線粒體。

分泌蛋白從合成至分泌到細(xì)胞外利用到的結(jié)構(gòu)?

核糖體、內(nèi)質(zhì)網(wǎng)、高爾基體、線粒體、細(xì)胞核、囊泡、細(xì)胞膜。

六、生物膜系統(tǒng)。

1、概念:細(xì)胞膜、核膜,各種細(xì)胞器的膜共同組成的生物膜系統(tǒng)。

2、作用:使細(xì)胞具有穩(wěn)定內(nèi)部環(huán)境物質(zhì)運(yùn)輸、能量轉(zhuǎn)換、信息傳遞;為各種酶提供大量附著位點(diǎn),是許多生化反應(yīng)的場(chǎng)所;把各種細(xì)胞器分隔開(kāi),保證生命活動(dòng)高效、有序進(jìn)行。

3、內(nèi)質(zhì)網(wǎng)膜內(nèi)連核膜外連細(xì)胞膜還和線粒體膜直接相連。

經(jīng)過(guò)囊泡與高爾基體膜間接相連。

高一數(shù)學(xué)必修一教案篇二

(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系。

(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像。

二、重點(diǎn)難點(diǎn)分析。

(1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與熟悉。教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性,奇偶性的本質(zhì),把握單調(diào)性的證實(shí)。

(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過(guò),但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語(yǔ)言去刻畫(huà)它。這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對(duì)高一的學(xué)生來(lái)說(shuō)是比較困難的,因此要在概念的形成上重點(diǎn)下功夫。單調(diào)性的證實(shí)是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證實(shí),也沒(méi)有意識(shí)到它的重要性,所以單調(diào)性的證實(shí)自然就是教學(xué)中的難點(diǎn)。

三、教法建議。

(1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù)。反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性熟悉出發(fā),通過(guò)問(wèn)題逐步向抽象的定義靠攏。如可以設(shè)計(jì)這樣的問(wèn)題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來(lái)解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語(yǔ)言表示出來(lái)。在這個(gè)過(guò)程中對(duì)一些關(guān)鍵的詞語(yǔ)(某個(gè)區(qū)間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結(jié)合起來(lái)。

(2)函數(shù)單調(diào)性證實(shí)的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號(hào),在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律。

函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對(duì)應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開(kāi)始,逐漸讓在數(shù)軸上動(dòng)起來(lái),觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫(xiě)出來(lái)。經(jīng)歷了這樣的過(guò)程,再得到等式時(shí),就比較輕易體會(huì)它代表的是無(wú)數(shù)多個(gè)等式,是個(gè)恒等式。關(guān)于定義域關(guān)于原點(diǎn)對(duì)稱的問(wèn)題,也可借助課件將函數(shù)圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現(xiàn)定義域的對(duì)稱性,同時(shí)還可以借助圖象(如)說(shuō)明定義域關(guān)于原點(diǎn)對(duì)稱只是函數(shù)具備奇偶性的必要條件而不是充分條件。

高一數(shù)學(xué)必修一教案篇三

教學(xué)目標(biāo)。

熟悉兩角和與差的正、余公式的推導(dǎo)過(guò)程,提高邏輯推理能力。

掌握兩角和與差的正、余弦公式,能用公式解決相關(guān)問(wèn)題。

教學(xué)重難點(diǎn)。

熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。

教學(xué)過(guò)程。

復(fù)習(xí)。

兩角差的余弦公式。

用-b代替b看看有什么結(jié)果?

高一數(shù)學(xué)必修一教案篇四

1、教材(教學(xué)內(nèi)容)。

2、設(shè)計(jì)理念。

3、教學(xué)目標(biāo)。

情感態(tài)度與價(jià)值觀目標(biāo):引導(dǎo)學(xué)生學(xué)會(huì)閱讀數(shù)學(xué)教材,學(xué)會(huì)發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美、

4、重點(diǎn)難點(diǎn)。

重點(diǎn):任意角三角函數(shù)的定義、

難點(diǎn):任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、

5、學(xué)情分析。

6、教法分析。

7、學(xué)法分析。

本課時(shí)先通過(guò)“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認(rèn)知結(jié)構(gòu),再通過(guò)類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運(yùn)用類比學(xué)習(xí)法,來(lái)研究三角函數(shù)一些基本性質(zhì)和符號(hào)問(wèn)題,從而使學(xué)生形成新的認(rèn)識(shí)結(jié)構(gòu),達(dá)成教學(xué)目標(biāo)。

高一數(shù)學(xué)必修一教案篇五

(1)理解函數(shù)的概念;。

(2)了解區(qū)間的概念;。

2、目標(biāo)解析。

(2)了解區(qū)間的概念就是指能夠體會(huì)用區(qū)間表示數(shù)集的意義和作用;。

【問(wèn)題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問(wèn)題是函數(shù)的概念及符號(hào)的理解,產(chǎn)生這一問(wèn)題的原因是:函數(shù)本身就是一個(gè)抽象的概念,對(duì)學(xué)生來(lái)說(shuō)一個(gè)難點(diǎn)。要解決這一問(wèn)題,就要在通過(guò)從實(shí)際問(wèn)題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實(shí)際,把抽象轉(zhuǎn)化為具體。

【教學(xué)過(guò)程】。

問(wèn)題1:一枚炮彈發(fā)射后,經(jīng)過(guò)26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時(shí)間t(單位:s)變化的規(guī)律是:h=130t-5t2.

1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?

1.2高度變量h與時(shí)間變量t之間的對(duì)應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?

設(shè)計(jì)意圖:通過(guò)以上問(wèn)題,讓學(xué)生正確理解讓學(xué)生體會(huì)用解析式或圖象刻畫(huà)兩個(gè)變量之間的依賴關(guān)系,從問(wèn)題的實(shí)際意義可知,在t的變化范圍內(nèi)任給一個(gè)t,按照給定的對(duì)應(yīng)關(guān)系,都有的一個(gè)高度h與之對(duì)應(yīng)。

問(wèn)題2:分析教科書(shū)中的實(shí)例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的圖象,都有的一個(gè)臭氧層空洞面積s與之相對(duì)應(yīng)。

問(wèn)題3:要求學(xué)生仿照實(shí)例(1)、(2),描述實(shí)例(3)中恩格爾系數(shù)和時(shí)間的關(guān)系。

設(shè)計(jì)意圖:通過(guò)這些問(wèn)題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。

高一數(shù)學(xué)必修一教案篇六

1、使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫(xiě)出數(shù)列的前幾項(xiàng)。

(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)確定的。

(2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第項(xiàng)與項(xiàng)數(shù)的關(guān)系式,能根據(jù)通項(xiàng)公式寫(xiě)出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個(gè)數(shù)列的前幾項(xiàng)寫(xiě)出該數(shù)列的一個(gè)通項(xiàng)公式。

(3)已知一個(gè)數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫(xiě)出數(shù)列的`前幾項(xiàng)。

2、通過(guò)對(duì)一列數(shù)的觀察、歸納,寫(xiě)出符合條件的一個(gè)通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力。

3、通過(guò)由求的過(guò)程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣。

(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會(huì)數(shù)列知識(shí)在實(shí)際生活中的作用,可由實(shí)際問(wèn)題引入,從中抽象出數(shù)列要研究的問(wèn)題,使學(xué)生對(duì)所要研究的內(nèi)容心中有數(shù),如書(shū)中所給的例子,還有物品堆放個(gè)數(shù)的計(jì)算等。

(2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系。在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列。函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法。由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法。

(3)由數(shù)列的通項(xiàng)公式寫(xiě)出數(shù)列的前幾項(xiàng)是簡(jiǎn)單的代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫(xiě)通項(xiàng)公式作一些準(zhǔn)備,尤其是對(duì)程度差的學(xué)生,應(yīng)多舉幾個(gè)例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫(xiě)通項(xiàng)公式提供幫助。

(4)由數(shù)列的前幾項(xiàng)寫(xiě)出數(shù)列的一個(gè)通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個(gè)難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動(dòng)等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來(lái)調(diào)整等。如果學(xué)生一時(shí)不能寫(xiě)出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系。

(5)對(duì)每個(gè)數(shù)列都有求和問(wèn)題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項(xiàng)和的概念,用表示的問(wèn)題是重點(diǎn)問(wèn)題,可先提出一個(gè)具體問(wèn)題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問(wèn)題的解決,舉例時(shí)要兼顧結(jié)果可合并及不可合并的情況。

(6)給出一些簡(jiǎn)單數(shù)列的通項(xiàng)公式,可以求其項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對(duì)程度好的學(xué)生應(yīng)提出這一問(wèn)題,學(xué)生運(yùn)用函數(shù)知識(shí)是可以解決的。

高一數(shù)學(xué)必修一教案篇七

一、教學(xué)目標(biāo):

1、識(shí)記消費(fèi)的不同類型,消費(fèi)結(jié)構(gòu)的含義以及恩格爾系數(shù)的含義。

2、理解影響消費(fèi)水平的因素,最主要的是收入水平和物價(jià)水平;理解錢(qián)貨兩清的消費(fèi),貸款消費(fèi)以及租賃消費(fèi)時(shí)商品所有權(quán)和使用權(quán)的變化。

教學(xué)重難點(diǎn)。

教學(xué)重點(diǎn)、難點(diǎn):

影響消費(fèi)水平的因素。

恩格爾系數(shù)的變化的含義。

教學(xué)過(guò)程。

教學(xué)內(nèi)容:

(一)情景導(dǎo)入:

學(xué)生活動(dòng):就日常生活的體驗(yàn)得出相應(yīng)的回應(yīng),例如:買文具、食堂吃飯、買零食、買衣服、電話費(fèi)等日常消費(fèi)活動(dòng)。

教師活動(dòng):多媒體課件展示豐富多彩的消費(fèi)活動(dòng),其中主要集中于學(xué)生可能并有實(shí)際經(jīng)驗(yàn)的消費(fèi)內(nèi)容。

所以我們這節(jié)課就影響消費(fèi)的因素及消費(fèi)的類型相關(guān)討論。

(二)情景分析:

探究活動(dòng)一:如何安排生活費(fèi)?

學(xué)生活動(dòng):互相安排并討論各自的消費(fèi)活動(dòng)或消費(fèi)內(nèi)容,發(fā)現(xiàn)其中的區(qū)別。

(1)收入。

教師活動(dòng):設(shè)問(wèn)解疑。

同學(xué)們是否發(fā)現(xiàn)各自的消費(fèi)有什么不同?而造成這個(gè)區(qū)別的原因在此主要是什么?

教師講解:收入是消費(fèi)的前提與基礎(chǔ)。在其他條件不變的情況下,人們的可支配收入越多,對(duì)各種商品和服務(wù)的消費(fèi)量就越大。收入增長(zhǎng)較快的時(shí)期,消費(fèi)增長(zhǎng)也較快;反之,當(dāng)收入增長(zhǎng)速度下降時(shí),消費(fèi)增幅也下降。當(dāng)前收入直接影響消費(fèi),預(yù)期消費(fèi)則影響消費(fèi)信心,當(dāng)預(yù)期消費(fèi)樂(lè)觀時(shí),消費(fèi)信心就強(qiáng);預(yù)期消費(fèi)較低時(shí),消費(fèi)信心就弱。所以,要提高居民的生活水平,必須保持經(jīng)濟(jì)的穩(wěn)定增長(zhǎng),增加居民收入。

(2)物價(jià)水平。

教師活動(dòng):影響消費(fèi)的因素除了收入水平還有沒(méi)有其他了呢?

學(xué)生活動(dòng):就材料進(jìn)行相應(yīng)的討論,得出初步的結(jié)論,消費(fèi)活動(dòng)還受到物價(jià)水平的影響。

教師講解:消費(fèi)品價(jià)格的變化會(huì)影響人們的購(gòu)買能力。人們?cè)谝欢〞r(shí)期的總收入是有限的,如果消費(fèi)品價(jià)格上漲,會(huì)引起購(gòu)買力下降,因而消費(fèi)需求就降低。反之,則購(gòu)買力提高,消費(fèi)需求就增加。因此,物價(jià)的穩(wěn)定對(duì)保持人們的消費(fèi)水平,安定生活和穩(wěn)定社會(huì)具有重要意義。正是由于這個(gè)原因,穩(wěn)定物價(jià)才成為國(guó)家宏觀調(diào)控的重要目標(biāo)。

教師:雖然我們是用同學(xué)們的消費(fèi)活動(dòng)做的說(shuō)明,但要明白家庭消費(fèi)的影響因素也是同樣的道理。我們?cè)诳疾炝丝傮w消費(fèi)狀況的前提下,接著來(lái)討論一個(gè)具體的消費(fèi)案例:

探究活動(dòng)二:小君的苦惱。

(1)按交易方式不同,可分錢(qián)貨兩清的消費(fèi)、貸款消費(fèi)和租賃消費(fèi)。

教師活動(dòng):按交易方式不同,可分錢(qián)貨兩清的消費(fèi)、貸款消費(fèi)和租賃消費(fèi)。

租賃消費(fèi)也是一種比較常見(jiàn)的消費(fèi)方式,我們可以通過(guò)租賃的方式使商品的所有權(quán)不發(fā)生變更,而獲得該商品在一定期限的使用權(quán)。

貸款消費(fèi)是一種新興的消費(fèi)方式,主要用于購(gòu)買大宗耐用消費(fèi)品及服務(wù)。因?yàn)檫@些消費(fèi)品超出消費(fèi)者當(dāng)前的支付能力,因而預(yù)支自己未來(lái)的收入,來(lái)滿足當(dāng)前的需要。也就是我們常說(shuō)的“花明天的錢(qián),園今天的夢(mèng)”。貸款消費(fèi)的交易方式,其消費(fèi)品的所有權(quán)與使用權(quán)沒(méi)有完全轉(zhuǎn)移。在消費(fèi)者按照約定按時(shí)還貸的前提下,消費(fèi)品的所有權(quán)與使用權(quán)逐漸發(fā)生轉(zhuǎn)移,直至還完貸款為止,其所有權(quán)與使用權(quán)才徹底轉(zhuǎn)移到消費(fèi)者手里。

貸款消費(fèi)不僅滿足了消費(fèi)者的生活需要,提高了消費(fèi)者的生活質(zhì)量,而且促進(jìn)了經(jīng)濟(jì)的發(fā)展,特別是我國(guó)經(jīng)濟(jì)發(fā)展進(jìn)入買方市場(chǎng)后,貸款消費(fèi)對(duì)擴(kuò)大內(nèi)需,拉動(dòng)經(jīng)濟(jì)的增長(zhǎng)起來(lái)重要的作用。所以,我們要轉(zhuǎn)變傳統(tǒng)的消費(fèi)觀念,以積極的態(tài)度來(lái)對(duì)待貸款消費(fèi),通過(guò)貸款消費(fèi)滿足來(lái)滿足當(dāng)前的需要,通過(guò)生活質(zhì)量。當(dāng)然,在貸款消費(fèi)是也要考慮自己的償還能力,還要講究信用,按時(shí)還貸。

學(xué)生活動(dòng):就相關(guān)情境進(jìn)行討論,做出自己的選擇并給出相應(yīng)的解釋理由。

(2)按消費(fèi)對(duì)象分,消費(fèi)分為有形商品消費(fèi)和勞務(wù)消費(fèi)。

教師活動(dòng):按消費(fèi)對(duì)象分,消費(fèi)分為有形商品消費(fèi)和勞務(wù)消費(fèi),有形商品消費(fèi)消費(fèi)的是有形的商品,而勞務(wù)消費(fèi)消費(fèi)的是無(wú)形的服務(wù)。

萬(wàn)事大吉了!大家知道小君已經(jīng)達(dá)到哪種消費(fèi)層次了嗎?

生存資料消費(fèi)?發(fā)展資料消費(fèi)?享受資料消費(fèi)?

學(xué)生活動(dòng):討論并回答相應(yīng)問(wèn)題,得出享受資料消費(fèi)的結(jié)論。

(3)按消費(fèi)的目的不同,可分為生存資料消費(fèi)、發(fā)展資料消費(fèi)和享受資料消費(fèi)。

教師活動(dòng):按消費(fèi)的目的不同,可分為生存資料消費(fèi)、發(fā)展資料消費(fèi)和享受資料消費(fèi)。其中生存資料消費(fèi)是最基本的消費(fèi),滿足較低層次的衣食住用行的需要;發(fā)展資料消費(fèi)主要指滿足人們發(fā)展德育、智育等方面需要的消費(fèi);享受資料消費(fèi)滿足人們享受的需要。隨著經(jīng)濟(jì)水平的提高,發(fā)展資料和享受資料消費(fèi)將逐漸增加。

探究活動(dòng)三:考查自己家里的消費(fèi)結(jié)構(gòu)。

學(xué)生活動(dòng):認(rèn)真閱讀并討論得出結(jié)論家庭消費(fèi)的不同內(nèi)容體現(xiàn)了不同的消費(fèi)水平。

(1)消費(fèi)結(jié)構(gòu)。

教師活動(dòng):多媒體展示近幾年社會(huì)的消費(fèi)現(xiàn)狀,例:假日旅游、電子產(chǎn)品、汽車等。引導(dǎo)學(xué)生通過(guò)不同層面的直觀感受來(lái)了解消費(fèi)結(jié)構(gòu)的變化。

要了解家庭消費(fèi)水平先要知道一個(gè)概念就是消費(fèi)結(jié)構(gòu),是指人們各類消費(fèi)支出在消費(fèi)總支出中所占的比重。消費(fèi)結(jié)構(gòu)會(huì)隨著經(jīng)濟(jì)的發(fā)展、收入的變化而不斷變化,變化的方向遵循由生存需要到發(fā)展需要再到享受需要的順序。

(2)恩格爾系數(shù)。

教師活動(dòng):恩格爾系數(shù)指食品支出占家庭總支出的比重,用公式表示:恩格爾系數(shù)=食品支出費(fèi)用/各項(xiàng)消費(fèi)總支出費(fèi)用×100%。一般恩格爾系數(shù)越大,越影響其他消費(fèi)支出,特別是影響發(fā)展資料和享受資料的增加,限制消費(fèi)層次和消費(fèi)質(zhì)量的提高,因此生活水平就越低,相反恩格爾系數(shù)減小,生活水平就提高,消費(fèi)結(jié)構(gòu)會(huì)逐步改善。恩格爾系數(shù)是消費(fèi)結(jié)構(gòu)研究中的重要概念,在國(guó)際上受到普遍承認(rèn)和重視。

國(guó)際上甚至用它作為區(qū)分國(guó)際間消費(fèi)結(jié)構(gòu)層次高低的最一般標(biāo)準(zhǔn)。聯(lián)合國(guó)糧農(nóng)組織在20世紀(jì)70年代中期提出劃分窮國(guó)富國(guó)的標(biāo)準(zhǔn):恩格爾系數(shù)在60%以上為絕對(duì)貧困國(guó)家;50%~59%的國(guó)家為勉強(qiáng)度日(我們稱之為溫飽型);在40%~49%為小康水平;在20%~39%為富裕水平;20%以下為極富裕國(guó)家。

我國(guó)這幾年經(jīng)濟(jì)結(jié)構(gòu)有了很大改善,消費(fèi)水平不斷提高。

(三)情景回歸:

教師組織學(xué)生反思總結(jié)本節(jié)課的主要內(nèi)容,并進(jìn)行當(dāng)堂檢測(cè),了解教學(xué)反饋。

將本文的word文檔下載到電腦,方便收藏和打印。

高一數(shù)學(xué)必修一教案篇八

教學(xué)目標(biāo)。

3.讓學(xué)生深刻理解向量在處理平面幾何問(wèn)題中的優(yōu)越性.

教學(xué)重難點(diǎn)。

教學(xué)重點(diǎn):用向量方法解決實(shí)際問(wèn)題的基本方法:向量法解決幾何問(wèn)題的“三步曲”.

教學(xué)難點(diǎn):如何將幾何等實(shí)際問(wèn)題化歸為向量問(wèn)題.

教學(xué)過(guò)程。

由于向量的線性運(yùn)算和數(shù)量積運(yùn)算具有鮮明的幾何背景,平面幾何圖形的許多性質(zhì),如平移、全等、相似、長(zhǎng)度、夾角等都可以由向量的線性運(yùn)算及數(shù)量積表示出來(lái),因此,可用向量方法解決平面幾何中的一些問(wèn)題,下面我們通過(guò)幾個(gè)具體實(shí)例,說(shuō)明向量方法在平面幾何中的運(yùn)用。

思考:

運(yùn)用向量方法解決平面幾何問(wèn)題可以分哪幾個(gè)步驟?

運(yùn)用向量方法解決平面幾何問(wèn)題可以分哪幾個(gè)步驟?

“三步曲”:

(2)通過(guò)向量運(yùn)算,研究幾何元素之間的關(guān)系,如距離、夾角等問(wèn)題;。

(3)把運(yùn)算結(jié)果“翻譯”成幾何關(guān)系.

高一數(shù)學(xué)必修一教案篇九

1.閱讀課本練習(xí)止。

2.回答問(wèn)題:

(1)課本內(nèi)容分成幾個(gè)層次?每個(gè)層次的中心內(nèi)容是什么?

(2)層次間的聯(lián)系是什么?

(3)對(duì)數(shù)函數(shù)的定義是什么?

(4)對(duì)數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?

3.完成練習(xí)。

4.小結(jié)。

二、方法指導(dǎo)。

1.在學(xué)習(xí)對(duì)數(shù)函數(shù)時(shí),同學(xué)們應(yīng)從熟悉的指數(shù)問(wèn)題出發(fā),通過(guò)對(duì)指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的認(rèn)識(shí),而且畫(huà)對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù)的分類討論而且對(duì)每一類問(wèn)題也可以多選幾個(gè)不同的底,畫(huà)在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。

2.本節(jié)課的主線是對(duì)數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問(wèn)題都應(yīng)圍繞著這條主線展開(kāi),同學(xué)們?cè)趯W(xué)習(xí)時(shí)應(yīng)該把兩個(gè)函數(shù)進(jìn)行類比,通過(guò)互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì)。

一、提問(wèn)題。

1.對(duì)數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?

2.兩個(gè)函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關(guān)系?

3.是否所有的函數(shù)都有反函數(shù)?試舉例說(shuō)明。

二、變題目。

1.試求下列函數(shù)的反函數(shù):

(1);(2);(3);(4)。

2.求下列函數(shù)的定義域:。

(1);(2);(3)。

3.已知?jiǎng)t=;的定義域?yàn)椤?/p>

1.對(duì)數(shù)函數(shù)的有關(guān)概念。

(1)把函數(shù)叫做對(duì)數(shù)函數(shù),叫做對(duì)數(shù)函數(shù)的底數(shù)。

(2)以10為底數(shù)的對(duì)數(shù)函數(shù)為常用對(duì)數(shù)函數(shù)。

(3)以無(wú)理數(shù)為底數(shù)的對(duì)數(shù)函數(shù)為自然對(duì)數(shù)函數(shù)。

2.反函數(shù)的概念。

在指數(shù)函數(shù)中,是自變量,是的函數(shù),其定義域是,值域是;在對(duì)數(shù)函數(shù)中,是自變量,是的函數(shù),其定義域是,值域是,像這樣的兩個(gè)函數(shù)叫做互為反函數(shù)。

3.與對(duì)數(shù)函數(shù)有關(guān)的定義域的求法:

4.舉例說(shuō)明如何求反函數(shù)。

一、課外作業(yè):習(xí)題3-5a組1,2,3,b組1,

二、課外思考:

1.求定義域:

2.求使函數(shù)的函數(shù)值恒為負(fù)值的的取值范圍。

高一數(shù)學(xué)必修一教案篇十

設(shè)計(jì)思路:通過(guò)一系列的猜想得出德。摩根律,但是這個(gè)結(jié)論僅僅是猜想,數(shù)學(xué)是一門(mén)科學(xué),所以需要論證它的正確性,因此本節(jié)通過(guò)剖析維恩圖的四部分來(lái)驗(yàn)證猜想的正確性,并對(duì)德摩根律進(jìn)行簡(jiǎn)單的應(yīng)用,因此我們制作了本微課。

教學(xué)過(guò)程:

一、片頭。

(20秒以內(nèi))。

內(nèi)容:你好,現(xiàn)在讓我們一起來(lái)學(xué)習(xí)《集合的運(yùn)算——自己探索也能發(fā)現(xiàn)的數(shù)學(xué)規(guī)律(第二講)》。

第1張ppt。

12秒以內(nèi)。

二、正文講解。

(4分20秒左右)。

1、引入:牛頓曾說(shuō)過(guò):“沒(méi)有大膽的猜測(cè),就做不出偉大的發(fā)現(xiàn)?!?/p>

那么,這個(gè)規(guī)律是偶然的,還是一個(gè)恒等式呢?

第2張ppt。

28秒以內(nèi)。

2、規(guī)律的驗(yàn)證:。

第3張ppt。

2分10秒以內(nèi)。

3、抽象概括:通過(guò)我們的觀察和驗(yàn)證,我們發(fā)現(xiàn)這個(gè)規(guī)律是一個(gè)恒等式。

而這個(gè)規(guī)律就是180年前著名的英國(guó)數(shù)學(xué)家德摩根發(fā)現(xiàn)的。

為了紀(jì)念他,我們將它稱為德摩根律。

原來(lái)我們通過(guò)自己的探索也能發(fā)現(xiàn)這么偉大的數(shù)學(xué)規(guī)律。

第4張ppt。

30秒以內(nèi)。

第5張ppt。

1分20秒以內(nèi)。

三、結(jié)尾。

(20秒以內(nèi))。

通過(guò)這在道題的解答,我們發(fā)現(xiàn)德摩根律為解答集合運(yùn)算問(wèn)題提供了更為簡(jiǎn)便的方法。

希望你在今后的學(xué)習(xí)中,勇于探索,發(fā)現(xiàn)更多有趣的規(guī)律。

第6張ppt。

10秒以內(nèi)。

教學(xué)反思(自我評(píng)價(jià))。

學(xué)生在學(xué)習(xí)集合時(shí)會(huì)接觸到很多的集合運(yùn)算,往往學(xué)生覺(jué)得這是集合中的難點(diǎn),因此本節(jié)課通過(guò)一系列的猜想,以精彩的動(dòng)畫(huà)展示,讓學(xué)生在直觀的環(huán)境下輕松的學(xué)習(xí),提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,并通過(guò)層層深入的講解,讓學(xué)生進(jìn)一步加強(qiáng)對(duì)集合運(yùn)算的理解和應(yīng)用能力,效果非常好。

高一數(shù)學(xué)必修一教案篇十一

忙碌的日子總是過(guò)得很快,轉(zhuǎn)眼間期中考試的時(shí)間又到了,我們高一數(shù)學(xué)必修四的教學(xué)也進(jìn)入了最后的復(fù)習(xí)沖刺階段。回顧半學(xué)期以來(lái),我對(duì)前面的教學(xué)感受頗深。

必修四由三角函數(shù)、平面向量、和三角恒等變換三章構(gòu)成,三角函數(shù)與三角恒等變換是高中數(shù)學(xué)課程的傳統(tǒng)內(nèi)容,平面向量基本上也是,因此,本模塊的內(nèi)容屬于“傳統(tǒng)內(nèi)容”。與以往的教科書(shū)相比較,本書(shū)在內(nèi)容、要求以及章節(jié)安排、處理方法上都有新的變化。

在內(nèi)容安排上,第一章三角函數(shù)的學(xué)習(xí)為第二章平面向量作了必要的準(zhǔn)備,同時(shí)應(yīng)用第二章平面向量的知識(shí)推導(dǎo)兩角差的余弦公式,使第三章三角恒等變換可以獨(dú)立成章。學(xué)習(xí)完后,心中有幾點(diǎn)體會(huì)如下:

高一數(shù)學(xué)必修一教案篇十二

1、了解函數(shù)的單調(diào)性和奇偶性的概念,把握有關(guān)證實(shí)和判定的基本方法。

(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念。

(2)能從數(shù)和形兩個(gè)角度熟悉單調(diào)性和奇偶性。

(3)能借助圖象判定一些函數(shù)的單調(diào)性,能利用定義證實(shí)某些函數(shù)的單調(diào)性;能用定義判定某些函數(shù)的奇偶性,并能利用奇偶性簡(jiǎn)化一些函數(shù)圖象的繪制過(guò)程。

2、通過(guò)函數(shù)單調(diào)性的證實(shí),提高學(xué)生在代數(shù)方面的推理論證能力;通過(guò)函數(shù)奇偶性概念的形成過(guò)程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從非凡到一般的數(shù)學(xué)思想。

3、通過(guò)對(duì)函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對(duì)數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂(lè)于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度。

一、知識(shí)結(jié)構(gòu)。

(1)函數(shù)單調(diào)性的概念。包括增函數(shù)。減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系。

(2)函數(shù)奇偶性的概念。包括奇函數(shù)。偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)。偶函數(shù)的圖像。

二、重點(diǎn)難點(diǎn)分析。

(1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與熟悉。教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性,奇偶性的本質(zhì),把握單調(diào)性的證實(shí)。

(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過(guò),但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語(yǔ)言去刻畫(huà)它。這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對(duì)高一的學(xué)生來(lái)說(shuō)是比較困難的,因此要在概念的形成上重點(diǎn)下功夫。單調(diào)性的證實(shí)是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證實(shí),也沒(méi)有意識(shí)到它的重要性,所以單調(diào)性的證實(shí)自然就是教學(xué)中的難點(diǎn)。

三、教法建議。

(1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),二次函數(shù)。反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性熟悉出發(fā),通過(guò)問(wèn)題逐步向抽象的定義靠攏。如可以設(shè)計(jì)這樣的問(wèn)題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來(lái)解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語(yǔ)言表示出來(lái)。在這個(gè)過(guò)程中對(duì)一些關(guān)鍵的詞語(yǔ)(某個(gè)區(qū)間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結(jié)合起來(lái)。

(2)函數(shù)單調(diào)性證實(shí)的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號(hào),在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律。函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對(duì)應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開(kāi)始,逐漸讓在數(shù)軸上動(dòng)起來(lái),觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫(xiě)出來(lái)。經(jīng)歷了這樣的過(guò)程,再得到等式時(shí),就比較輕易體會(huì)它代表的是無(wú)數(shù)多個(gè)等式,是個(gè)恒等式。關(guān)于定義域關(guān)于原點(diǎn)對(duì)稱的問(wèn)題,也可借助課件將函數(shù)圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現(xiàn)定義域的對(duì)稱性,同時(shí)還可以借助圖象(如)說(shuō)明定義域關(guān)于原點(diǎn)對(duì)稱只是函數(shù)具備奇偶性的必要條件而不是充分條件。

高一數(shù)學(xué)必修一教案篇十三

一、創(chuàng)設(shè)情景,激趣導(dǎo)入。

學(xué)生活動(dòng):學(xué)生猜測(cè)各種可能性,你一言我一語(yǔ)地發(fā)表自己的高見(jiàn)。師:大家的猜測(cè)都有自己的道理,但答案到底是什么呢?暫時(shí)老師還不想告訴你們,我想通過(guò)下面的活動(dòng),大家一定能自己找到答案的。

二、探究體驗(yàn),經(jīng)歷過(guò)程。

1、教學(xué)例1.

方法一:

師:學(xué)校準(zhǔn)備從每個(gè)班中選幾名熱愛(ài)運(yùn)動(dòng)的學(xué)生參加體育訓(xùn)練,為下學(xué)期的校運(yùn)動(dòng)會(huì)做準(zhǔn)備。下面是三(1)班參加跳繩、踢毽比賽的學(xué)生名單。

學(xué)生可能回答;

一共有17人,9+8=17(人)。

可是,參加這兩項(xiàng)活動(dòng)的沒(méi)有17人呀。

我發(fā)現(xiàn)有的人兩項(xiàng)活動(dòng)都參加了。

應(yīng)該是一共有14人參加了,算式是9+8-3=14(人)。

師:到底怎么回事呢?為什么有人說(shuō)一共是14人呢?為什么要減去3呢?

生:因?yàn)橛?個(gè)人重復(fù)了。

生:因?yàn)檫@3個(gè)人既參加了跳繩,又參加了踢毽。

生:因?yàn)樘K的9人里面有這3個(gè)人,踢毽的8人里面也有這3個(gè)人,所以計(jì)算的時(shí)候就不能是9+8=17(人),還應(yīng)該減去3人,所以是9+8-3=14(人)。

生:因?yàn)?+8就把這3個(gè)人重復(fù)算了,也就是多算了一遍,所以要減掉3人。

師:同學(xué)們的發(fā)言真是精彩,報(bào)名參加校體育訓(xùn)練的一共有多少名同。

學(xué)呢?

生:14人。

方法二:

師:為了能使同學(xué)們更方便的看清楚,我們把一項(xiàng)活動(dòng)演示一遍,請(qǐng)班里的`14名同學(xué)分別對(duì)應(yīng)的替代其中一人,自己選一個(gè)替代的對(duì)象吧。

班內(nèi)的14名學(xué)生分別選定自己要替代的人。

生:不知道站哪邊。

師:哦?為什么?怎么會(huì)出現(xiàn)這樣的情況呢?

生:站中間。

三位同學(xué)都站到了講臺(tái)的中間。

師:那左邊、右邊、中間分別表示什么?

生:左邊表示參加跳繩的同學(xué),右邊表示參加踢毽的同學(xué),中間就是兩種訓(xùn)練都參加的同學(xué)。

方法三:

師:誰(shuí)能用畫(huà)圖的方法來(lái)表示一下剛才看到的情形?

學(xué)生組內(nèi)討論,畫(huà)出自己設(shè)計(jì)的圖來(lái),教師巡視觀察了解情況并及時(shí)指導(dǎo)創(chuàng)作。

分組展示自己設(shè)計(jì)的圖畫(huà),并介紹自己的創(chuàng)意或想法。

學(xué)生可能會(huì)說(shuō):

生1:我覺(jué)得左邊的同學(xué)是代表參加跳繩的,應(yīng)該圈在一起;右邊的同學(xué)代表參加踢毽的,他們也應(yīng)該圈在一起;中間的同學(xué)再畫(huà)一個(gè)圈。師:這樣的話,能不能讓大家一看就知道中間的是既參加了跳繩的,又參加了踢毽的呢?再想想,看還有沒(méi)有更好的畫(huà)法。

生2:中間的同學(xué)也應(yīng)該和左邊的圈在一起,因?yàn)樗麄円矃⒓恿颂K的呀。

生3:那我還說(shuō)中間的還可以圈到右邊呢,他們還參加了踢毽呢。師:那就按你們說(shuō)的試試吧。

學(xué)生動(dòng)手試著畫(huà)圖,并向全班展示。

方法四:

師:看圖,說(shuō)說(shuō)每一部分分別表示什么?生:左邊,表示只參加跳繩的;右邊,表示只參加踢毽的;中間既參加跳繩又參加踢毽的。

師:你能列式計(jì)算這兩個(gè)小組的人數(shù)嗎?

生:9+8-3=14(人)。

生:(8-3)+3+(9-3)=14(人)。

高一數(shù)學(xué)必修一教案篇十四

教學(xué)過(guò)程:

(20秒以內(nèi))。

內(nèi)容:你好,現(xiàn)在讓我們一起來(lái)學(xué)習(xí)《集合的運(yùn)算——自己探索也能發(fā)現(xiàn)的'數(shù)學(xué)規(guī)律(第二講)》。

第1張ppt。

12秒以內(nèi)。

(4分20秒左右)。

1·引入:牛頓曾說(shuō)過(guò):“沒(méi)有大膽的猜測(cè),就做不出偉大的發(fā)現(xiàn)?!?/p>

那么,這個(gè)規(guī)律是偶然的,還是一個(gè)恒等式呢?

第2張ppt。

28秒以內(nèi)。

2·規(guī)律的驗(yàn)證:

第3張ppt。

2分10秒以內(nèi)。

3·抽象概括:通過(guò)我們的觀察和驗(yàn)證,我們發(fā)現(xiàn)這個(gè)規(guī)律是一個(gè)恒等式。

而這個(gè)規(guī)律就是180年前著名的英國(guó)數(shù)學(xué)家德摩根發(fā)現(xiàn)的。

為了紀(jì)念他,我們將它稱為德摩根律。

原來(lái)我們通過(guò)自己的探索也能發(fā)現(xiàn)這么偉大的數(shù)學(xué)規(guī)律。

第4張ppt。

30秒以內(nèi)。

第5張ppt。

1分20秒以內(nèi)。

(20秒以內(nèi))。

通過(guò)這在道題的解答,我們發(fā)現(xiàn)德摩根律為解答集合運(yùn)算問(wèn)題提供了更為簡(jiǎn)便的方法。

希望你在今后的學(xué)習(xí)中,勇于探索,發(fā)現(xiàn)更多有趣的規(guī)律。

第6張ppt。

10秒以內(nèi)。

教學(xué)反思(自我評(píng)價(jià))。

高一數(shù)學(xué)必修一教案篇十五

1. 閱讀課本 練習(xí)止.

2. 回答問(wèn)題

(1)課本內(nèi)容分成幾個(gè)層次?每個(gè)層次的中心內(nèi)容是什么?

(2)層次間的聯(lián)系是什么?

(3)對(duì)數(shù)函數(shù)的定義是什么?

(4)對(duì)數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?

3. 完成 練習(xí)

4. 小結(jié).

二、方法指導(dǎo)

1. 在學(xué)習(xí)對(duì)數(shù)函數(shù)時(shí),同學(xué)們應(yīng)從熟悉的指數(shù)問(wèn)題出發(fā),通過(guò)對(duì)指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的認(rèn)識(shí),而且畫(huà)對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù)的分類討論而且對(duì)每一類問(wèn)題也可以多選幾個(gè)不同的底,畫(huà)在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).

一、提問(wèn)題

1. 對(duì)數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?

2.兩個(gè)函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關(guān)系?

3.是否所有的函數(shù)都有反函數(shù)?試舉例說(shuō)明.

二、變題目

1. 試求下列函數(shù)的反函數(shù):

(1) ; (2) ;

(3) ; (4) .

2. 求下列函數(shù)的定義域:

(1) ; (2) ; (3) .

3. 已知 則 = ; 的定義域?yàn)?.

1.對(duì)數(shù)函數(shù)的'有關(guān)概念

(1)把函數(shù) 叫做對(duì)數(shù)函數(shù), 叫做對(duì)數(shù)函數(shù)的底數(shù);

(2)以10為底數(shù)的對(duì)數(shù)函數(shù) 為常用對(duì)數(shù)函數(shù);

(3)以無(wú)理數(shù) 為底數(shù)的對(duì)數(shù)函數(shù) 為自然對(duì)數(shù)函數(shù).

2. 反函數(shù)的概念

在指數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ;在對(duì)數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ,像這樣的兩個(gè)函數(shù)叫做互為反函數(shù).

3. 與對(duì)數(shù)函數(shù)有關(guān)的定義域的求法:

4. 舉例說(shuō)明如何求反函數(shù).

一、課外作業(yè): 習(xí)題3-5 a組 1,2,3, b組1,

二、課外思考:

1. 求定義域: .

2. 求使函數(shù) 的函數(shù)值恒為負(fù)值的 的取值范圍.

高一數(shù)學(xué)必修一教案篇十六

教學(xué)目標(biāo)。

掌握三角函數(shù)模型應(yīng)用基本步驟:

(1)根據(jù)圖象建立解析式;

(2)根據(jù)解析式作出圖象;

(3)將實(shí)際問(wèn)題抽象為與三角函數(shù)有關(guān)的簡(jiǎn)單函數(shù)模型。

教學(xué)重難點(diǎn)。

利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型。

教學(xué)過(guò)程。

一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題。

(精確到0.001).

米的速度減少,那么該船在什么時(shí)間必須停止卸貨,將船駛向較深的水域。

本題的解答中,給出貨船的進(jìn)、出港時(shí)間,一方面要注意利用周期性以及問(wèn)題的條件,另一方面還要注意考慮實(shí)際意義。關(guān)于課本第64頁(yè)的“思考”問(wèn)題,實(shí)際上,在貨船的安全水深正好與港口水深相等時(shí)停止卸貨將船駛向較深的水域是不行的,因?yàn)檫@樣不能保證船有足夠的時(shí)間發(fā)動(dòng)螺旋槳。

練習(xí):教材p65面3題。

三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:

(1)根據(jù)圖象建立解析式;

(2)根據(jù)解析式作出圖象;

(3)將實(shí)際問(wèn)題抽象為與三角函數(shù)有關(guān)的簡(jiǎn)單函數(shù)模型。

2、利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型。

四、作業(yè)《習(xí)案》作業(yè)十四及十五。

高一數(shù)學(xué)必修一教案篇十七

1、使學(xué)生了解奇偶性的概念,回會(huì)利用定義判定簡(jiǎn)單函數(shù)的奇偶性。

2、在奇偶性概念形成過(guò)程中,培養(yǎng)學(xué)生的觀察,歸納能力,同時(shí)滲透數(shù)形結(jié)合和非凡到一般的思想方法。

3、在學(xué)生感受數(shù)學(xué)美的同時(shí),激發(fā)學(xué)習(xí)的愛(ài)好,培養(yǎng)學(xué)生樂(lè)于求索的精神。

重點(diǎn)是奇偶性概念的形成與函數(shù)奇偶性的判定。

難點(diǎn)是對(duì)概念的熟悉。

投影儀,計(jì)算機(jī)。

引導(dǎo)發(fā)現(xiàn)法。

一。引入新課。

前面我們已經(jīng)研究了函數(shù)的單調(diào)性,它是反映函數(shù)在某一個(gè)區(qū)間上函數(shù)值隨自變量變化而變化的性質(zhì),今天我們繼續(xù)研究函數(shù)的另一個(gè)性質(zhì)。從什么角度呢?將從對(duì)稱的角度來(lái)研究函數(shù)的性質(zhì)。

(學(xué)生可能會(huì)舉出一些數(shù)值上的對(duì)稱問(wèn)題,等,也可能會(huì)舉出一些圖象的對(duì)稱問(wèn)題,此時(shí)教師可以引導(dǎo)學(xué)生把函數(shù)具體化,如和等。)。

學(xué)生經(jīng)過(guò)思考,能找出原因,由于函數(shù)是映射,一個(gè)只能對(duì)一個(gè),而不能有兩個(gè)不同的,故函數(shù)的圖象不可能關(guān)于軸對(duì)稱。最終提出我們今天將重點(diǎn)研究圖象關(guān)于軸對(duì)稱和關(guān)于原點(diǎn)對(duì)稱的問(wèn)題,從形的特征中找出它們?cè)跀?shù)值上的規(guī)律。

二。講解新課。

2、函數(shù)的奇偶性(板書(shū))。

學(xué)生開(kāi)始可能只會(huì)用語(yǔ)言去描述:自變量互為相反數(shù),函數(shù)值相等。教師可引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號(hào)表示。(借助課件演示令比較得出等式,再令,得到,詳見(jiàn)課件的使用)進(jìn)而再提出會(huì)不會(huì)在定義域內(nèi)存在,使與不等呢?(可用課件幫助演示讓動(dòng)起來(lái)觀察,發(fā)現(xiàn)結(jié)論,這樣的是不存在的)從這個(gè)結(jié)論中就可以發(fā)現(xiàn)對(duì)定義域內(nèi)任意一個(gè),都有成立。最后讓學(xué)生用完整的語(yǔ)言給出定義,不準(zhǔn)確的地方教師予以提示或調(diào)整。

(1)偶函數(shù)的定義:假如對(duì)于函數(shù)的定義域內(nèi)任意一個(gè),都有,那么就叫做偶函數(shù)。(板書(shū))。

(給出定義后可讓學(xué)生舉幾個(gè)例子,如等以檢驗(yàn)一下對(duì)概念的初步熟悉)。

提出新問(wèn)題:函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢?(同時(shí)打出或的圖象讓學(xué)生觀察研究)。

學(xué)生可類比剛才的方法,很快得出結(jié)論,再讓學(xué)生給出奇函數(shù)的定義。

(2)奇函數(shù)的定義:假如對(duì)于函數(shù)的定義域內(nèi)任意一個(gè),都有,那么就叫做奇函數(shù)。(板書(shū))。

(由于在定義形成時(shí)已經(jīng)有了一定的熟悉,故可以先作判定,在判定中再加深熟悉)。

例1。判定下列函數(shù)的奇偶性(板書(shū))。

(1);(2);

(3);;

(5);(6)。

(要求學(xué)生口答,選出12個(gè)題說(shuō)過(guò)程)。

解:(1)是奇函數(shù)。(2)是偶函數(shù)。

(3),是偶函數(shù)。

學(xué)生經(jīng)過(guò)思考可以解決問(wèn)題,指出只要舉出一個(gè)反例說(shuō)明與不等。如即可說(shuō)明它不是偶函數(shù)。(從這個(gè)問(wèn)題的解決中讓學(xué)生再次熟悉到定義中任意性的重要)。

從(4)題開(kāi)始,學(xué)生的答案會(huì)有不同,可以讓學(xué)生先討論,教師再做評(píng)述。即第(4)題中表面成立的=不能經(jīng)受任意性的考驗(yàn),當(dāng)時(shí),由于,故不存在,更談不上與相等了,由于任意性被破壞,所以它不能是奇偶性。

可以用(6)輔助說(shuō)明充分性不成立,用(5)說(shuō)明必要性成立,得出結(jié)論。

(3)定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的必要但不充分條件。(板書(shū))。

由學(xué)生小結(jié)判定奇偶性的步驟之后,教師再提出新的問(wèn)題:在剛才的幾個(gè)函數(shù)中有是奇函數(shù)不是偶函數(shù),有是偶函數(shù)不是奇函數(shù),也有既不是奇函數(shù)也不是偶函數(shù),那么有沒(méi)有這樣的函數(shù),它既是奇函數(shù)也是偶函數(shù)呢?若有,舉例說(shuō)明。

例2。已知函數(shù)既是奇函數(shù)也是偶函數(shù),求證:。(板書(shū))(試由學(xué)生來(lái)完成)。

(4)函數(shù)按其是否具有奇偶性可分為四類:(板書(shū))。

例3。判定下列函數(shù)的奇偶性(板書(shū))。

(1);(2);(3)。

由學(xué)生回答,不完整之處教師補(bǔ)充。

解:(1)當(dāng)時(shí),為奇函數(shù),當(dāng)時(shí),既不是奇函數(shù)也不是偶函數(shù)。

(2)當(dāng)時(shí),既是奇函數(shù)也是偶函數(shù),當(dāng)時(shí),是偶函數(shù)。

(3)當(dāng)時(shí),于是,

當(dāng)時(shí),,于是=,

綜上是奇函數(shù)。

教師小結(jié)(1)(2)注重分類討論的使用,(3)是分段函數(shù),當(dāng)檢驗(yàn),并不能說(shuō)明具備奇偶性,因?yàn)槠媾夹允菍?duì)函數(shù)整個(gè)定義域內(nèi)性質(zhì)的刻畫(huà),因此必須均有成立,二者缺一不可。

三。小結(jié)。

1、奇偶性的概念。

2、判定中注重的問(wèn)題。

四。作業(yè)略。

五。板書(shū)設(shè)計(jì)。

2、函數(shù)的奇偶性例1.例3.

(1)偶函數(shù)定義。

(2)奇函數(shù)定義。

(3)定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)例2。小結(jié)。

具備奇偶性的必要條件。

(4)函數(shù)按奇偶性分類分四類。

(1)定義域?yàn)榈娜我夂瘮?shù)都可以表示成一個(gè)奇函數(shù)和一個(gè)偶函數(shù)的和,你能試證實(shí)之嗎?

(2)判定函數(shù)在上的單調(diào)性,并加以證實(shí)。

在此基礎(chǔ)上試?yán)眠@個(gè)函數(shù)的單調(diào)性解決下面的問(wèn)題:

高一數(shù)學(xué)必修一教案篇十八

教學(xué)目標(biāo)。

1、知識(shí)與技能。

(1)推廣角的概念、引入大于角和負(fù)角;(2)理解并掌握正角、負(fù)角、零角的定義;(3)理解任意角以及象限角的概念;(4)掌握所有與角終邊相同的角(包括角)的表示方法;(5)樹(shù)立運(yùn)動(dòng)變化觀點(diǎn),深刻理解推廣后的角的概念;(6)揭示知識(shí)背景,引發(fā)學(xué)生學(xué)習(xí)興趣。(7)創(chuàng)設(shè)問(wèn)題情景,激發(fā)學(xué)生分析、探求的學(xué)習(xí)態(tài)度,強(qiáng)化學(xué)生的參與意識(shí)。

2、過(guò)程與方法。

通過(guò)創(chuàng)設(shè)情境:“轉(zhuǎn)體,逆(順)時(shí)針旋轉(zhuǎn)”,角有大于角、零角和旋轉(zhuǎn)方向不同所形成的角等,引入正角、負(fù)角和零角的概念;角的概念得到推廣以后,將角放入平面直角坐標(biāo)系,引入象限角、非象限角的概念及象限角的判定方法;列出幾個(gè)終邊相同的角,畫(huà)出終邊所在的位置,找出它們的關(guān)系,探索具有相同終邊的角的表示;講解例題,總結(jié)方法,鞏固練習(xí)。

3、情態(tài)與價(jià)值。

通過(guò)本節(jié)的學(xué)習(xí),使同學(xué)們對(duì)角的概念有了一個(gè)新的認(rèn)識(shí),即有正角、負(fù)角和零角之分。角的概念推廣以后,知道角之間的關(guān)系。理解掌握終邊相同角的表示方法,學(xué)會(huì)運(yùn)用運(yùn)動(dòng)變化的觀點(diǎn)認(rèn)識(shí)事物。

教學(xué)重難點(diǎn)。

重點(diǎn):理解正角、負(fù)角和零角的定義,掌握終邊相同角的表示法。

難點(diǎn):終邊相同的角的表示。

教學(xué)工具。

投影儀等。

教學(xué)過(guò)程。

【創(chuàng)設(shè)情境】。

思考:你的手表慢了5分鐘,你是怎樣將它校準(zhǔn)的?假如你的手表快了1.25。

小時(shí),你應(yīng)當(dāng)如何將它校準(zhǔn)?當(dāng)時(shí)間校準(zhǔn)以后,分針轉(zhuǎn)了多少度?

[取出一個(gè)鐘表,實(shí)際操作]我們發(fā)現(xiàn),校正過(guò)程中分針需要正向或反向旋轉(zhuǎn),有時(shí)轉(zhuǎn)不到一周,有時(shí)轉(zhuǎn)一周以上,這就是說(shuō)角已不僅僅局限于之間,這正是我們這節(jié)課要研究的主要內(nèi)容——任意角。

【探究新知】。

1.初中時(shí),我們已學(xué)習(xí)了角的概念,它是如何定義的呢?

[展示投影]角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所成的圖形。如圖1.1-1,一條射線由原來(lái)的位置,繞著它的端點(diǎn)o按逆時(shí)針?lè)较蛐D(zhuǎn)到終止位置ob,就形成角a.旋轉(zhuǎn)開(kāi)始時(shí)的射線叫做角的始邊,ob叫終邊,射線的端點(diǎn)o叫做叫a的頂點(diǎn)。

[展示課件]如自行車車輪、螺絲扳手等按不同方向旋轉(zhuǎn)時(shí)成不同的角,這些都說(shuō)明了我們研究推廣角概念的必要性。為了區(qū)別起見(jiàn),我們規(guī)定:按逆時(shí)針?lè)较蛐D(zhuǎn)所形成的角叫正角(positiveangle),按順時(shí)針?lè)较蛐D(zhuǎn)所形成的角叫負(fù)角(negativeangle).如果一條射線沒(méi)有做任何旋轉(zhuǎn),我們稱它形成了一個(gè)零角(zeroangle).

8.學(xué)習(xí)小結(jié)。

(1)你知道角是如何推廣的嗎?

(2)象限角是如何定義的呢?

(3)你熟練掌握具有相同終邊角的表示了嗎?會(huì)寫(xiě)終邊落在x軸、y軸、直。

線上的角的集合。

五、評(píng)價(jià)設(shè)計(jì)。

1.作業(yè):習(xí)題1.1a組第1,2,3題。

2.多舉出一些日常生活中的“大于的角和負(fù)角”的例子,熟練掌握他們的表示,

進(jìn)一步理解具有相同終邊的角的特點(diǎn)。

課后小結(jié)。

(1)你知道角是如何推廣的嗎?

(2)象限角是如何定義的呢?

(3)你熟練掌握具有相同終邊角的表示了嗎?會(huì)寫(xiě)終邊落在x軸、y軸、直。

線上的角的集合。

課后習(xí)題。

作業(yè):

1、習(xí)題1.1a組第1,2,3題。

2.多舉出一些日常生活中的“大于的角和負(fù)角”的例子,熟練掌握他們的表示,

進(jìn)一步理解具有相同終邊的角的特點(diǎn)。

板書(shū)。

高一數(shù)學(xué)必修一教案篇十九

(3)會(huì)用“數(shù)形結(jié)合”的數(shù)學(xué)思想解決問(wèn)題、

用坐標(biāo)法解決幾何問(wèn)題的步驟:

第二步:通過(guò)代數(shù)運(yùn)算,解決代數(shù)問(wèn)題;

第三步:將代數(shù)運(yùn)算結(jié)果“翻譯”成幾何結(jié)論、

重點(diǎn)與難點(diǎn):直線與圓的方程的應(yīng)用、

問(wèn) 題設(shè)計(jì)意圖師生活動(dòng)

生:回顧,說(shuō)出自己的看法、

2、解決直線與圓的位置關(guān)系,你將采用什么方法?

生:回顧、思考、討論、交流,得到解決問(wèn)題的方法、

問(wèn) 題設(shè)計(jì)意圖師生活動(dòng)

3、閱讀并思考教科書(shū)上的例4,你將選擇什么方 法解決例4的'問(wèn)題

生:自 學(xué)例4,并完成練習(xí)題1、2、

生:建立適當(dāng)?shù)闹苯亲鴺?biāo)系, 探求解決問(wèn)題的方法、

8、小結(jié):

(1)利用“坐標(biāo)法”解決問(wèn)對(duì)知識(shí)進(jìn)行歸納概括,體會(huì)利 師:指導(dǎo) 學(xué)生完成練習(xí)題、

生:閱讀教科書(shū)的例3,并完成第

問(wèn) 題設(shè)計(jì)意圖師生活動(dòng)

題的需要準(zhǔn)備什么工作?

(2)如何建立直角坐標(biāo)系,才能易于解決平面幾何問(wèn)題?

(3)你認(rèn)為學(xué)好“坐標(biāo)法”解決問(wèn)題的關(guān)鍵是什么?

高一數(shù)學(xué)必修一教案篇二十

3.通過(guò)參與編題解題,激發(fā)學(xué)生學(xué)習(xí)的愛(ài)好.

教學(xué)重點(diǎn)是通項(xiàng)公式的熟悉;教學(xué)難點(diǎn)是對(duì)公式的靈活運(yùn)用.

實(shí)物投影儀,多媒體軟件,電腦.

研探式.

一.復(fù)習(xí)提問(wèn)

等差數(shù)列的概念是從相鄰兩項(xiàng)的關(guān)系加以定義的,這個(gè)關(guān)系用遞推公式來(lái)表示比較簡(jiǎn)單,但我們要圍繞通項(xiàng)公式作進(jìn)一步的理解與應(yīng)用.

二.主體設(shè)計(jì)

通項(xiàng)公式反映了項(xiàng)與項(xiàng)數(shù)之間的函數(shù)關(guān)系,當(dāng)?shù)炔顢?shù)列的首項(xiàng)與公差確定后,數(shù)列的每一項(xiàng)便確定了,可以求指定的項(xiàng)(即已知求).找學(xué)生試舉一例如:“已知等差數(shù)列中,首項(xiàng),公差,求.”這是通項(xiàng)公式的簡(jiǎn)單應(yīng)用,由學(xué)生解答后,要求每個(gè)學(xué)生出一些運(yùn)用等差數(shù)列通項(xiàng)公式的題目,包括正用、反用與變用,簡(jiǎn)單、復(fù)雜,定量、定性的均可,教師巡視將好題搜集起來(lái),分類投影在屏幕上.

1.方程思想的運(yùn)用

(1)已知等差數(shù)列中,首項(xiàng),公差,則-397是該數(shù)列的第x項(xiàng).

(2)已知等差數(shù)列中,首項(xiàng),則公差

(3)已知等差數(shù)列中,公差,則首項(xiàng)

這一類問(wèn)題先由學(xué)生解決,之后教師點(diǎn)評(píng),四個(gè)量,在一個(gè)等式中,運(yùn)用方程的思想方法,已知其中三個(gè)量的值,可以求得第四個(gè)量.

2.基本量方法的使用

(1)已知等差數(shù)列中,求的值.

(2)已知等差數(shù)列中,求.

若學(xué)生的題目只有這兩種類型,教師可以小結(jié)(請(qǐng)出題者、解題者概括):因?yàn)橐阎獥l件可以化為關(guān)于和的二元方程組,所以這些等差數(shù)列是確定的,由和寫(xiě)出通項(xiàng)公式,便可歸結(jié)為前一類問(wèn)題.解決這類問(wèn)題只需把兩個(gè)條件(等式)化為關(guān)于和的二元方程組,以求得和,和稱作基本量.

教師提出新的問(wèn)題,已知等差數(shù)列的一個(gè)條件(等式),能否確定一個(gè)等差數(shù)列?學(xué)生回答后,教師再啟發(fā),由這一個(gè)條件可得到關(guān)于和的二元方程,這是一個(gè)和的`制約關(guān)系,從這個(gè)關(guān)系可以得到什么結(jié)論?舉例說(shuō)明(例題可由學(xué)生或教師給出,視具體情況而定).

如:已知等差數(shù)列中,…

由條件可得即,可知,這是比較顯然的,與之相關(guān)的還能有什么結(jié)論?若學(xué)生答不出可提示,一定得某一項(xiàng)的值么?能否與兩項(xiàng)有關(guān)?多項(xiàng)有關(guān)?由學(xué)生發(fā)現(xiàn)規(guī)律,完善問(wèn)題(3)已知等差數(shù)列中,求;;;;….

類似的還有

(4)已知等差數(shù)列中,求的值.

以上屬于對(duì)數(shù)列的項(xiàng)進(jìn)行定量的研究,有無(wú)定性的判定?引出

3.研究等差數(shù)列的單調(diào)性

4.研究項(xiàng)的符號(hào)

這是為研究等差數(shù)列前項(xiàng)和的最值所做的預(yù)備工作.可配備的題目如

(1)已知數(shù)列的通項(xiàng)公式為,問(wèn)數(shù)列從第幾項(xiàng)開(kāi)始小于0?

(2)等差數(shù)列從第x項(xiàng)起以后每項(xiàng)均為負(fù)數(shù).

三.小結(jié)

1.用方程思想熟悉等差數(shù)列通項(xiàng)公式;

2.用函數(shù)思想解決等差數(shù)列問(wèn)題.

四.板書(shū)設(shè)計(jì)

等差數(shù)列通項(xiàng)公式1.方程思想的運(yùn)用

2.基本量方法的使用

3.研究等差數(shù)列的單調(diào)性

4.研究項(xiàng)的符號(hào)

高一數(shù)學(xué)必修一教案篇二十一

(2)了解區(qū)間的概念;。

(2)了解區(qū)間的概念就是指能夠體會(huì)用區(qū)間表示數(shù)集的意義和作用;。

【問(wèn)題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問(wèn)題是函數(shù)的概念及符號(hào)的理解,產(chǎn)生這一問(wèn)題的原因是:函數(shù)本身就是一個(gè)抽象的概念,對(duì)學(xué)生來(lái)說(shuō)一個(gè)難點(diǎn)。要解決這一問(wèn)題,就要在通過(guò)從實(shí)際問(wèn)題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實(shí)際,把抽象轉(zhuǎn)化為具體。

問(wèn)題1:一枚炮彈發(fā)射后,經(jīng)過(guò)26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時(shí)間t(單位:s)變化的規(guī)律是:h=130t-5t2.

1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?

1.2高度變量h與時(shí)間變量t之間的對(duì)應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?

設(shè)計(jì)意圖:通過(guò)以上問(wèn)題,讓學(xué)生正確理解讓學(xué)生體會(huì)用解析式或圖象刻畫(huà)兩個(gè)變量之間的依賴關(guān)系,從問(wèn)題的實(shí)際意義可知,在t的變化范圍內(nèi)任給一個(gè)t,按照給定的對(duì)應(yīng)關(guān)系,都有的一個(gè)高度h與之對(duì)應(yīng)。

問(wèn)題2:分析教科書(shū)中的實(shí)例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的`圖象,都有的一個(gè)臭氧層空洞面積s與之相對(duì)應(yīng)。

問(wèn)題3:要求學(xué)生仿照實(shí)例(1)、(2),描述實(shí)例(3)中恩格爾系數(shù)和時(shí)間的關(guān)系。

設(shè)計(jì)意圖:通過(guò)這些問(wèn)題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。

【本文地址:http://m.aiweibaby.com/zuowen/12080857.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔