最新數(shù)據(jù)挖掘論文選題 數(shù)據(jù)挖掘論文心得體會(大全8篇)

格式:DOC 上傳日期:2023-11-22 21:20:06
最新數(shù)據(jù)挖掘論文選題 數(shù)據(jù)挖掘論文心得體會(大全8篇)
時間:2023-11-22 21:20:06     小編:影墨

在日常的學(xué)習(xí)、工作、生活中,肯定對各類范文都很熟悉吧。寫范文的時候需要注意什么呢?有哪些格式需要注意呢?下面是小編為大家收集的優(yōu)秀范文,供大家參考借鑒,希望可以幫助到有需要的朋友。

數(shù)據(jù)挖掘論文選題篇一

數(shù)據(jù)挖掘作為一種數(shù)據(jù)分析的方法,在現(xiàn)代社會的應(yīng)用越來越廣泛。因此,許多研究者致力于數(shù)據(jù)挖掘技術(shù)的研究和應(yīng)用。其中,論文是數(shù)據(jù)挖掘研究最主要的成果之一。良好的數(shù)據(jù)挖掘論文可以促進(jìn)數(shù)據(jù)挖掘的發(fā)展和應(yīng)用,提高數(shù)據(jù)挖掘技術(shù)的效率和可靠性。因此,寫一篇優(yōu)秀的數(shù)據(jù)挖掘論文對于這個領(lǐng)域的研究人員來說至關(guān)重要。

第二段:講述數(shù)據(jù)挖掘論文的內(nèi)容需要注意的重點

在寫一篇數(shù)據(jù)挖掘論文時,需要注意幾個重點。首先,需要明確研究對象和研究目的,確定原始數(shù)據(jù)的來源和數(shù)據(jù)處理方法。其次,需要進(jìn)行特征分析,挑選有效的特征進(jìn)行數(shù)據(jù)挖掘。同時,在數(shù)據(jù)挖掘過程中需要使用合適的算法和模型,以取得優(yōu)秀的預(yù)測結(jié)果。最后,還需要對結(jié)果進(jìn)行驗證和評價,以保證數(shù)據(jù)挖掘結(jié)果的準(zhǔn)確性和可靠性。

第三段:談?wù)撟约涸趯憯?shù)據(jù)挖掘論文過程中的體會

在我的研究過程中,我深刻地認(rèn)識到了數(shù)據(jù)挖掘技術(shù)的重要性和應(yīng)用價值。我需要詳細(xì)地了解數(shù)據(jù)采集、數(shù)據(jù)清洗、特征選擇和評估模型等方面的知識,學(xué)習(xí)基本的算法和模型,并靈活運用最新的數(shù)據(jù)挖掘技術(shù),以達(dá)到最好的預(yù)測結(jié)果。同時,我也注意到了不同論文之間的差異,不同研究的方向和方法不同,需要靈活變通和開創(chuàng)性思維,才能寫出優(yōu)秀的數(shù)據(jù)挖掘論文。

第四段:探討數(shù)據(jù)挖掘論文的審查標(biāo)準(zhǔn)和要求

數(shù)據(jù)挖掘的研究范圍和深度不斷擴大,論文審查機構(gòu)和專家對數(shù)據(jù)挖掘論文的要求也越來越高。好的數(shù)據(jù)挖掘論文需要有一定的貢獻(xiàn)和創(chuàng)新點,同時,還需要展示出數(shù)據(jù)挖掘算法、模型和數(shù)據(jù)特征選擇的能力,具有可操作性和穩(wěn)健性。此外,好的數(shù)據(jù)挖掘論文還需有清晰的圖表展示,數(shù)據(jù)的充分分析和結(jié)論的合理性,撰寫格式規(guī)范明確,語言流暢等特點。

第五段:總結(jié)論文寫作的經(jīng)驗和啟示

總之,在撰寫優(yōu)秀的數(shù)據(jù)挖掘論文時,應(yīng)該注重掌握所需的關(guān)鍵技術(shù)和知識,同時宏觀和微觀兩個方面的考慮都需要。特別注重特征選擇和數(shù)據(jù)模型的設(shè)計更是必不可少的。此外,要注意相關(guān)專業(yè)期刊的審查標(biāo)準(zhǔn)和要求,并且合理分配時間, 不斷完善整理論文。相信在不斷讀論文,自己不斷寫論文的過程中,每個人都可以不斷提高論文的質(zhì)量,為數(shù)據(jù)挖掘技術(shù)的發(fā)展和實踐做出重要貢獻(xiàn)。

數(shù)據(jù)挖掘論文選題篇二

隨著會計現(xiàn)代化的發(fā)展,會計越來越多的運用計算機技術(shù)的拓展。

數(shù)據(jù)挖掘是從數(shù)據(jù)當(dāng)中發(fā)現(xiàn)趨勢和模式的過程,它融合了現(xiàn)代統(tǒng)計學(xué)、知識信息系統(tǒng)、機器學(xué)習(xí)、決策理論和數(shù)據(jù)庫管理等多學(xué)科的知識。它能有效地從大量的、不完全的、模糊的實際應(yīng)用數(shù)據(jù)中,提取隱含在其中的潛在有用的信息和知識,揭示出大量數(shù)據(jù)中復(fù)雜的和隱藏的關(guān)系,為決策提供有用的參考。數(shù)據(jù)挖掘是從數(shù)據(jù)當(dāng)中發(fā)現(xiàn)趨勢和模式的過程,它融合了現(xiàn)代統(tǒng)計學(xué)、知識信息系統(tǒng)、機器學(xué)習(xí)、決策理論和數(shù)據(jù)庫管理等多學(xué)科的知識。它能有效地從大量的、不完全的、模糊的實際應(yīng)用數(shù)據(jù)中,提取隱含在其中的潛存有用的信息和知識,揭示出大量數(shù)據(jù)中復(fù)雜的和隱藏的關(guān)系,為決策提供有用的參考。

常用的數(shù)據(jù)挖掘方法主要有決策樹(decisiontree)、遺傳算法(geneticalgorithms)、關(guān)聯(lián)分析(associationanalysis).聚類分析(c~smranalysis)、序列模式分析(sequentialpattern)以及神經(jīng)網(wǎng)絡(luò)(neuralnetworks)等。

由于數(shù)據(jù)挖掘市場還處于起步的階段,但是發(fā)展很快。在國外有一些著名的大公司對數(shù)據(jù)挖掘系統(tǒng)進(jìn)行了開發(fā)。

igentminer這是ibm公司的數(shù)據(jù)挖掘產(chǎn)品,它提供了很多數(shù)據(jù)挖掘算法,包括關(guān)聯(lián)、分類、回歸、預(yù)測模型、偏離檢測、序列模式分析和聚類。有2個特點:一是它的數(shù)據(jù)挖掘算法的可伸縮性;二是它與ibm/db/2關(guān)系數(shù)據(jù)庫系統(tǒng)緊密地結(jié)合在一起。

t是由sgi公司開發(fā)的,它也提供了多種數(shù)據(jù)挖掘方法,包括關(guān)聯(lián)分析和分類以及高級統(tǒng)計和可視化工具。特色是它具有的強大的圖形工具,包括規(guī)則可視化工具、樹可視化工具、地圖可視化工具和多維數(shù)據(jù)分散可視化工具,它們用于實現(xiàn)數(shù)據(jù)和數(shù)據(jù)挖掘結(jié)果的可視化。

tine是由isl公司開發(fā)的,它為終端用戶和開發(fā)者提供提供了一個集成的數(shù)據(jù)挖掘開發(fā)環(huán)境。

面對日益激烈的競爭環(huán)境,企業(yè)管理者對決策信息的需求也越來越高。管理會計作為企業(yè)決策支持系統(tǒng)的重要組成部分,提供更多、更有效的有用信息責(zé)無旁貸。因此,從海量數(shù)據(jù)中挖掘和尋求知識和信息,為決策提供有力支持成為管理會計師使用數(shù)據(jù)挖掘的強大動力。例如,數(shù)據(jù)挖掘可以幫助企業(yè)加強成本管理,改進(jìn)產(chǎn)品和服務(wù)質(zhì)量,提高貨品銷量比率,設(shè)計更好的貨品運輸與分銷策略,減少商業(yè)成本。

實踐證明數(shù)據(jù)挖掘不僅能明顯改善企業(yè)內(nèi)部流程,而且能夠從戰(zhàn)略的高度對企業(yè)的競爭環(huán)境、市場、顧客和供應(yīng)商進(jìn)行分析,以獲得有價值的商業(yè)情報,保持和提高企業(yè)持續(xù)競爭優(yōu)勢。如,對顧客價值分析能夠?qū)槠髽I(yè)創(chuàng)造80%價值的20%的顧客區(qū)分出來,對其提供更優(yōu)質(zhì)的服務(wù),以保持這部分顧客。

利用數(shù)據(jù)挖掘技術(shù)可以建立企業(yè)財務(wù)風(fēng)險預(yù)警模型。企業(yè)財務(wù)風(fēng)險的發(fā)生并非一蹴而就,而是一個積累的、漸進(jìn)的過程,通過建立財務(wù)風(fēng)險預(yù)警模型,可以隨時監(jiān)控企業(yè)財務(wù)狀況,防范財務(wù)危機的發(fā)生。另外,也可以利用數(shù)據(jù)挖掘技術(shù),對企業(yè)籌資和投資過程中的行為進(jìn)行監(jiān)控,防止惡意的商業(yè)欺詐行為,維護企業(yè)利益。尤其是在金融企業(yè),通過數(shù)據(jù)挖掘,可以解決銀行業(yè)面臨的如信用卡的惡意透支及可疑的信用卡交易等欺詐行為。根據(jù)sec的報告,美國銀行、美國第一銀行、聯(lián)邦住房貸款抵押公司等數(shù)家銀行已采用了數(shù)據(jù)挖掘技術(shù)。

作業(yè)成本法以其對成本的精確計算和對資源的充分利用引起了人們的極大興趣,但其復(fù)雜的操作使得很多管理者望而卻步。利用數(shù)據(jù)挖掘中的回歸分析、分類分析等方法能幫助管理會計師確定成本動因,更加準(zhǔn)確計算成本。同時,也可以通過分析作業(yè)與價值之間的關(guān)系,確定增值作業(yè)和非增值作業(yè),持續(xù)改進(jìn)和優(yōu)化企業(yè)價值鏈。在thomasg,johnj和il-woonkim的調(diào)查中,數(shù)據(jù)挖掘被用在作業(yè)成本管理中僅占3%。

管理會計師在很多情況下需要對未來進(jìn)行預(yù)測,而預(yù)測是建立在大量的歷史數(shù)據(jù)和適當(dāng)?shù)哪P突A(chǔ)上的。數(shù)據(jù)挖掘自動在大型數(shù)據(jù)庫中尋找預(yù)測性信息,利用趨勢分析、時間序列分析等方法,建立對如銷售、成本、資金等的預(yù)測模型,科學(xué)準(zhǔn)確的預(yù)測企業(yè)各項指標(biāo),作為決策的依據(jù)。例如對市場調(diào)查數(shù)據(jù)的分析可以幫助預(yù)測銷售;根據(jù)歷史資料建立銷售預(yù)測模型等。

投資決策分析本身就是一個非常復(fù)雜的過程,往往要借助一些工具和模型。數(shù)據(jù)挖掘技術(shù)提供了有效的工具。從公司的財務(wù)報告、宏觀的經(jīng)濟環(huán)境以及行業(yè)基本狀況等大量的數(shù)據(jù)資料中挖掘出與決策相關(guān)的實質(zhì)性的信息,保證投資決策的正確性和有效性。如利用時間序列分析模型預(yù)測股票價格進(jìn)行投資;用聯(lián)機分析處理技術(shù)分析公司的信用等級,以預(yù)防投資風(fēng)險等。

品種優(yōu)化是選擇適當(dāng)?shù)漠a(chǎn)品組合以實現(xiàn)最大的利益的過程,這些利益可以是短期利潤,也可以是長期市場占有率,還可以是構(gòu)建長期客戶群及其綜合體。為了達(dá)到這些目標(biāo),管理會計師不僅僅需要價格和成本數(shù)據(jù)有時還需要知道替代品的情況,以及在某一市場段位上它們與原產(chǎn)品競爭的狀況。另外企業(yè)也需要了解一個產(chǎn)品是如何刺激另一些產(chǎn)品的銷量的等等。例如,非盈利性產(chǎn)品本身是沒有利潤可言的,但是,如果它帶來了可觀的客戶流量,并刺激了高利潤產(chǎn)品的銷售,那么,這種產(chǎn)品就非常有利可圖,就應(yīng)該包括在產(chǎn)品清單中。這些信息可根據(jù)實際數(shù)據(jù),通過關(guān)聯(lián)分析等技術(shù)來得到。

管理會計師可以利用數(shù)據(jù)挖掘工具來評價企業(yè)的財務(wù)風(fēng)險,建立企業(yè)財務(wù)危機預(yù)警模型,進(jìn)行破產(chǎn)預(yù)測。破產(chǎn)預(yù)測或稱財務(wù)危機預(yù)警模型能夠幫助管理者及時了解企業(yè)的財務(wù)風(fēng)險,提前采取風(fēng)險防范措施,避免破產(chǎn)。另外,破產(chǎn)預(yù)測模型還能幫助分析破產(chǎn)原因,對企業(yè)管理者意義重大。,數(shù)據(jù)挖掘技術(shù)包括多維判別式分析、邏輯回歸分析、遺傳算法、神經(jīng)網(wǎng)絡(luò)以及決策樹等方法在管理會計中得到了廣泛的應(yīng)用。

數(shù)據(jù)挖掘是個嶄新的領(lǐng)域,對于數(shù)字和信息的處理是非常科學(xué)和方便的,也是非常高效率和合理分析的非常好的工具,對于會計管理領(lǐng)域的應(yīng)用在國際上只是剛剛開始,相信隨著會計的國際化的接軌和計算機科學(xué)的進(jìn)步,在我國的會計領(lǐng)域中的數(shù)據(jù)挖掘理論會得到不斷的提升,在管理會計實際應(yīng)用中的數(shù)據(jù)挖掘也越來越多樣化和普及化。

數(shù)據(jù)挖掘論文選題篇三

1.1數(shù)據(jù)挖掘技術(shù)概述

發(fā)現(xiàn)的是用戶感興趣的知識;發(fā)現(xiàn)的知識應(yīng)當(dāng)能夠被接受、理解和運用。也就是發(fā)現(xiàn)全部相對的知識,是具有特定前提與條件,面向既定領(lǐng)域的,同時還容易被用戶接受。數(shù)據(jù)挖掘?qū)儆谝环N新型的商業(yè)信息處理技術(shù),其特點為抽取、轉(zhuǎn)化、分析商業(yè)數(shù)據(jù)庫中的大規(guī)模業(yè)務(wù)數(shù)據(jù),從中獲得有價值的商業(yè)數(shù)據(jù)。簡單來說,其實數(shù)據(jù)挖掘是一種對數(shù)據(jù)進(jìn)行深入分析的方法。因此,可以描述數(shù)據(jù)挖掘為:根據(jù)企業(yè)設(shè)定的工作目標(biāo),探索與分析企業(yè)大量數(shù)據(jù),充分揭示隱藏的、未知的規(guī)律性,并且將其轉(zhuǎn)變?yōu)榭茖W(xué)的方法。數(shù)據(jù)挖掘發(fā)現(xiàn)的最常見知識包括:

1.1.1廣義知識體現(xiàn)相同事物共同性質(zhì)的知識,是指類別特點的概括描述知識。按照數(shù)據(jù)的微觀特點對其表征的、具有普遍性的、極高概念層次的知識積極發(fā)現(xiàn),是對數(shù)據(jù)的高度精煉與抽象。發(fā)現(xiàn)廣義知識的方法與技術(shù)有很多,例如數(shù)據(jù)立方體和歸約等。

1.1.2關(guān)聯(lián)知識體現(xiàn)一個事件與其他事件之間形成的關(guān)聯(lián)知識。假如兩項或者更多項之間形成關(guān)聯(lián),則其中一項的屬性數(shù)值就能夠借助其他屬性數(shù)值實行預(yù)測。

1.1.3分類知識體現(xiàn)相同事物共同特點的屬性知識與不同事物之間差異特點知識。

1.2數(shù)據(jù)挖掘過程

1.2.1明確業(yè)務(wù)對象對業(yè)務(wù)問題清楚定義,了解數(shù)據(jù)挖掘的第一步是數(shù)據(jù)挖掘目的。挖掘結(jié)果是無法預(yù)測的,但是研究的問題是可預(yù)見的,僅為了數(shù)據(jù)挖掘而數(shù)據(jù)挖掘一般會體現(xiàn)出盲目性,通常也不會獲得成功?;谟脩籼卣鞯碾娮由虅?wù)數(shù)據(jù)挖掘研究劉芬(惠州商貿(mào)旅游高級職業(yè)技術(shù)學(xué)校,廣東惠州516025)摘要:隨著互聯(lián)網(wǎng)的出現(xiàn),全球范圍內(nèi)電子商務(wù)正在迅速普及與發(fā)展,在這樣的環(huán)境下,電子商務(wù)數(shù)據(jù)挖掘技術(shù)應(yīng)運而生。電子商務(wù)數(shù)據(jù)挖掘技術(shù)是近幾年來數(shù)據(jù)挖掘領(lǐng)域中的研究熱點,基于用戶特征的電子商務(wù)數(shù)據(jù)挖掘技術(shù)研究將會解決大量現(xiàn)實問題,為企業(yè)確定目標(biāo)市場、完善決策、獲得最大競爭優(yōu)勢,其應(yīng)用前景廣闊,促使電子商務(wù)企業(yè)更具有競爭力。主要分析了電子商務(wù)內(nèi)容、數(shù)據(jù)挖掘技術(shù)和過程、用戶細(xì)分理論,以及基于用戶特征的電子商務(wù)數(shù)據(jù)挖掘。

1.2.2數(shù)據(jù)準(zhǔn)備第一選擇數(shù)據(jù):是按照用戶的挖掘目標(biāo),對全部業(yè)務(wù)內(nèi)外部數(shù)據(jù)信息積極搜索,從數(shù)據(jù)源中獲取和挖掘有關(guān)數(shù)據(jù)。第二預(yù)處理數(shù)據(jù):加工選取的數(shù)據(jù),具體對數(shù)據(jù)的完整性和一致性積極檢查,并且處理數(shù)據(jù)中的噪音,找出計算機丟失的數(shù)據(jù),清除重復(fù)記錄,轉(zhuǎn)化數(shù)據(jù)類型等。假如數(shù)據(jù)倉庫是數(shù)據(jù)挖掘的對象,則在產(chǎn)生數(shù)據(jù)庫過程中已經(jīng)形成了數(shù)據(jù)預(yù)處理。

1.2.3變換數(shù)據(jù)轉(zhuǎn)換數(shù)據(jù)為一個分析模型。這一分析模型是相對于挖掘算法構(gòu)建的。構(gòu)建一個與挖掘算法適合的分析模型是數(shù)據(jù)挖掘獲得成功的重點??梢岳猛队皵?shù)據(jù)庫的相關(guān)操作對數(shù)據(jù)維度有效降低,進(jìn)一步減少數(shù)據(jù)挖掘過程中數(shù)據(jù)量,提升挖掘算法效率。

1.2.4挖掘數(shù)據(jù)挖掘獲得的經(jīng)濟轉(zhuǎn)化的數(shù)據(jù)。除了對選擇科學(xué)挖掘算法積極完善之外,其余全部工作都自行完成。整體挖掘過程都是相互的,也就是用戶對某些挖掘參數(shù)能夠積極控制。

1.2.5評價挖掘結(jié)果這個過程劃分為兩個步驟:表達(dá)結(jié)果和評價結(jié)果。第一表達(dá)結(jié)果:用戶能夠理解數(shù)據(jù)挖掘得到的模式,可以通過可視化數(shù)據(jù)促使用戶對挖掘結(jié)果積極理解。第二評價結(jié)果:用戶與機器對數(shù)據(jù)挖掘獲得的模式有效評價,對冗余或者無關(guān)的模式及時刪除。假如用戶不滿意挖掘模式,可以重新挑選數(shù)據(jù)和挖掘算法對挖掘過程科學(xué)執(zhí)行,直到獲得用戶滿意為止。

用戶細(xì)分是指按照不同用戶的屬性劃分用戶集合。目前學(xué)術(shù)界和企業(yè)界一般接受的是基于用戶價值的細(xì)分理論,其不僅包含了用戶為企業(yè)貢獻(xiàn)歷史利潤,還包含未來利潤,也就是在未來用戶為企業(yè)可能帶來的利潤總和?;谟脩魞r值的細(xì)分理論選擇客戶當(dāng)前價值與客戶潛在價值兩個因素評價用戶。用戶當(dāng)前價值是指截止到目前用戶對企業(yè)貢獻(xiàn)的總體價值;用戶潛在價值是指未來用戶可能為企業(yè)創(chuàng)造的價值總和。每個因素還能夠劃分為兩個高低檔次,進(jìn)一步產(chǎn)生一個二維的矩陣,把用戶劃分為4組,價值用戶、次價值用戶、潛在價值用戶、低價值用戶。企業(yè)在推廣過程中根據(jù)不同用戶應(yīng)當(dāng)形成對應(yīng)的方法,投入不同的資源。很明顯對于企業(yè)來說價值用戶最重要,被認(rèn)為是企業(yè)的玉質(zhì)用戶;其次是次價值用戶,被認(rèn)為是金質(zhì)用戶,雖然數(shù)量有限,卻為企業(yè)創(chuàng)造了絕大部分的利潤;其他則是低價值用戶,對企業(yè)來說價值最小,成為鉛質(zhì)用戶,另外一類則是潛在價值用戶。雖然這兩類用戶擁有較多的數(shù)量,但是為企業(yè)創(chuàng)造的價值有限,甚至很小。需要我們注意的是潛在價值用戶利用再造用戶關(guān)系,將來極有可能變成價值用戶。從長期分析,潛在價值用戶可以是企業(yè)的隱形財富,是企業(yè)獲得利潤的基礎(chǔ)。將采用數(shù)據(jù)挖掘方法對這4類用戶特點有效挖掘。

3.1設(shè)計問卷

研究的關(guān)鍵是電子商務(wù)用戶特征的數(shù)據(jù)挖掘,具體包含了價值用戶特征、次價值用戶特征、潛在價值用戶特征,對電子商務(wù)用戶的認(rèn)知度、用戶的需求度分析。問卷內(nèi)容包括3部分:其一是為被調(diào)查者介紹電子商務(wù)的概念與背景;其二是具體調(diào)查被調(diào)查對象的個人信息,包含了性別、年齡、學(xué)歷、感情情況、職業(yè)、工作、生活地點、收入、上網(wǎng)購物經(jīng)歷;其三是問卷主要部分,是對用戶對電子商務(wù)的了解、需求、使用情況的指標(biāo)設(shè)計。

3.2調(diào)查方式

本次調(diào)查的問卷主體是電腦上網(wǎng)的人群,采用隨機抽象的方式進(jìn)行網(wǎng)上訪問。一方面采用大眾聊天工具,利用電子郵件和留言的方式發(fā)放問卷,另一方面在大眾論壇上邀請其填寫問卷。

3.3數(shù)據(jù)挖掘和結(jié)果

(1)選擇數(shù)據(jù)挖掘的算法利用clementine數(shù)據(jù)挖掘軟件,采用c5.o算法挖掘預(yù)處理之后數(shù)據(jù)。

(2)用戶數(shù)據(jù)分析

1)電子商務(wù)用戶認(rèn)知度分析按照調(diào)查問卷的問題“您知道電子商務(wù)嗎?”得到對電子商務(wù)用戶認(rèn)知情況的統(tǒng)計,十分了解20.4%,了解30.1%,聽過但不了解具體使用方法40.3%,從未聽過8.9%。很多人僅聽過電子商務(wù),但是并不清楚具體的功能與應(yīng)用方法,甚至有一小部分人沒有聽過電子商務(wù)。對調(diào)查問卷問題“您聽過電子商務(wù)的渠道是什么?”,大部分用戶是利用網(wǎng)了解電子商務(wù)的,占40.2%;僅有76人是利用紙質(zhì)報刊雜志上知道電子商務(wù)的并且對其進(jìn)行應(yīng)用;這也表明相較于網(wǎng)絡(luò)宣傳紙質(zhì)媒體推廣電子商務(wù)的方法缺乏有效性。

2)電子商務(wù)用戶需求用戶希求具體是指使用產(chǎn)品服務(wù)人員對應(yīng)用產(chǎn)品或服務(wù)形成的需求或者期望。按照問題“假如你曾經(jīng)使用電子商務(wù),你覺得其用途怎樣,假如沒有使用過,你覺得其對自己有用嗎?”得到了認(rèn)為需要和十分需要的數(shù)據(jù),覺得電子商務(wù)有用的用戶為40.7%,不清楚是否對自己有用的用戶為56.7%,認(rèn)為不需要的僅有2.4%。

3)電子商務(wù)用戶應(yīng)用意愿應(yīng)用意愿是指消費者對某一產(chǎn)品服務(wù)進(jìn)行應(yīng)用或者購買的一種心理欲望。按照問題“假如可以滿足你所關(guān)心的因素,未來你會繼續(xù)應(yīng)用電子商務(wù)嗎?”獲得的數(shù)據(jù)可知,在滿足各種因素時,將來一年之內(nèi)會應(yīng)用電子商務(wù)的用戶為78.2%,一定不會應(yīng)用電子商務(wù)的用戶為1.4%。表明用戶形成了較為強烈的應(yīng)用電子商務(wù)欲望,電子商務(wù)發(fā)展前景很好。基于用戶特征的電子商務(wù)數(shù)據(jù)研究,電子商務(wù)企業(yè)通過這一結(jié)果能夠更好地實行營銷和推廣,對潛在用戶積極定位,提高用戶體驗,積極挖掘用戶價值。分析為企業(yè)準(zhǔn)確營銷和推廣企業(yè)提供了一個有效的借鑒。

互聯(lián)網(wǎng)中數(shù)據(jù)是最寶貴的資源之一,大量數(shù)據(jù)中包含了很大的潛在價值,對這些數(shù)據(jù)深入挖掘?qū)ヂ?lián)網(wǎng)商務(wù)、企業(yè)推廣、傳播信息發(fā)揮了巨大的作用。近些年來,數(shù)據(jù)挖掘技術(shù)獲得了信息產(chǎn)業(yè)的極大重視,具體原因是出現(xiàn)了大量的數(shù)據(jù),能夠廣泛應(yīng)用,并且需要轉(zhuǎn)化數(shù)據(jù)成為有價值的信息知識。通過基于用戶特征的電子商務(wù)數(shù)據(jù)挖掘研究,促使電子商務(wù)獲得巨大發(fā)展機會,發(fā)現(xiàn)潛在用戶,促使電子商務(wù)企業(yè)精準(zhǔn)營銷。

數(shù)據(jù)挖掘論文選題篇四

數(shù)據(jù)挖掘技術(shù)在金融業(yè)、醫(yī)療保健業(yè)、市場業(yè)、零售業(yè)和制造業(yè)等很多領(lǐng)域都得到了很好的應(yīng)用。針對交通安全領(lǐng)域中交通事故數(shù)據(jù)利用率低的現(xiàn)狀,可以通過數(shù)據(jù)挖掘?qū)ο嚓P(guān)交通事故數(shù)據(jù)進(jìn)行統(tǒng)計分析,從而發(fā)現(xiàn)其中的關(guān)聯(lián),這對提升交通安全水平具有非常重要的意義。

數(shù)據(jù)挖掘(datamining)即對大量數(shù)據(jù)進(jìn)行有效的分類統(tǒng)計,從而整理出有規(guī)律的、有價值的、潛在的未知信息。一般來講,這些數(shù)據(jù)存在極大的隨機性和不完全性,其包括各行各業(yè)各個方面的數(shù)據(jù)。數(shù)據(jù)挖掘是一個結(jié)合了數(shù)據(jù)庫、人工智能、機器學(xué)習(xí)的學(xué)科,涉及統(tǒng)計數(shù)據(jù)和技術(shù)理論等領(lǐng)域。

關(guān)聯(lián)分析作為數(shù)據(jù)挖掘中的重要組成部分,其主要作用就是通過數(shù)據(jù)之間的相互關(guān)聯(lián)從而發(fā)現(xiàn)數(shù)據(jù)集中某種未知的聯(lián)系。關(guān)聯(lián)分析最初是在20世紀(jì)90年代初被提出來的,一直備受關(guān)注。已被廣泛應(yīng)用于各行各業(yè),包括醫(yī)療體檢、電子商務(wù)、商業(yè)金融等各個領(lǐng)域。關(guān)聯(lián)規(guī)則的挖掘一般可分成兩個步驟[1]:

(1)找出頻繁項集,不小于最小支持度的項集;

(2)生成強關(guān)聯(lián)規(guī)則,不小于最小置信度的關(guān)聯(lián)規(guī)則。相對于生成強關(guān)聯(lián)規(guī)則,找出頻繁項集這一步比較麻煩。l等人在1994年提出的apriori算法是生成頻繁項集的經(jīng)典算法[2]。apriori算法使用了level-wise搜索的迭代方法,即用k-項集探索(k+1)-項集。apriori算法在整體上可分為兩個部分。

(1)發(fā)現(xiàn)頻集。這個部分是最重要的,開銷相繼產(chǎn)生了各種各樣的頻集算法,專門用于發(fā)現(xiàn)頻集,以降低其復(fù)雜度、提高發(fā)現(xiàn)頻集的效率。

(2)利用所獲得的頻繁項集各種算法主要致力產(chǎn)生強關(guān)聯(lián)規(guī)則。當(dāng)然頻集構(gòu)成的聯(lián)規(guī)則未必是強關(guān)聯(lián)規(guī)則,還要檢驗構(gòu)成的關(guān)聯(lián)規(guī)則的支持度和支持度是否超過它們的閾值。apriori算法找出頻繁項集分為兩步:連接和剪枝。

(1)連接。集合lk-1為頻繁k-1項集的集合,它通過與自身連接就可以生成候選k項集的集合,記作ck。

(2)剪枝。頻繁k項集的集合lk是ck的子集。剪枝首先利用apriori算法的性質(zhì)(頻繁項集的所有非空子集都是頻繁的,如果不滿足這個條件,就從候選集合ck中刪除)對ck進(jìn)行壓縮;然后,通過掃描所有的事務(wù),確定壓縮后ck中的每個候選的支持度;最后與設(shè)定的最小支持度進(jìn)行比較,如果支持度不小于最小支持度,則認(rèn)為該候選項是頻繁的。目前,在互聯(lián)網(wǎng)技術(shù)及科學(xué)技術(shù)的快速發(fā)展下,人工智能、機器識別等技術(shù)興起,關(guān)聯(lián)分析也被越來越多應(yīng)用其中,并在不斷發(fā)展中提出了大量的改進(jìn)算法。

近年來,我國越來越多的學(xué)者將數(shù)據(jù)挖掘關(guān)聯(lián)分析應(yīng)用于道路交通事故的研究中,主要是分析道路、車輛、行人以及環(huán)境等因素與交通事故之間的某種聯(lián)系。pande和abdel-aty[3]通過關(guān)聯(lián)分析研究了美國佛羅里達(dá)州20xx年非交叉口發(fā)生的道路交通事故,重點分析了各個不同的影響因素與交通事故之間的內(nèi)在聯(lián)系,通過研究得出如下結(jié)論,道路照明條件不足是引發(fā)道路交通事故的主要因素,除此之外,還發(fā)現(xiàn)天氣惡劣的環(huán)境下道路彎道的直線段也極易發(fā)生交通事故。graves[4]利用數(shù)據(jù)挖掘技術(shù)中的關(guān)聯(lián)規(guī)則對歐洲道路交通事故進(jìn)行了分析,主要研究了交通事故與道路設(shè)施狀況之間的關(guān)聯(lián),通過研究發(fā)現(xiàn)了易導(dǎo)致交通事故發(fā)生的各個道路設(shè)施狀況因素,此研究為歐洲路面建設(shè)及投資提供了強大的決策支持。我國學(xué)者董立巖在研究道路交通事故數(shù)據(jù)的文獻(xiàn)中,將粗糙集與關(guān)聯(lián)分析進(jìn)行了融合,提出了基于偏好信息的決策規(guī)則簡約算法并將其應(yīng)用其中,通過分析發(fā)現(xiàn)了道路交通事故的未知規(guī)律。王艷玲通過關(guān)聯(lián)分析中的因子關(guān)聯(lián)樹模型重點分析了影響道路交通事故最重要的因子,發(fā)現(xiàn)在道路交通事故常見的誘因人、車、路及環(huán)境中對事故影響最大的因子是環(huán)境。許卉瑩等利用關(guān)聯(lián)分析、聚類分析以及決策樹分析三種數(shù)據(jù)挖掘技術(shù)對道路交通事故數(shù)據(jù)進(jìn)行分析,最終得出了科學(xué)的道路交通事故預(yù)防和交通安全管理決策依據(jù)。尚威等在研究中,對大量的道路交通數(shù)據(jù)進(jìn)行了有效整合,并在此基礎(chǔ)上按照交通事故相關(guān)因素的不同特點整理出與事故發(fā)生有關(guān)的字段數(shù)據(jù),形成新的事故數(shù)據(jù)記錄表,然后再根據(jù)多維關(guān)聯(lián)規(guī)則對記錄的相關(guān)數(shù)據(jù)進(jìn)行分析,從而發(fā)現(xiàn)了事故誘導(dǎo)因素記錄字段值和事故結(jié)果字段值組成的道路交通事故頻繁字段的組合。張聽等在充分掌握聚類數(shù)據(jù)挖掘理論與方法的基礎(chǔ)上,提出了多目標(biāo)聚類分析框架和一個啟發(fā)式的聚類算法k-wanmi,并將其用在道路交通事故的聚類研究中對不同權(quán)重的屬性進(jìn)行了多目標(biāo)分析。同樣,許宏科也利用該方法對公路隧道交通流數(shù)據(jù)進(jìn)行了聚類分析,其在研究中不僅明確了隧道交通流的峰值規(guī)律,而且還根據(jù)這種規(guī)律制訂了隧道監(jiān)控設(shè)備的不同控制方案,對提高隧道交通安全的水平做了極大的貢獻(xiàn)。徐磊和方源敏在研究中,提出了由簡化信息熵構(gòu)造的改進(jìn)c4.5決策樹算法,并將其應(yīng)用在交通事故數(shù)據(jù)的研究中,對交通數(shù)據(jù)進(jìn)行了正確分類,發(fā)現(xiàn)了一些隱藏的規(guī)則和知識,為交通管理提供了依據(jù)。劉軍、艾力斯木吐拉、馬曉松運用多維關(guān)聯(lián)規(guī)則分析交通事故記錄,從而找到導(dǎo)致交通事故發(fā)生次數(shù)多的主要原因,并且指導(dǎo)相關(guān)部門作出相應(yīng)的決策。楊希剛運用關(guān)聯(lián)規(guī)則為現(xiàn)實中的交通事故的預(yù)防提供依據(jù)。吉林大學(xué)的吳昊等人,基于關(guān)聯(lián)規(guī)則的理論基礎(chǔ),定義了公路交通事故屬性模型,并結(jié)合改進(jìn)后的apriori算法,分析了交通事故歷史數(shù)據(jù)信息,為有關(guān)單位和用戶尋找道路黑點(即事故多發(fā)點)提供了技術(shù)支援和決策幫助。

通過數(shù)據(jù)挖掘中的關(guān)聯(lián)分析方法雖然能夠?qū)Φ缆方煌ㄊ鹿实南嚓P(guān)因素進(jìn)行清晰的分析,但是目前在這一方面的研究仍有不足之處。因為關(guān)聯(lián)分析在道路交通事故的研究中往往只能片面發(fā)現(xiàn)某一種或幾種因素影響交通事故的規(guī)律,很難將所有影響因素結(jié)合起來進(jìn)行全面系統(tǒng)的分析。然而道路交通事故的發(fā)生通常都是由相應(yīng)因素導(dǎo)致,而后事故當(dāng)事人意識到危險源的存在并采取措施,直到事故發(fā)生的連續(xù)過程,整體來看體現(xiàn)了時序性。也就是說,道路交通事故是受到一系列按照時間先后順序排列的影響因素組合共同作用而發(fā)生的,從整體的角度出發(fā)研究事故發(fā)生機理更加科學(xué)。

數(shù)據(jù)挖掘論文選題篇五

隨著互聯(lián)網(wǎng)技術(shù)的迅速發(fā)展,尤其移動互聯(lián)網(wǎng)的爆發(fā)性發(fā)展,越來越多的公司憑借其備受歡迎的系統(tǒng)和app如雨后春筍般發(fā)展起來,如滴滴打車、共享單車等。海量數(shù)據(jù)自此不再是google等大公司的專利,越來越多的中小型企業(yè)也可以擁有海量數(shù)據(jù)。如何從浩如煙海的數(shù)據(jù)中挖掘出令人感興趣和有用的知識,成為越來越多的公司急需解決的問題。因此,他們對數(shù)據(jù)挖掘分析師求賢若渴。在這一社會需求下,培養(yǎng)出優(yōu)秀的數(shù)據(jù)挖掘分析師,是各個高校目前急需完成的一項任務(wù)。

目前,各大高等院校本科階段爭相開設(shè)數(shù)據(jù)挖掘課程。然而,該課程是一門相對較新的交叉學(xué)科,涵蓋了概率統(tǒng)計、機器學(xué)習(xí)、數(shù)據(jù)庫等學(xué)科的知識內(nèi)容,難度較大。因此,大部分高校一般將此課程開設(shè)在研究生階段,在本科生中開設(shè)此課程的學(xué)校相對較少。另外,不同的學(xué)校將其歸入不同的專業(yè)中,如計算機專業(yè)、信息管理專業(yè)、統(tǒng)計學(xué)、醫(yī)學(xué)等??梢哉f,這一課程基本上處于探索的過程中。我院災(zāi)害信息系于20xx年在信息管理與信息系統(tǒng)本科學(xué)生中首次開設(shè)了該課程。通過開設(shè)此課程,學(xué)生能夠掌握數(shù)據(jù)挖掘的基本原理和各種挖掘算法等,掌握數(shù)據(jù)分析和處理、高級數(shù)據(jù)庫編程等技能,達(dá)到數(shù)據(jù)聚類、分類、關(guān)聯(lián)分析的目的。然而,通過前期教學(xué)過程,我們發(fā)現(xiàn)教學(xué)效果不理想,存在很多問題。

1、數(shù)據(jù)內(nèi)驅(qū)力差

以往數(shù)據(jù)挖掘課程重點講授數(shù)據(jù)挖掘算法,對數(shù)據(jù)源的獲取和處理極少獲取。目前各大教材都在使用一些公共數(shù)據(jù)資源,這些數(shù)據(jù)資源有些已經(jīng)非常陳舊了,比如20世紀(jì)80年代的加州房價數(shù)據(jù)。這些數(shù)據(jù)脫離現(xiàn)實,分析這些數(shù)據(jù),學(xué)生沒有任何興趣和學(xué)習(xí)動力,也就無法發(fā)現(xiàn)價值。

2、過于強調(diào)學(xué)習(xí)數(shù)據(jù)挖掘理論及算法的學(xué)習(xí)

大量具有難度的數(shù)據(jù)挖掘算法的學(xué)習(xí),使學(xué)生喪失了學(xué)習(xí)興趣,學(xué)完即忘,不知所用。

3、忽視對數(shù)據(jù)預(yù)處理過程的學(xué)習(xí)

以往所使用的公共數(shù)據(jù)源或軟件自帶數(shù)據(jù)源,數(shù)據(jù)量小,需要的預(yù)處理工作比較少;這部分內(nèi)容基本只安排一次理論課、一次實驗課。而實際通過爬蟲獲取的數(shù)據(jù)源數(shù)據(jù)量大;這部分工作量比較大,需要占到整個數(shù)據(jù)挖掘工作量的一半以上。因此,一次理論課和一次實驗課是無法讓學(xué)生掌握數(shù)據(jù)預(yù)處理技能的。

4、算法編程實現(xiàn)難度較大

要求學(xué)生學(xué)習(xí)一門新的編程語言,如r語言、python語言,對本科非計算機專業(yè)的學(xué)生來說難度是非常大的,尤其是課時安排只有48課時。

5、數(shù)據(jù)挖掘分析及應(yīng)用技能較差

學(xué)生能夠理解課堂案例,但在實際應(yīng)用中,無法完成整個數(shù)據(jù)分析流程。

該課程的教學(xué)對象是信息管理與信息系統(tǒng)專業(yè)本科大四學(xué)生。因此,培養(yǎng)實際應(yīng)用人才,使其完成整個實際數(shù)據(jù)挖掘分析流程是教師的教學(xué)目的。筆者對智聯(lián)招聘、中華英才網(wǎng)、51job等幾個大型招聘網(wǎng)站的幾百個數(shù)據(jù)挖掘分析師相關(guān)職位進(jìn)行分析,主要分析了相關(guān)職位的工作內(nèi)容、職位要求以及需求企業(yè)。數(shù)據(jù)分析師主要利用數(shù)據(jù)挖掘工具對運營數(shù)據(jù)等多種數(shù)據(jù)源進(jìn)行預(yù)處理、建模、挖掘、分析及優(yōu)化。該職位是受業(yè)務(wù)驅(qū)動的,特點是將現(xiàn)有數(shù)據(jù)與業(yè)務(wù)相結(jié)合,最大程度地變現(xiàn)數(shù)據(jù)價值。該職位對計算機編程等相關(guān)技術(shù)不作要求,但是需要有深厚的數(shù)據(jù)挖掘理論基礎(chǔ),熟練使用主流的數(shù)據(jù)挖掘(或統(tǒng)計分析)工具?;诖?,教師可以采取以下策略進(jìn)行教學(xué)改革。

1、加強對業(yè)務(wù)數(shù)據(jù)的理解

數(shù)據(jù)挖掘分析師是受業(yè)務(wù)驅(qū)動的,所以要理解實際業(yè)務(wù),明確本次數(shù)據(jù)挖掘要解決什么問題。教師可以構(gòu)建案例庫,包括教師案例庫、學(xué)生討論案例庫。教師案例庫由教師構(gòu)建,可用于課堂講授。學(xué)生案例庫由學(xué)生分組構(gòu)建,并安排討論課,由學(xué)生講述、討論并提交報告。

2、加強對數(shù)據(jù)的獲取

對學(xué)生感興趣的數(shù)據(jù)源進(jìn)行挖掘,這樣才能更好地幫助學(xué)生理解吸收知識。因此,可以教授學(xué)生爬蟲技術(shù),編寫爬蟲程序,使其自主獲取感興趣的數(shù)據(jù)。

3、加強對數(shù)據(jù)的預(yù)處理工作

在數(shù)據(jù)挖掘之前使用數(shù)據(jù)預(yù)處理技術(shù),能夠顯著提高數(shù)據(jù)挖掘模式的質(zhì)量,降低實際挖掘所需要的時間,應(yīng)將其作為整門課程的重點進(jìn)行學(xué)習(xí)。增加理論課程和實驗課時,使學(xué)生掌握數(shù)據(jù)清理、數(shù)據(jù)集成、數(shù)據(jù)變換、數(shù)據(jù)歸納等數(shù)據(jù)預(yù)處理技術(shù),并能夠應(yīng)對各種復(fù)雜數(shù)據(jù)源,最終利用爬蟲程序獲取的各種數(shù)據(jù)源進(jìn)行預(yù)處理工作。

4、強化數(shù)據(jù)挖掘分析

教師可以選擇spssmodeler這款所見即所得的數(shù)據(jù)挖掘軟件作為配套實驗平臺。該軟件具有必需的數(shù)據(jù)預(yù)處理工具及預(yù)設(shè)的挖掘算法,學(xué)生可以把注意力放在要挖掘的數(shù)據(jù)及相關(guān)需求上,設(shè)定挖掘的主題,然后通過鼠標(biāo)的點擊拖拉即可完成相關(guān)主題的數(shù)據(jù)挖掘過程。學(xué)生最終可對自己獲取并已處理過的數(shù)據(jù)進(jìn)行挖掘分析。

5、加強教師外出培訓(xùn)學(xué)習(xí)

數(shù)據(jù)挖掘技術(shù)以及大數(shù)據(jù)技術(shù)是近來比較新穎而且發(fā)展迅速的技術(shù)。教師長期身處三尺講臺之上,遠(yuǎn)離了新技術(shù),脫離了實際。因此,需派遣教師到知名高校學(xué)習(xí)數(shù)據(jù)挖掘教學(xué)技術(shù),到培訓(xùn)機構(gòu)進(jìn)行系統(tǒng)學(xué)習(xí),到企業(yè)進(jìn)行實戰(zhàn)學(xué)習(xí)。

基于以上分析,形成了新的數(shù)據(jù)挖掘理論課程內(nèi)容和實踐課程內(nèi)容,安排如表1和表2所示。共安排48學(xué)時,其中理論課24學(xué)時,實驗課24學(xué)時。理論課重點講授數(shù)據(jù)的獲取、數(shù)據(jù)的理解、數(shù)據(jù)的預(yù)處理以及常用挖掘算法。實驗課重點學(xué)習(xí)基于spssmodeler的數(shù)據(jù)挖掘,對理論課的內(nèi)容進(jìn)行實踐。整個學(xué)習(xí)以工程項目為載體,該工程貫穿整個學(xué)習(xí)過程。學(xué)生通過爬蟲程序獲取自己感興趣的數(shù)據(jù)源,根據(jù)課程進(jìn)度,逐步完成后續(xù)數(shù)據(jù)的理解,再進(jìn)行預(yù)處理,建模分析,評估整個過程。在課程結(jié)束時,完成整個項目,并提交報告。

在數(shù)字時代,越來越多的企業(yè)急需數(shù)據(jù)挖掘分析人才。教師應(yīng)以培養(yǎng)實際應(yīng)用人才為目的,充分培養(yǎng)學(xué)生對數(shù)據(jù)挖掘的學(xué)習(xí)興趣,以工程項目為載體,貫穿整個課程周期。在教學(xué)中,打牢數(shù)據(jù)獲取、理解預(yù)處理這一基石,加強建模挖掘分析,弱化對晦澀算法的編程學(xué)習(xí),使學(xué)生真正掌握數(shù)據(jù)挖掘技術(shù),滿足社會需求。

數(shù)據(jù)挖掘論文選題篇六

網(wǎng)絡(luò)的發(fā)展帶動了電子商務(wù)市場的繁華,大量的商品、信息在現(xiàn)有的網(wǎng)絡(luò)平臺上患上以交易,大大簡化了傳統(tǒng)的交易方式,節(jié)儉了時間,提高了效力,但電子市場繁華違后暗藏的問題,同樣成為人們關(guān)注的焦點,凸起表現(xiàn)在海量信息的有效應(yīng)用上,如何更為有效的管理應(yīng)用潛伏信息,使他們的最大功效患上以施展,成為人們現(xiàn)在鉆研的重點,數(shù)據(jù)發(fā)掘技術(shù)的發(fā)生,在必定程度上解決了這個問題,但它也存在著問題,需要不斷改善。

數(shù)據(jù)發(fā)掘(datamining)就是從大量的、不完整的、有噪聲的、隱約的、隨機的原始數(shù)據(jù)中,提取隱含在其中的、人們事前不知道的、但又是潛伏有用的信息以及知識的進(jìn)程?;蛘哒哒f是從數(shù)據(jù)庫中發(fā)現(xiàn)有用的知識(kdd),并進(jìn)行數(shù)據(jù)分析、數(shù)據(jù)融會(datafusion)和決策支撐的進(jìn)程。數(shù)據(jù)發(fā)掘是1門廣義的交叉學(xué)科,它匯聚了不同領(lǐng)域的鉆研者,特別是數(shù)據(jù)庫、人工智能、數(shù)理統(tǒng)計、可視化、并行計算等方面的學(xué)者以及工程技術(shù)人員。

數(shù)據(jù)發(fā)掘技術(shù)在電子商務(wù)的利用

在對于web的客戶走訪信息的發(fā)掘中,應(yīng)用分類技術(shù)可以在internet上找到未來的潛伏客戶。使用者可以先對于已經(jīng)經(jīng)存在的走訪者依據(jù)其行動進(jìn)行分類,并依此分析老客戶的1些公共屬性,抉擇他們分類的癥結(jié)屬性及互相間瓜葛。對于于1個新的走訪者,通過在web上的分類發(fā)現(xiàn),辨認(rèn)出這個客戶與已經(jīng)經(jīng)分類的老客戶的1些公共的描寫,從而對于這個新客戶進(jìn)行正確的分類。然后從它的分類判斷這個新客戶是有益可圖的客戶群仍是無利可圖的客戶群,抉擇是不是要把這個新客戶作為潛伏的客戶來對于待??蛻舻念愋涂隙ê螅梢詫τ诳蛻魟討B(tài)地展現(xiàn)web頁面,頁面的內(nèi)容取決于客戶與銷售商提供的產(chǎn)品以及服務(wù)之間的關(guān)聯(lián)。若為潛伏客戶,就能夠向這個客戶展現(xiàn)1些特殊的、個性化的頁面內(nèi)容。

在電子商務(wù)中,傳統(tǒng)客戶與銷售商之間的空間距離已經(jīng)經(jīng)不存在,在internet上,每一1個銷售商對于于客戶來講都是1樣的,那末使客戶在自己的銷售站點上駐留更長的時間,對于銷售商來講則是1個挑戰(zhàn)。為了使客戶在自己的網(wǎng)站上駐留更長的時間,就應(yīng)當(dāng)全面掌握客戶的閱讀行動,知道客戶的興致及需求所在,并依據(jù)需求動態(tài)地向客戶做頁面舉薦,調(diào)劑web頁面,提供獨有的1些商品信息以及廣告,以使客戶滿意,從而延長客戶在自己的網(wǎng)站上的駐留的時間。

數(shù)據(jù)發(fā)掘技術(shù)可提高站點的效力,web設(shè)計者再也不完整依托專家的定性指點來設(shè)計網(wǎng)站,而是依據(jù)走訪者的信息特征來修改以及設(shè)計網(wǎng)站結(jié)構(gòu)以及外觀。站點上頁面內(nèi)容的支配以及連接就如超級市場中物品的貨架左右1樣,把擁有必定支撐度以及信任度的相干聯(lián)的物品擺放在1起有助于銷售。網(wǎng)站盡量做到讓客戶等閑地走訪到想走訪的頁面,給客戶留下好的印象,增添下次走訪的機率。

通過web數(shù)據(jù)發(fā)掘,企業(yè)可以分析顧客的將來行動,容易評測市場投資回報率,患上到可靠的市場反饋信息。不但大大降低公司的運營本錢,而且便于經(jīng)營決策的制訂。

數(shù)據(jù)發(fā)掘在利用中面臨的問題

一數(shù)據(jù)發(fā)掘分析變量的選擇

數(shù)據(jù)發(fā)掘的基本問題就在于數(shù)據(jù)的數(shù)量以及維數(shù),數(shù)據(jù)結(jié)構(gòu)顯的無比繁雜,數(shù)據(jù)分析變量即是在數(shù)據(jù)發(fā)掘中技術(shù)利用中發(fā)生的,選擇適合的分析變量,將提高數(shù)據(jù)發(fā)掘的效力,尤其合用于電子商務(wù)中大量商品和用戶信息的處理。

針對于這1問題,咱們完整可以用分類的法子,分析出不同信息的屬性和呈現(xiàn)頻率進(jìn)而抽象出變量,運用到所選模型中,進(jìn)行分析。

二數(shù)據(jù)抽取的法子的選擇

數(shù)據(jù)抽取的目的是對于數(shù)據(jù)進(jìn)行濃縮,給出它的緊湊描寫,如乞降值、平均值、方差值、等統(tǒng)計值、或者者用直方圖、餅狀圖等圖形方式表示,更主要的是他從數(shù)據(jù)泛化的角度來討論數(shù)據(jù)總結(jié)。數(shù)據(jù)泛化是1種把最原始、最基本的信息數(shù)據(jù)從低層次抽象到高層次上的進(jìn)程??刹扇《嗑S數(shù)據(jù)分析法子以及面向?qū)傩缘臍w納法子。

三數(shù)據(jù)趨勢的。預(yù)測

數(shù)據(jù)是海量的,那末數(shù)據(jù)中就會隱含必定的變化趨勢,在電子商務(wù)中對于數(shù)據(jù)趨勢的預(yù)測尤為首要,尤其是對于客戶信息和商品信息公道的預(yù)測,有益于企業(yè)有效的決策,取得更多地利潤。但如何對于這1趨勢做出公道的預(yù)測,現(xiàn)在尚無統(tǒng)1標(biāo)準(zhǔn)可尋,而且在進(jìn)行數(shù)據(jù)發(fā)掘進(jìn)程中大量數(shù)據(jù)構(gòu)成文本后格式的非標(biāo)準(zhǔn)化,也給數(shù)據(jù)的有效發(fā)掘帶來了難題。

針對于這1問題的發(fā)生,咱們在電子商務(wù)中可以利用聚類分析的法子,把擁有類似閱讀模式的用戶集中起來,對于其進(jìn)行詳細(xì)的分析,從而提供更合適、更令用戶滿意的服務(wù)。聚類分析法子的優(yōu)勢在于便于用戶在查看日志時對于商品及客戶信息有全面及清晰的把握,便于開發(fā)以及執(zhí)行未來的市場戰(zhàn)略,包含自動給1個特定的顧客聚類發(fā)送銷售郵件,為1個顧客聚類動態(tài)地扭轉(zhuǎn)1個特殊的站點等,這不管對于客戶以及銷售商來講都是成心義。

四數(shù)據(jù)模型的可靠性

數(shù)據(jù)模型包含概念數(shù)據(jù)模型、邏輯數(shù)據(jù)模型、物理模型。數(shù)據(jù)發(fā)掘的模型目前也有多種,包含采集模型、處理模型及其他模型,但不管哪一種模型都不是很成熟存在缺點,對于數(shù)據(jù)模型不同采取不同的方式利用??赡馨l(fā)生不同的結(jié)果,乃至差異很大,因而這就觸及到數(shù)據(jù)可靠性的問題。數(shù)據(jù)的可靠性對于于電子商務(wù)來講尤為首要作用。

針對于這1問題,咱們要保障數(shù)據(jù)在發(fā)掘進(jìn)程中的可靠性,保證它的準(zhǔn)確性與實時性,進(jìn)而使其在最后的結(jié)果中的準(zhǔn)確度到達(dá)最高,同時在利用模型進(jìn)程中要盡可能全面的分析問題,防止片面,而且分析結(jié)果要由多人進(jìn)行評價,從而最大限度的保證數(shù)據(jù)的可靠性。

五數(shù)據(jù)發(fā)掘觸及到數(shù)據(jù)的私有性以及安全性

大量的數(shù)據(jù)存在著私有性與安全性的問題,尤其是電子商務(wù)中的各種信息,這就給數(shù)據(jù)發(fā)掘造成為了必定的阻礙,如何解決這1問題成了技術(shù)在利用中的癥結(jié)。

為此相干人員在進(jìn)行數(shù)據(jù)發(fā)掘進(jìn)程中必定要遵照職業(yè)道德,保障信息的秘要性。

六數(shù)據(jù)發(fā)掘結(jié)果的不肯定性

數(shù)據(jù)發(fā)掘結(jié)果擁有不肯定性的特征,由于發(fā)掘的目的不同所以最后發(fā)掘的結(jié)果自然也會千差萬別,以因而這就需要咱們與所要發(fā)掘的目的相結(jié)合,做出公道判斷,患上出企業(yè)所需要的信息,便于企業(yè)的決策選擇。進(jìn)而到達(dá)提高企業(yè)經(jīng)濟效益,取得更多利潤的目的。

數(shù)據(jù)發(fā)掘可以發(fā)現(xiàn)1些潛伏的用戶,對于于電子商務(wù)來講是1個不可或者缺的技術(shù)支撐,數(shù)據(jù)發(fā)掘的勝利請求使用者對于指望解決問題的領(lǐng)域有深入的了解,數(shù)據(jù)發(fā)掘技術(shù)在必定程度上解決了電子商務(wù)信息不能有效應(yīng)用的問題,但它在運用進(jìn)程中呈現(xiàn)的問題也亟待人們?nèi)ソ鉀Q。相信數(shù)據(jù)發(fā)掘技術(shù)的改良將推動電子商務(wù)的深刻發(fā)展。

數(shù)據(jù)挖掘論文選題篇七

隨著我國社會經(jīng)濟的不斷發(fā)展,人力資源管理也受到越來越多人們的重視,然而在如今激烈的市場競爭下很多企業(yè)依然不重視人力資源管理,從而使得自身的整體工作效率不高。為此,筆者認(rèn)為為了提高礦建人力資源管理的質(zhì)量,應(yīng)采取數(shù)據(jù)挖掘技術(shù)來開展工作,從而讓整個企業(yè)在激烈的市場競爭中穩(wěn)定、長久發(fā)展下去。

:數(shù)據(jù)挖掘技術(shù);企業(yè)人力資源管理;應(yīng)用

隨著我國人力資源管理體系的不斷發(fā)展,隱藏在管理工作中的問題也被逐漸顯露出來,雖然很多企業(yè)的高層管理者對人力資源管理這塊已經(jīng)高度重視,但是企業(yè)往往是希望通過運用相關(guān)的系統(tǒng)來對人才進(jìn)行管理,基于我國社會整體經(jīng)濟實力的不斷發(fā)展以及互聯(lián)網(wǎng)信息時代的到來,數(shù)據(jù)挖掘技術(shù)也受到越來越多的企業(yè)多關(guān)注,并紛紛采用該技術(shù)對自身人力資源進(jìn)行管理,同時也將人力資源管理系統(tǒng)作為整個信息化建設(shè)過程中的核心部位,就數(shù)據(jù)調(diào)查顯示,數(shù)據(jù)挖掘技術(shù)已經(jīng)被國外很多軟件開放式引入自身的人力資源管理工作中,并使自身內(nèi)部逐步形成了一套完整的人力資源管理系統(tǒng)體系。除此之外,數(shù)據(jù)挖掘技術(shù)也被廣泛應(yīng)用在企業(yè)的基本人力資源檔案管理工作中,隨著信息技術(shù)時代的到來,以往傳統(tǒng)的計算機管理模式對人力資源管理效率往往并不高,為此,數(shù)據(jù)挖掘技術(shù)對企業(yè)人力資管理工作是百利而無一害的。

2、1人才的招聘

任何企業(yè)在發(fā)展過程中都是離不開新鮮血液注入的,隨著目前我國市場經(jīng)濟競爭趨勢的不斷增長,企業(yè)要想穩(wěn)固發(fā)展必須要引入人力資源管理,只有這樣才能提高企業(yè)經(jīng)濟效益以及社會收益。為此,企業(yè)應(yīng)對人才進(jìn)行招聘,這也是獲取人力資源的重要手段,通過采用數(shù)據(jù)挖掘技術(shù)來吸引社會中的各類人才,并采取有效的人才管理流程來對人才進(jìn)行篩選,最終選擇質(zhì)量最佳的人才資源。與此同時,企業(yè)對人才招聘質(zhì)量的優(yōu)與良對自身內(nèi)部的員工、人類資源也會造成一定的影響,換句話來講,人才的招聘往往是企業(yè)人力資源管理工作開展的前期階段,然而在實際人才招聘過程中很多企業(yè)總是找不到合適的人選,同時也有大量的優(yōu)質(zhì)人才也很難找的適合自身的工作,這也就加大了企業(yè)人才招聘的難度,也進(jìn)一步加大了招聘的成本,為此,企業(yè)采取數(shù)據(jù)挖掘技術(shù)可以有效降低人才招聘的成本支出,從而使自身獲得更大的經(jīng)濟收益與社會利益。

2、2對人才的管理

隨著社會對人才需求量的不斷增加,企業(yè)對員工的數(shù)據(jù)記錄和管理方式也逐步優(yōu)化,然而在很多企業(yè)人力資源管理過程中仍然存在著諸多問題,而這些問題的存在對企業(yè)未來發(fā)展也產(chǎn)生阻礙作用。為了企業(yè)在未來發(fā)展道路上穩(wěn)固、長久發(fā)展,應(yīng)采取數(shù)據(jù)挖掘技術(shù)來對人才進(jìn)行管理,以往傳統(tǒng)的管理模式往往是對員工的基本信息以及日??己诉M(jìn)行管理,這種管理方式已經(jīng)不適應(yīng)現(xiàn)在時代發(fā)展的趨勢,為此,礦建企業(yè)必要順應(yīng)當(dāng)下時代的發(fā)展趨勢來采取有效的措施來對人力資源進(jìn)行管理,現(xiàn)代化的管理模式主要強調(diào)的是對相關(guān)數(shù)據(jù)的分析和整理能力,通過對數(shù)據(jù)的分析來形成具有實際指導(dǎo)作用的總結(jié),從而為企業(yè)人力資源管理工作提供有價值的參考依據(jù)。例如,在實際人力資源管理過程中可以利用數(shù)據(jù)挖掘技術(shù)來對企業(yè)內(nèi)部員工的薪資水平進(jìn)行分析,并對企業(yè)的成本控制提出有效的建議,也可以利用數(shù)據(jù)挖掘技術(shù)對企業(yè)中年紀(jì)較大的員工進(jìn)行分析,并對其進(jìn)行科學(xué)的評判,從而對其提出更有利的參考價值和依據(jù)。

2、3實現(xiàn)對企業(yè)人才的合理分配

隨著我國社會經(jīng)濟的不斷發(fā)展,人才的發(fā)展形勢也變得越來越“多元化”“個體化”。為此,筆者認(rèn)為為了進(jìn)一步提高礦建企業(yè)人力資源管理工作的質(zhì)量,應(yīng)采取數(shù)據(jù)挖掘技術(shù)來對人才進(jìn)行合理分配,并結(jié)合內(nèi)部員工的實際特點以及具體類型進(jìn)行客觀性的評判,這對企業(yè)的人才資源管理以及未來發(fā)展無疑是百利無一害的。通過采取數(shù)據(jù)挖掘技術(shù)不僅可以實現(xiàn)對員工的共性以及特點進(jìn)行分析,使每一位員工的信息資源、崗位職責(zé)得到有效劃分,同時也進(jìn)一步實現(xiàn)對企業(yè)人才的合理分配。通過對數(shù)據(jù)信息的管理技術(shù)構(gòu)建實現(xiàn)對人員分組,從而使數(shù)據(jù)挖掘技術(shù)在企業(yè)人力資源管理中得到有效利用,使其發(fā)揮最大的作用與價值,同時也進(jìn)一步提高企業(yè)人力資源管理工作的效率和和質(zhì)量,最終推動企業(yè)穩(wěn)固、長久的發(fā)展。

綜上所述,隨著社會經(jīng)濟的飛速發(fā)展,建設(shè)領(lǐng)域也得到逐步提高,然而在人力資源管理工作中依然存在著諸多問題,這些問題的存在也嚴(yán)重阻礙我國社會經(jīng)濟的穩(wěn)固發(fā)展。所以,只有充分采用數(shù)據(jù)挖掘技術(shù)來開展人力資源管理工作,才能提高企業(yè)的人力資源管理水平。

[1]曾巍、數(shù)據(jù)挖掘在人力資源市場中的應(yīng)用與研究[d]。吉林大學(xué),20xx

數(shù)據(jù)挖掘論文選題篇八

摘要:隨著互聯(lián)網(wǎng)的廣泛使用,web的數(shù)據(jù)挖掘技術(shù)成為現(xiàn)階段數(shù)據(jù)挖掘技術(shù)研究的重點,但由于其數(shù)據(jù)挖掘控制的復(fù)雜,對人們的數(shù)據(jù)挖掘和使用帶來了困難。而xml數(shù)據(jù)挖掘的出現(xiàn)彌補了web數(shù)據(jù)挖掘的缺陷,為其帶來了方便。

關(guān)鍵詞:多層次技術(shù);xml數(shù)據(jù)挖掘;web數(shù)據(jù)挖掘;研究

0引言

數(shù)據(jù)挖掘就是從大量的信息數(shù)據(jù)中發(fā)現(xiàn)潛在的規(guī)律性內(nèi)容,進(jìn)而對數(shù)據(jù)應(yīng)用的質(zhì)量問題進(jìn)行解決,實現(xiàn)對數(shù)據(jù)的充分利用。在互聯(lián)網(wǎng)發(fā)展支持下的數(shù)據(jù)挖掘技術(shù)得到了快速的發(fā)展,特別是以結(jié)構(gòu)化數(shù)據(jù)為主的數(shù)據(jù)挖掘技術(shù)。數(shù)據(jù)挖掘技術(shù)被廣泛地應(yīng)用到各個領(lǐng)域,并獲得了好的效果。但這種結(jié)構(gòu)化的數(shù)據(jù)挖掘技術(shù)無法對web數(shù)據(jù)挖掘的特性進(jìn)行處理,web上的html文檔格式也不規(guī)范,導(dǎo)致沒有充分挖掘和利用有價值的知識。由此,如何優(yōu)化傳統(tǒng)數(shù)據(jù)挖掘技術(shù),實現(xiàn)其和web的結(jié)合成為數(shù)據(jù)挖掘技術(shù)研究領(lǐng)域關(guān)注的熱點。而xml的出現(xiàn),彌補了web的不足,成為現(xiàn)階段互聯(lián)網(wǎng)數(shù)據(jù)組織和交換的標(biāo)準(zhǔn),并逐漸出現(xiàn)在web上。文章對基于多層次技術(shù)的xml數(shù)據(jù)挖掘進(jìn)行研究。

1web數(shù)據(jù)挖掘的難點

第一,異構(gòu)數(shù)據(jù)庫的環(huán)境。因特網(wǎng)上的信息可以說就是一種數(shù)據(jù)路,具有大量的數(shù)據(jù)資源,每個站點的數(shù)據(jù)源都是異構(gòu)的,因此,每個站點之間的信息和組織結(jié)構(gòu)不一樣,形成了一種異構(gòu)數(shù)據(jù)庫環(huán)境。想要獲得和利用這些數(shù)據(jù)資源需要進(jìn)行數(shù)據(jù)挖掘,這種數(shù)據(jù)挖掘需要對站點的異構(gòu)數(shù)據(jù)集成進(jìn)行研究,同時還要對因特網(wǎng)上的數(shù)據(jù)查詢問題進(jìn)行解決。第二,半結(jié)構(gòu)化的數(shù)據(jù)結(jié)構(gòu)。傳統(tǒng)的數(shù)據(jù)庫具有數(shù)據(jù)模型,能夠通過這種模型來對特定的數(shù)據(jù)進(jìn)行描述。但因特網(wǎng)上的數(shù)據(jù)較為復(fù)雜,沒有統(tǒng)一的模型讓人進(jìn)行描述,且自身具有獨立性、動態(tài)性的特點,存在自述層次,因而是一種半結(jié)構(gòu)化數(shù)據(jù)。

2xml數(shù)據(jù)挖掘技術(shù)

2.1xml技術(shù)概述

xml是由萬維網(wǎng)協(xié)會設(shè)計的一種中介標(biāo)示性語言,主要被應(yīng)用在web中。xml類似于html,主要被設(shè)計用來描述數(shù)據(jù)的語言,為數(shù)據(jù)挖掘提供了一種獨立的運行程序,能夠?qū)崿F(xiàn)對數(shù)據(jù)的共享,并利用計算機通訊將信息傳遞到多個領(lǐng)域。

2.2xml和html的比較

html是web的重要技術(shù)要素之一,簡單易學(xué),被很多計算機專業(yè)人員應(yīng)用于創(chuàng)建自己的、具有超文本特定的多媒體主頁,能夠?qū)崿F(xiàn)網(wǎng)絡(luò)和普通人的聯(lián)系,創(chuàng)造出豐富的網(wǎng)頁。但其在因特網(wǎng)的應(yīng)用存在以下幾點缺陷:第一,只是對信息的顯示方式進(jìn)行描述,沒有對信息內(nèi)容本身進(jìn)行描述;第二,需要因特網(wǎng)服務(wù)器幫其處理任務(wù)工作,加重了網(wǎng)絡(luò)的負(fù)擔(dān),降低了網(wǎng)絡(luò)運行的效率。根據(jù)上文對xml技術(shù)的概述,可以看出,xml不是一種單純的標(biāo)記語言,而是一種定義語言,能夠根據(jù)需要設(shè)定不同的標(biāo)記語言,突破了html固定標(biāo)記的限制,能夠更好地推動web的發(fā)展。

3基于xml數(shù)據(jù)挖掘框架設(shè)計

3.1設(shè)計的特點

第一,具有自然、性能良好、個性化設(shè)計的系統(tǒng)用戶界面;第二,主要應(yīng)用元搜索引擎頁面。這種頁面設(shè)計的'主要思想是首先對用戶的查詢請求進(jìn)行預(yù)處理,之后向各個搜索引擎發(fā)送查詢的請求,最后,在經(jīng)過處理之后向用戶反饋檢索結(jié)果。第三,web頁面的設(shè)計充分應(yīng)用了hits的算法。第四,利用xml技術(shù)對檢索的數(shù)據(jù)進(jìn)行預(yù)處理。主要表現(xiàn)為將數(shù)據(jù)庫中的所有文檔形式轉(zhuǎn)化為xml文檔形式,之后在數(shù)據(jù)倉庫的應(yīng)用下實現(xiàn)各種文檔的集成。

3.2系統(tǒng)設(shè)計的結(jié)構(gòu)

xml數(shù)據(jù)挖掘系統(tǒng)的結(jié)構(gòu)主要包含用戶界面模塊、數(shù)據(jù)預(yù)處理模塊和數(shù)據(jù)挖掘模塊。第一,用戶界面模塊主要作為用戶和系統(tǒng)交接的端口存在,用戶通過這個界面來實現(xiàn)對數(shù)據(jù)挖掘系統(tǒng)的使用。在這個模塊中,用戶能夠在對數(shù)據(jù)挖掘之前設(shè)定挖掘的參數(shù),之后提出請求、對挖掘成果分析,實現(xiàn)個性化的數(shù)據(jù)挖掘。第二,數(shù)據(jù)預(yù)處理模塊主要是指在對數(shù)據(jù)檢索之后,應(yīng)用xml技術(shù)對檢索的數(shù)據(jù)進(jìn)行預(yù)處理。第三,數(shù)據(jù)挖掘模塊主要是對數(shù)據(jù)預(yù)處理后的模塊信息進(jìn)行挖掘,并將成果展示給用戶。

4基于xml技術(shù)的web數(shù)據(jù)挖掘

4.1數(shù)據(jù)挖掘方案的選取

基于xml技術(shù)的web數(shù)據(jù)挖掘主要分為內(nèi)容上的挖掘和形式上的挖掘兩種,其中,內(nèi)容挖掘主要是針對文檔標(biāo)記的開始和結(jié)束之間的文本部分,即對標(biāo)記值的一種挖掘。具體的內(nèi)容挖掘方案主要有三種:第一,利用專門的xml數(shù)據(jù)、半結(jié)構(gòu)數(shù)據(jù)開發(fā)查詢的語言,充分開發(fā)其查詢功能,并將這種語言滲透在應(yīng)用程序中,從而實現(xiàn)對數(shù)據(jù)的有限挖掘。這種挖掘方案能夠?qū)ml技術(shù)和數(shù)據(jù)挖掘技術(shù)進(jìn)行有效的結(jié)合,且具有操作簡單的特點。第二,實現(xiàn)對xml文檔數(shù)據(jù)的結(jié)構(gòu)化處理。在處理之后將其映射到現(xiàn)有的關(guān)系對象模型中,從而實現(xiàn)對數(shù)據(jù)的挖掘。第三,將xml文檔視為一種文本,采用傳統(tǒng)的數(shù)據(jù)挖局處理技術(shù)對數(shù)據(jù)進(jìn)行挖掘。

4.2xml技術(shù)數(shù)據(jù)挖掘?qū)崿F(xiàn)

xml技術(shù)的挖掘?qū)崿F(xiàn)主要利用xquery實現(xiàn)關(guān)聯(lián)挖掘來進(jìn)行數(shù)據(jù)挖掘,且不需要對其文檔進(jìn)行預(yù)處理和挖掘后處理,具有操作簡單的優(yōu)勢。主要采用兩種方式來執(zhí)行xquery。第一,使用xhivenodeif對象的executexquery進(jìn)行語句的執(zhí)行,使得集合的每個元素都是對應(yīng)的對象,并將對象轉(zhuǎn)換成dom的節(jié)點來進(jìn)行數(shù)據(jù)的挖掘。第二,利用xhivexqueryqueryif對象調(diào)用execute進(jìn)行語句的執(zhí)行。在這個過程中會涉及對外部參數(shù)的使用。

5結(jié)語

xml數(shù)據(jù)挖掘能夠有效解決因特網(wǎng)數(shù)據(jù)挖掘難的問題,實現(xiàn)數(shù)據(jù)挖掘的簡單化操作。xml數(shù)據(jù)挖掘?qū)⒉煌Y(jié)構(gòu)、不容易兼容的數(shù)據(jù)進(jìn)行結(jié)合,并利用自身的靈活性和延展性將各種應(yīng)用軟件中的數(shù)據(jù)進(jìn)行不同描述,從而方便因特網(wǎng)中數(shù)據(jù)的收集和記錄。同時,基于xml數(shù)據(jù)是自我描述性的,不需要內(nèi)部的描述處理就能實現(xiàn)數(shù)據(jù)的交換,為其對數(shù)據(jù)的處理和應(yīng)用提供了便利的支持。因此,技術(shù)xml技術(shù)的數(shù)據(jù)挖掘成為當(dāng)今因特網(wǎng)數(shù)據(jù)挖掘的研究重點,需要有關(guān)人員引起足夠的重視,進(jìn)而不斷促進(jìn)該技術(shù)對數(shù)據(jù)挖掘的應(yīng)用。

參考文獻(xiàn):

【本文地址:http://m.aiweibaby.com/zuowen/14243987.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔