高一數(shù)學(xué)必修一第三章教案范文(18篇)

格式:DOC 上傳日期:2023-11-28 03:16:07
高一數(shù)學(xué)必修一第三章教案范文(18篇)
時(shí)間:2023-11-28 03:16:07     小編:碧墨

教案應(yīng)包含教學(xué)目標(biāo)、教學(xué)內(nèi)容、教學(xué)步驟、教學(xué)方法和教學(xué)評(píng)價(jià)等要素。教案編寫要考慮到教學(xué)環(huán)境和條件的限制,實(shí)現(xiàn)教學(xué)目標(biāo)的可行性。[教案名字4]

高一數(shù)學(xué)必修一第三章教案篇一

一、課前準(zhǔn)備。

問題3:因?yàn)槿切蔚膬?nèi)角和是,四邊形的內(nèi)角和是,五邊形的內(nèi)角和是。

……所以n邊形的內(nèi)角和是。

新知1:從以上事例可一發(fā)現(xiàn):

叫做合情推理。歸納推理和類比推理是數(shù)學(xué)中常用的合情推理。

新知2:類比推理就是根據(jù)兩類不同事物之間具有。

推測其中一類事物具有與另一類事物的性質(zhì)的推理、

簡言之,類比推理是由的推理、

新知3歸納推理就是根據(jù)一些事物的',推出該類事物的。

的推理、歸納是的過程。

例子:哥德巴赫猜想:

觀察6=3+3,8=5+3,10=5+5,12=5+7,14=7+7,。

16=13+3,18=11+7,20=13+7,……,

50=13+37,……,100=3+97,

猜想:

歸納推理的一般步驟。

1通過觀察個(gè)別情況發(fā)現(xiàn)某些相同的性質(zhì)。

2從已知的相同性質(zhì)中推出一個(gè)明確表達(dá)的一般性命題(猜想)。

※典型例題。

例1用推理的形式表示等差數(shù)列1,3,5,7……2n-1,……的前n項(xiàng)和sn的歸納過程。

變式1觀察下列等式:1+3=4=,

1+3+5=9=,

1+3+5+7=16=,

1+3+5+7+9=25=,

……。

你能猜想到一個(gè)怎樣的結(jié)論?

變式2觀察下列等式:1=1。

1+8=9,

1+8+27=36,

1+8+27+64=100,

……。

你能猜想到一個(gè)怎樣的結(jié)論?

例2設(shè)計(jì)算的值,同時(shí)作出歸納推理,并用n=40驗(yàn)證猜想是否正確。

變式:(1)已知數(shù)列的第一項(xiàng),且,試歸納出這個(gè)數(shù)列的通項(xiàng)公式。

例3:找出圓與球的相似之處,并用圓的性質(zhì)類比球的有關(guān)性質(zhì)、

圓的概念和性質(zhì)球的類似概念和性質(zhì)。

圓的周長。

圓的面積。

圓心與弦(非直徑)中點(diǎn)的連線垂直于弦。

與圓心距離相等的弦長相等,

※動(dòng)手試試。

2如果一條直線和兩條平行線中的一條相交,則必和另一條相交。

3如果兩條直線同時(shí)垂直于第三條直線,則這兩條直線互相平行。

三、總結(jié)提升。

※學(xué)習(xí)小結(jié)。

1、歸納推理的定義、

高一數(shù)學(xué)必修一第三章教案篇二

細(xì)胞膜、細(xì)胞壁、細(xì)胞核、細(xì)胞質(zhì)均不是細(xì)胞器。

一、細(xì)胞器之間分工。

1.線粒體:細(xì)胞進(jìn)行有氧呼吸的主要場所。雙層膜(內(nèi)膜向內(nèi)折疊形成脊),分布在動(dòng)植物細(xì)胞體內(nèi)。

2.葉綠體:進(jìn)行光合作用,“能量轉(zhuǎn)換站”,雙層膜,分布在植物的葉肉細(xì)胞。

3.內(nèi)質(zhì)網(wǎng):蛋白質(zhì)合成和加工,以及脂質(zhì)合成的“車間”,單層膜,動(dòng)植物都有。分為光面內(nèi)質(zhì)網(wǎng)和粗面內(nèi)質(zhì)網(wǎng)(上有核糖體附著)。

4.高爾基體:對(duì)來自內(nèi)質(zhì)網(wǎng)的蛋白質(zhì)進(jìn)行加工、分類和包裝,單層膜,動(dòng)植物都有,植物細(xì)胞中參與了細(xì)胞壁的形成。

5.核糖體:無膜,合成蛋白質(zhì)的主要場所。生產(chǎn)蛋白質(zhì)的機(jī)器。

包括游離的核糖體(合成胞內(nèi)蛋白)和附著在內(nèi)質(zhì)網(wǎng)上的核糖體(合成分泌蛋白)。

6.溶酶體:內(nèi)含有多種水解酶,能分解衰老、損傷的細(xì)胞器,吞噬并殺死侵入細(xì)胞的病毒或病菌,單層膜。

溶酶體吞噬過程體現(xiàn)生物膜的流動(dòng)性。溶酶體起源于高爾基體。

7.液泡:主要存在與植物細(xì)胞中,內(nèi)有細(xì)胞液,含糖類、無機(jī)鹽、色素和蛋白質(zhì)等物質(zhì),可以調(diào)節(jié)植物細(xì)胞內(nèi)的環(huán)境,充盈的液泡還可以使植物細(xì)胞保持堅(jiān)挺。與植物細(xì)胞的滲透吸水有關(guān)。

8.中心體:動(dòng)物和某些低等植物的細(xì)胞,由兩個(gè)相互垂直排列的中心粒及周圍物質(zhì)組成,與細(xì)胞的有絲分裂有關(guān),無膜。一個(gè)中心體有兩個(gè)中心粒組成。

二、分類比較:

1.雙層膜:葉綠體、線粒體(細(xì)胞核膜)。

單層膜:內(nèi)質(zhì)網(wǎng)、高爾基體、液泡、溶酶體(細(xì)胞膜、類囊體薄膜)。

無膜:中心體、核糖體。

2.植物特有:葉綠體、液泡動(dòng)物特有(低等植物):中心體。

3.含核酸的細(xì)胞器:線粒體、葉綠體(dna)線粒體、葉綠體、核糖體(rna)。

4.增大膜面積的細(xì)胞器:線粒體、內(nèi)質(zhì)網(wǎng)、葉綠體。

5.含色素:葉綠體、液泡。

6.能產(chǎn)生atp的:線粒體、葉綠體(細(xì)胞質(zhì)基質(zhì))。

7.能自主復(fù)制的細(xì)胞器:線粒體、葉綠體、中心體。

8.與有絲分裂有關(guān)的細(xì)胞器:核糖體、線粒體、高爾基體(形成細(xì)胞壁)、中心體。

9.發(fā)生堿基互補(bǔ)配對(duì):線粒體、葉綠體、核糖體。

10.與主動(dòng)運(yùn)輸有關(guān):核糖體、線粒體。

高一數(shù)學(xué)必修一第三章教案篇三

一、教學(xué)目標(biāo):

1、識(shí)記消費(fèi)的不同類型,消費(fèi)結(jié)構(gòu)的含義以及恩格爾系數(shù)的含義。

2、理解影響消費(fèi)水平的因素,最主要的是收入水平和物價(jià)水平;理解錢貨兩清的消費(fèi),貸款消費(fèi)以及租賃消費(fèi)時(shí)商品所有權(quán)和使用權(quán)的變化。

教學(xué)重難點(diǎn)。

教學(xué)重點(diǎn)、難點(diǎn):

影響消費(fèi)水平的因素。

恩格爾系數(shù)的變化的含義。

教學(xué)過程。

教學(xué)內(nèi)容:

(一)情景導(dǎo)入:

學(xué)生活動(dòng):就日常生活的體驗(yàn)得出相應(yīng)的回應(yīng),例如:買文具、食堂吃飯、買零食、買衣服、電話費(fèi)等日常消費(fèi)活動(dòng)。

教師活動(dòng):多媒體課件展示豐富多彩的消費(fèi)活動(dòng),其中主要集中于學(xué)生可能并有實(shí)際經(jīng)驗(yàn)的消費(fèi)內(nèi)容。

所以我們這節(jié)課就影響消費(fèi)的因素及消費(fèi)的類型相關(guān)討論。

(二)情景分析:

探究活動(dòng)一:如何安排生活費(fèi)?

學(xué)生活動(dòng):互相安排并討論各自的消費(fèi)活動(dòng)或消費(fèi)內(nèi)容,發(fā)現(xiàn)其中的區(qū)別。

(1)收入。

教師活動(dòng):設(shè)問解疑。

同學(xué)們是否發(fā)現(xiàn)各自的消費(fèi)有什么不同?而造成這個(gè)區(qū)別的原因在此主要是什么?

教師講解:收入是消費(fèi)的前提與基礎(chǔ)。在其他條件不變的情況下,人們的可支配收入越多,對(duì)各種商品和服務(wù)的消費(fèi)量就越大。收入增長較快的時(shí)期,消費(fèi)增長也較快;反之,當(dāng)收入增長速度下降時(shí),消費(fèi)增幅也下降。當(dāng)前收入直接影響消費(fèi),預(yù)期消費(fèi)則影響消費(fèi)信心,當(dāng)預(yù)期消費(fèi)樂觀時(shí),消費(fèi)信心就強(qiáng);預(yù)期消費(fèi)較低時(shí),消費(fèi)信心就弱。所以,要提高居民的生活水平,必須保持經(jīng)濟(jì)的穩(wěn)定增長,增加居民收入。

(2)物價(jià)水平。

教師活動(dòng):影響消費(fèi)的因素除了收入水平還有沒有其他了呢?

學(xué)生活動(dòng):就材料進(jìn)行相應(yīng)的討論,得出初步的結(jié)論,消費(fèi)活動(dòng)還受到物價(jià)水平的影響。

教師講解:消費(fèi)品價(jià)格的變化會(huì)影響人們的購買能力。人們在一定時(shí)期的總收入是有限的,如果消費(fèi)品價(jià)格上漲,會(huì)引起購買力下降,因而消費(fèi)需求就降低。反之,則購買力提高,消費(fèi)需求就增加。因此,物價(jià)的穩(wěn)定對(duì)保持人們的消費(fèi)水平,安定生活和穩(wěn)定社會(huì)具有重要意義。正是由于這個(gè)原因,穩(wěn)定物價(jià)才成為國家宏觀調(diào)控的重要目標(biāo)。

教師:雖然我們是用同學(xué)們的消費(fèi)活動(dòng)做的說明,但要明白家庭消費(fèi)的影響因素也是同樣的道理。我們在考察了總體消費(fèi)狀況的前提下,接著來討論一個(gè)具體的消費(fèi)案例:

探究活動(dòng)二:小君的苦惱。

(1)按交易方式不同,可分錢貨兩清的消費(fèi)、貸款消費(fèi)和租賃消費(fèi)。

教師活動(dòng):按交易方式不同,可分錢貨兩清的消費(fèi)、貸款消費(fèi)和租賃消費(fèi)。

租賃消費(fèi)也是一種比較常見的消費(fèi)方式,我們可以通過租賃的方式使商品的所有權(quán)不發(fā)生變更,而獲得該商品在一定期限的使用權(quán)。

貸款消費(fèi)是一種新興的消費(fèi)方式,主要用于購買大宗耐用消費(fèi)品及服務(wù)。因?yàn)檫@些消費(fèi)品超出消費(fèi)者當(dāng)前的支付能力,因而預(yù)支自己未來的收入,來滿足當(dāng)前的需要。也就是我們常說的“花明天的錢,園今天的夢”。貸款消費(fèi)的交易方式,其消費(fèi)品的所有權(quán)與使用權(quán)沒有完全轉(zhuǎn)移。在消費(fèi)者按照約定按時(shí)還貸的前提下,消費(fèi)品的所有權(quán)與使用權(quán)逐漸發(fā)生轉(zhuǎn)移,直至還完貸款為止,其所有權(quán)與使用權(quán)才徹底轉(zhuǎn)移到消費(fèi)者手里。

貸款消費(fèi)不僅滿足了消費(fèi)者的生活需要,提高了消費(fèi)者的生活質(zhì)量,而且促進(jìn)了經(jīng)濟(jì)的發(fā)展,特別是我國經(jīng)濟(jì)發(fā)展進(jìn)入買方市場后,貸款消費(fèi)對(duì)擴(kuò)大內(nèi)需,拉動(dòng)經(jīng)濟(jì)的增長起來重要的作用。所以,我們要轉(zhuǎn)變傳統(tǒng)的消費(fèi)觀念,以積極的態(tài)度來對(duì)待貸款消費(fèi),通過貸款消費(fèi)滿足來滿足當(dāng)前的需要,通過生活質(zhì)量。當(dāng)然,在貸款消費(fèi)是也要考慮自己的償還能力,還要講究信用,按時(shí)還貸。

學(xué)生活動(dòng):就相關(guān)情境進(jìn)行討論,做出自己的選擇并給出相應(yīng)的解釋理由。

(2)按消費(fèi)對(duì)象分,消費(fèi)分為有形商品消費(fèi)和勞務(wù)消費(fèi)。

教師活動(dòng):按消費(fèi)對(duì)象分,消費(fèi)分為有形商品消費(fèi)和勞務(wù)消費(fèi),有形商品消費(fèi)消費(fèi)的是有形的商品,而勞務(wù)消費(fèi)消費(fèi)的是無形的服務(wù)。

萬事大吉了!大家知道小君已經(jīng)達(dá)到哪種消費(fèi)層次了嗎?

生存資料消費(fèi)?發(fā)展資料消費(fèi)?享受資料消費(fèi)?

學(xué)生活動(dòng):討論并回答相應(yīng)問題,得出享受資料消費(fèi)的結(jié)論。

(3)按消費(fèi)的目的不同,可分為生存資料消費(fèi)、發(fā)展資料消費(fèi)和享受資料消費(fèi)。

教師活動(dòng):按消費(fèi)的目的不同,可分為生存資料消費(fèi)、發(fā)展資料消費(fèi)和享受資料消費(fèi)。其中生存資料消費(fèi)是最基本的消費(fèi),滿足較低層次的衣食住用行的需要;發(fā)展資料消費(fèi)主要指滿足人們發(fā)展德育、智育等方面需要的消費(fèi);享受資料消費(fèi)滿足人們享受的需要。隨著經(jīng)濟(jì)水平的提高,發(fā)展資料和享受資料消費(fèi)將逐漸增加。

探究活動(dòng)三:考查自己家里的消費(fèi)結(jié)構(gòu)。

學(xué)生活動(dòng):認(rèn)真閱讀并討論得出結(jié)論家庭消費(fèi)的不同內(nèi)容體現(xiàn)了不同的消費(fèi)水平。

(1)消費(fèi)結(jié)構(gòu)。

教師活動(dòng):多媒體展示近幾年社會(huì)的消費(fèi)現(xiàn)狀,例:假日旅游、電子產(chǎn)品、汽車等。引導(dǎo)學(xué)生通過不同層面的直觀感受來了解消費(fèi)結(jié)構(gòu)的變化。

要了解家庭消費(fèi)水平先要知道一個(gè)概念就是消費(fèi)結(jié)構(gòu),是指人們各類消費(fèi)支出在消費(fèi)總支出中所占的比重。消費(fèi)結(jié)構(gòu)會(huì)隨著經(jīng)濟(jì)的發(fā)展、收入的變化而不斷變化,變化的方向遵循由生存需要到發(fā)展需要再到享受需要的順序。

(2)恩格爾系數(shù)。

教師活動(dòng):恩格爾系數(shù)指食品支出占家庭總支出的比重,用公式表示:恩格爾系數(shù)=食品支出費(fèi)用/各項(xiàng)消費(fèi)總支出費(fèi)用×100%。一般恩格爾系數(shù)越大,越影響其他消費(fèi)支出,特別是影響發(fā)展資料和享受資料的增加,限制消費(fèi)層次和消費(fèi)質(zhì)量的提高,因此生活水平就越低,相反恩格爾系數(shù)減小,生活水平就提高,消費(fèi)結(jié)構(gòu)會(huì)逐步改善。恩格爾系數(shù)是消費(fèi)結(jié)構(gòu)研究中的重要概念,在國際上受到普遍承認(rèn)和重視。

國際上甚至用它作為區(qū)分國際間消費(fèi)結(jié)構(gòu)層次高低的最一般標(biāo)準(zhǔn)。聯(lián)合國糧農(nóng)組織在20世紀(jì)70年代中期提出劃分窮國富國的標(biāo)準(zhǔn):恩格爾系數(shù)在60%以上為絕對(duì)貧困國家;50%~59%的國家為勉強(qiáng)度日(我們稱之為溫飽型);在40%~49%為小康水平;在20%~39%為富裕水平;20%以下為極富裕國家。

我國這幾年經(jīng)濟(jì)結(jié)構(gòu)有了很大改善,消費(fèi)水平不斷提高。

(三)情景回歸:

教師組織學(xué)生反思總結(jié)本節(jié)課的主要內(nèi)容,并進(jìn)行當(dāng)堂檢測,了解教學(xué)反饋。

將本文的word文檔下載到電腦,方便收藏和打印。

高一數(shù)學(xué)必修一第三章教案篇四

(1)理解函數(shù)的概念;。

(2)了解區(qū)間的概念;。

2、目標(biāo)解析。

(2)了解區(qū)間的概念就是指能夠體會(huì)用區(qū)間表示數(shù)集的意義和作用;。

【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號(hào)的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個(gè)抽象的概念,對(duì)學(xué)生來說一個(gè)難點(diǎn)。要解決這一問題,就要在通過從實(shí)際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實(shí)際,把抽象轉(zhuǎn)化為具體。

【教學(xué)過程】。

問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時(shí)間t(單位:s)變化的規(guī)律是:h=130t-5t2.

1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?

1.2高度變量h與時(shí)間變量t之間的對(duì)應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?

設(shè)計(jì)意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會(huì)用解析式或圖象刻畫兩個(gè)變量之間的依賴關(guān)系,從問題的實(shí)際意義可知,在t的變化范圍內(nèi)任給一個(gè)t,按照給定的對(duì)應(yīng)關(guān)系,都有的一個(gè)高度h與之對(duì)應(yīng)。

問題2:分析教科書中的實(shí)例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的圖象,都有的一個(gè)臭氧層空洞面積s與之相對(duì)應(yīng)。

問題3:要求學(xué)生仿照實(shí)例(1)、(2),描述實(shí)例(3)中恩格爾系數(shù)和時(shí)間的關(guān)系。

設(shè)計(jì)意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。

高一數(shù)學(xué)必修一第三章教案篇五

(1)通過實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。

(2)能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。

(3)會(huì)用語言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。

(4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺(tái)的分類。

2.過程與方法。

(1)讓學(xué)生通過直觀感受空間物體,從實(shí)物中概括出柱、錐、臺(tái)、球的幾何結(jié)構(gòu)特征。

(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識(shí)。

3.情感態(tài)度與價(jià)值觀。

(1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。

(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。

二、教學(xué)重點(diǎn)、難點(diǎn)。

重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。

難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。

三、教學(xué)用具。

(1)學(xué)法:觀察、思考、交流、討論、概括。

(2)實(shí)物模型、投影儀。

四、教學(xué)思路。

(一)創(chuàng)設(shè)情景,揭示課題。

1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對(duì)學(xué)生的活動(dòng)及時(shí)給予評(píng)價(jià)。

2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺(tái)、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對(duì)這些空間物體進(jìn)行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。

(二)、研探新知。

1.引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對(duì)物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。

3.組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個(gè)面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

4.教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。

6.以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。

7.讓學(xué)生觀察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。

8.引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。

9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱為臺(tái)體,圓錐與棱錐統(tǒng)稱為錐體。

(三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。

1.有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)。

2.棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?

3.課本p8,習(xí)題1.1a組第1題。

5.棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?

四、鞏固深化。

練習(xí):課本p7練習(xí)1、2(1)(2)。

課本p8習(xí)題1.1第2、3、4題。

五、歸納整理。

由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容。

六、布置作業(yè)。

課本p8練習(xí)題1.1b組第1題。

課外練習(xí)課本p8習(xí)題1.1b組第2題。

1.2.1空間幾何體的三視圖(1課時(shí))。

高一數(shù)學(xué)必修一第三章教案篇六

3.通過參與編題解題,激發(fā)學(xué)生學(xué)習(xí)的愛好.

教學(xué)重點(diǎn)是通項(xiàng)公式的熟悉;教學(xué)難點(diǎn)是對(duì)公式的靈活運(yùn)用.

實(shí)物投影儀,多媒體軟件,電腦.

研探式.

一.復(fù)習(xí)提問

等差數(shù)列的概念是從相鄰兩項(xiàng)的關(guān)系加以定義的,這個(gè)關(guān)系用遞推公式來表示比較簡單,但我們要圍繞通項(xiàng)公式作進(jìn)一步的理解與應(yīng)用.

二.主體設(shè)計(jì)

通項(xiàng)公式反映了項(xiàng)與項(xiàng)數(shù)之間的函數(shù)關(guān)系,當(dāng)?shù)炔顢?shù)列的首項(xiàng)與公差確定后,數(shù)列的每一項(xiàng)便確定了,可以求指定的項(xiàng)(即已知求).找學(xué)生試舉一例如:“已知等差數(shù)列中,首項(xiàng),公差,求.”這是通項(xiàng)公式的簡單應(yīng)用,由學(xué)生解答后,要求每個(gè)學(xué)生出一些運(yùn)用等差數(shù)列通項(xiàng)公式的題目,包括正用、反用與變用,簡單、復(fù)雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上.

1.方程思想的運(yùn)用

(1)已知等差數(shù)列中,首項(xiàng),公差,則-397是該數(shù)列的第x項(xiàng).

(2)已知等差數(shù)列中,首項(xiàng),則公差

(3)已知等差數(shù)列中,公差,則首項(xiàng)

這一類問題先由學(xué)生解決,之后教師點(diǎn)評(píng),四個(gè)量,在一個(gè)等式中,運(yùn)用方程的思想方法,已知其中三個(gè)量的值,可以求得第四個(gè)量.

2.基本量方法的使用

(1)已知等差數(shù)列中,求的值.

(2)已知等差數(shù)列中,求.

若學(xué)生的題目只有這兩種類型,教師可以小結(jié)(請(qǐng)出題者、解題者概括):因?yàn)橐阎獥l件可以化為關(guān)于和的二元方程組,所以這些等差數(shù)列是確定的,由和寫出通項(xiàng)公式,便可歸結(jié)為前一類問題.解決這類問題只需把兩個(gè)條件(等式)化為關(guān)于和的二元方程組,以求得和,和稱作基本量.

教師提出新的問題,已知等差數(shù)列的一個(gè)條件(等式),能否確定一個(gè)等差數(shù)列?學(xué)生回答后,教師再啟發(fā),由這一個(gè)條件可得到關(guān)于和的二元方程,這是一個(gè)和的`制約關(guān)系,從這個(gè)關(guān)系可以得到什么結(jié)論?舉例說明(例題可由學(xué)生或教師給出,視具體情況而定).

如:已知等差數(shù)列中,…

由條件可得即,可知,這是比較顯然的,與之相關(guān)的還能有什么結(jié)論?若學(xué)生答不出可提示,一定得某一項(xiàng)的值么?能否與兩項(xiàng)有關(guān)?多項(xiàng)有關(guān)?由學(xué)生發(fā)現(xiàn)規(guī)律,完善問題(3)已知等差數(shù)列中,求;;;;….

類似的還有

(4)已知等差數(shù)列中,求的值.

以上屬于對(duì)數(shù)列的項(xiàng)進(jìn)行定量的研究,有無定性的判定?引出

3.研究等差數(shù)列的單調(diào)性

4.研究項(xiàng)的符號(hào)

這是為研究等差數(shù)列前項(xiàng)和的最值所做的預(yù)備工作.可配備的題目如

(1)已知數(shù)列的通項(xiàng)公式為,問數(shù)列從第幾項(xiàng)開始小于0?

(2)等差數(shù)列從第x項(xiàng)起以后每項(xiàng)均為負(fù)數(shù).

三.小結(jié)

1.用方程思想熟悉等差數(shù)列通項(xiàng)公式;

2.用函數(shù)思想解決等差數(shù)列問題.

四.板書設(shè)計(jì)

等差數(shù)列通項(xiàng)公式1.方程思想的運(yùn)用

2.基本量方法的使用

3.研究等差數(shù)列的單調(diào)性

4.研究項(xiàng)的符號(hào)

高一數(shù)學(xué)必修一第三章教案篇七

1. 閱讀課本 練習(xí)止.

2. 回答問題

(1)課本內(nèi)容分成幾個(gè)層次?每個(gè)層次的中心內(nèi)容是什么?

(2)層次間的聯(lián)系是什么?

(3)對(duì)數(shù)函數(shù)的定義是什么?

(4)對(duì)數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?

3. 完成 練習(xí)

4. 小結(jié).

二、方法指導(dǎo)

1. 在學(xué)習(xí)對(duì)數(shù)函數(shù)時(shí),同學(xué)們應(yīng)從熟悉的指數(shù)問題出發(fā),通過對(duì)指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的認(rèn)識(shí),而且畫對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù)的分類討論而且對(duì)每一類問題也可以多選幾個(gè)不同的底,畫在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).

一、提問題

1. 對(duì)數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?

2.兩個(gè)函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關(guān)系?

3.是否所有的函數(shù)都有反函數(shù)?試舉例說明.

二、變題目

1. 試求下列函數(shù)的反函數(shù):

(1) ; (2) ;

(3) ; (4) .

2. 求下列函數(shù)的定義域:

(1) ; (2) ; (3) .

3. 已知 則 = ; 的定義域?yàn)?.

1.對(duì)數(shù)函數(shù)的'有關(guān)概念

(1)把函數(shù) 叫做對(duì)數(shù)函數(shù), 叫做對(duì)數(shù)函數(shù)的底數(shù);

(2)以10為底數(shù)的對(duì)數(shù)函數(shù) 為常用對(duì)數(shù)函數(shù);

(3)以無理數(shù) 為底數(shù)的對(duì)數(shù)函數(shù) 為自然對(duì)數(shù)函數(shù).

2. 反函數(shù)的概念

在指數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ;在對(duì)數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ,像這樣的兩個(gè)函數(shù)叫做互為反函數(shù).

3. 與對(duì)數(shù)函數(shù)有關(guān)的定義域的求法:

4. 舉例說明如何求反函數(shù).

一、課外作業(yè): 習(xí)題3-5 a組 1,2,3, b組1,

二、課外思考:

1. 求定義域: .

2. 求使函數(shù) 的函數(shù)值恒為負(fù)值的 的取值范圍.

高一數(shù)學(xué)必修一第三章教案篇八

教學(xué)目標(biāo)。

1、理解平面向量的坐標(biāo)的概念;。

2、掌握平面向量的坐標(biāo)運(yùn)算;。

3、會(huì)根據(jù)向量的坐標(biāo),判斷向量是否共線.

教學(xué)重難點(diǎn)。

教學(xué)重點(diǎn):平面向量的坐標(biāo)運(yùn)算。

教學(xué)難點(diǎn):向量的坐標(biāo)表示的理解及運(yùn)算的準(zhǔn)確性.

教學(xué)過程。

平面向量基本定理:。

什么叫平面的一組基底?

平面的基底有多少組?

引入:。

1.平面內(nèi)建立了直角坐標(biāo)系,點(diǎn)a可以用什么來。

表示?

2.平面向量是否也有類似的表示呢?

高一數(shù)學(xué)必修一第三章教案篇九

1、知識(shí)目標(biāo):使學(xué)生理解指數(shù)函數(shù)的定義,初步掌握指數(shù)函數(shù)的圖像和性質(zhì)。

2、能力目標(biāo):通過定義的引入,圖像特征的觀察、發(fā)現(xiàn)過程使學(xué)生懂得理論與實(shí)踐的辯證關(guān)系,適時(shí)滲透分類討論的數(shù)學(xué)思想,培養(yǎng)學(xué)生的探索發(fā)現(xiàn)能力和分析問題、解決問題的能力。

3、情感目標(biāo):通過學(xué)生的參與過程,培養(yǎng)他們手腦并用、多思勤練的良好學(xué)習(xí)習(xí)慣和勇于探索、鍥而不舍的治學(xué)精神。

高一數(shù)學(xué)必修一第三章教案篇十

1、使學(xué)生了解奇偶性的概念,回會(huì)利用定義判定簡單函數(shù)的奇偶性。

2、在奇偶性概念形成過程中,培養(yǎng)學(xué)生的觀察,歸納能力,同時(shí)滲透數(shù)形結(jié)合和非凡到一般的思想方法。

3、在學(xué)生感受數(shù)學(xué)美的同時(shí),激發(fā)學(xué)習(xí)的愛好,培養(yǎng)學(xué)生樂于求索的精神。

重點(diǎn)是奇偶性概念的形成與函數(shù)奇偶性的判定。

難點(diǎn)是對(duì)概念的熟悉。

投影儀,計(jì)算機(jī)。

引導(dǎo)發(fā)現(xiàn)法。

一。引入新課。

前面我們已經(jīng)研究了函數(shù)的單調(diào)性,它是反映函數(shù)在某一個(gè)區(qū)間上函數(shù)值隨自變量變化而變化的性質(zhì),今天我們繼續(xù)研究函數(shù)的另一個(gè)性質(zhì)。從什么角度呢?將從對(duì)稱的角度來研究函數(shù)的性質(zhì)。

(學(xué)生可能會(huì)舉出一些數(shù)值上的對(duì)稱問題,等,也可能會(huì)舉出一些圖象的對(duì)稱問題,此時(shí)教師可以引導(dǎo)學(xué)生把函數(shù)具體化,如和等。)。

學(xué)生經(jīng)過思考,能找出原因,由于函數(shù)是映射,一個(gè)只能對(duì)一個(gè),而不能有兩個(gè)不同的,故函數(shù)的圖象不可能關(guān)于軸對(duì)稱。最終提出我們今天將重點(diǎn)研究圖象關(guān)于軸對(duì)稱和關(guān)于原點(diǎn)對(duì)稱的問題,從形的特征中找出它們在數(shù)值上的規(guī)律。

二。講解新課。

2、函數(shù)的奇偶性(板書)。

學(xué)生開始可能只會(huì)用語言去描述:自變量互為相反數(shù),函數(shù)值相等。教師可引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號(hào)表示。(借助課件演示令比較得出等式,再令,得到,詳見課件的使用)進(jìn)而再提出會(huì)不會(huì)在定義域內(nèi)存在,使與不等呢?(可用課件幫助演示讓動(dòng)起來觀察,發(fā)現(xiàn)結(jié)論,這樣的是不存在的)從這個(gè)結(jié)論中就可以發(fā)現(xiàn)對(duì)定義域內(nèi)任意一個(gè),都有成立。最后讓學(xué)生用完整的語言給出定義,不準(zhǔn)確的地方教師予以提示或調(diào)整。

(1)偶函數(shù)的定義:假如對(duì)于函數(shù)的定義域內(nèi)任意一個(gè),都有,那么就叫做偶函數(shù)。(板書)。

(給出定義后可讓學(xué)生舉幾個(gè)例子,如等以檢驗(yàn)一下對(duì)概念的初步熟悉)。

提出新問題:函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢?(同時(shí)打出或的圖象讓學(xué)生觀察研究)。

學(xué)生可類比剛才的方法,很快得出結(jié)論,再讓學(xué)生給出奇函數(shù)的定義。

(2)奇函數(shù)的定義:假如對(duì)于函數(shù)的定義域內(nèi)任意一個(gè),都有,那么就叫做奇函數(shù)。(板書)。

(由于在定義形成時(shí)已經(jīng)有了一定的熟悉,故可以先作判定,在判定中再加深熟悉)。

例1。判定下列函數(shù)的奇偶性(板書)。

(1);(2);

(3);;

(5);(6)。

(要求學(xué)生口答,選出12個(gè)題說過程)。

解:(1)是奇函數(shù)。(2)是偶函數(shù)。

(3),是偶函數(shù)。

學(xué)生經(jīng)過思考可以解決問題,指出只要舉出一個(gè)反例說明與不等。如即可說明它不是偶函數(shù)。(從這個(gè)問題的解決中讓學(xué)生再次熟悉到定義中任意性的重要)。

從(4)題開始,學(xué)生的答案會(huì)有不同,可以讓學(xué)生先討論,教師再做評(píng)述。即第(4)題中表面成立的=不能經(jīng)受任意性的考驗(yàn),當(dāng)時(shí),由于,故不存在,更談不上與相等了,由于任意性被破壞,所以它不能是奇偶性。

可以用(6)輔助說明充分性不成立,用(5)說明必要性成立,得出結(jié)論。

(3)定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的必要但不充分條件。(板書)。

由學(xué)生小結(jié)判定奇偶性的步驟之后,教師再提出新的問題:在剛才的幾個(gè)函數(shù)中有是奇函數(shù)不是偶函數(shù),有是偶函數(shù)不是奇函數(shù),也有既不是奇函數(shù)也不是偶函數(shù),那么有沒有這樣的函數(shù),它既是奇函數(shù)也是偶函數(shù)呢?若有,舉例說明。

例2。已知函數(shù)既是奇函數(shù)也是偶函數(shù),求證:。(板書)(試由學(xué)生來完成)。

(4)函數(shù)按其是否具有奇偶性可分為四類:(板書)。

例3。判定下列函數(shù)的奇偶性(板書)。

(1);(2);(3)。

由學(xué)生回答,不完整之處教師補(bǔ)充。

解:(1)當(dāng)時(shí),為奇函數(shù),當(dāng)時(shí),既不是奇函數(shù)也不是偶函數(shù)。

(2)當(dāng)時(shí),既是奇函數(shù)也是偶函數(shù),當(dāng)時(shí),是偶函數(shù)。

(3)當(dāng)時(shí),于是,

當(dāng)時(shí),,于是=,

綜上是奇函數(shù)。

教師小結(jié)(1)(2)注重分類討論的使用,(3)是分段函數(shù),當(dāng)檢驗(yàn),并不能說明具備奇偶性,因?yàn)槠媾夹允菍?duì)函數(shù)整個(gè)定義域內(nèi)性質(zhì)的刻畫,因此必須均有成立,二者缺一不可。

三。小結(jié)。

1、奇偶性的概念。

2、判定中注重的問題。

四。作業(yè)略。

五。板書設(shè)計(jì)。

2、函數(shù)的奇偶性例1.例3.

(1)偶函數(shù)定義。

(2)奇函數(shù)定義。

(3)定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)例2。小結(jié)。

具備奇偶性的必要條件。

(4)函數(shù)按奇偶性分類分四類。

(1)定義域?yàn)榈娜我夂瘮?shù)都可以表示成一個(gè)奇函數(shù)和一個(gè)偶函數(shù)的和,你能試證實(shí)之嗎?

(2)判定函數(shù)在上的單調(diào)性,并加以證實(shí)。

在此基礎(chǔ)上試?yán)眠@個(gè)函數(shù)的單調(diào)性解決下面的問題:

高一數(shù)學(xué)必修一第三章教案篇十一

教學(xué)目標(biāo)。

o了解向量的實(shí)際背景,理解平面向量的概念和向量的幾何表示;掌握向量的模、零向量、單位向量、平行向量、相等向量、共線向量等概念;并會(huì)區(qū)分平行向量、相等向量和共線向量。

o通過對(duì)向量的學(xué)習(xí),使學(xué)生初步認(rèn)識(shí)現(xiàn)實(shí)生活中的向量和數(shù)量的本質(zhì)區(qū)別。

o通過學(xué)生對(duì)向量與數(shù)量的識(shí)別能力的訓(xùn)練,培養(yǎng)學(xué)生認(rèn)識(shí)客觀事物的數(shù)學(xué)本質(zhì)的能力。

教學(xué)重難點(diǎn)。

教學(xué)重點(diǎn):理解并掌握向量、零向量、單位向量、相等向量、共線向量的概念,會(huì)表示向量。

教學(xué)難點(diǎn):平行向量、相等向量和共線向量的區(qū)別和聯(lián)系。

教學(xué)過程。

(一)向量的概念:我們把既有大小又有方向的量叫向量。

(二)(教材p74面的四個(gè)圖制作成幻燈片)請(qǐng)同學(xué)閱讀課本后回答:(7個(gè)問題一次出現(xiàn))。

1、數(shù)量與向量有何區(qū)別?(數(shù)量沒有方向而向量有方向)。

2、如何表示向量?

3、有向線段和線段有何區(qū)別和聯(lián)系?分別可以表示向量的什么?

4、長度為零的向量叫什么向量?長度為1的向量叫什么向量?

5、滿足什么條件的兩個(gè)向量是相等向量?單位向量是相等向量嗎?

6、有一組向量,它們的方向相同或相反,這組向量有什么關(guān)系?

7、如果把一組平行向量的起點(diǎn)全部移到一點(diǎn)o,這是它們是不是平行向量?

這時(shí)各向量的終點(diǎn)之間有什么關(guān)系?

課后小結(jié)。

1、描述向量的兩個(gè)指標(biāo):模和方向。

2、平面向量的概念和向量的幾何表示;

3、向量的模、零向量、單位向量、平行向量等概念。

高一數(shù)學(xué)必修一第三章教案篇十二

>教學(xué)目標(biāo)

落實(shí)情況.

解?絕對(duì)值不等式注意不要丟掉?這部分解集.。

五、作業(yè)。

1.閱讀課本?含絕對(duì)值不等式解法.。

2.習(xí)題?2、3、4。

課堂教學(xué)設(shè)計(jì)說明。

1.抓住解型絕對(duì)值不等式的關(guān)鍵是絕對(duì)值的意義,為此首先通過復(fù)習(xí)讓學(xué)生掌握好絕對(duì)值的意義,為解絕對(duì)值不等式打下牢固的基礎(chǔ).

2.在解與絕對(duì)值不等式中的關(guān)鍵處設(shè)問、質(zhì)疑、點(diǎn)撥,讓學(xué)生融會(huì)貫通的掌握它們解法之間的內(nèi)在聯(lián)系,以達(dá)到提高學(xué)生解題能力的目的.

3.針對(duì)學(xué)生解()絕對(duì)值不等式容易出現(xiàn)丟掉這部分解集的錯(cuò)誤,在教學(xué)中應(yīng)根據(jù)絕對(duì)值的意義從數(shù)軸進(jìn)行突破,并在練習(xí)中糾正這個(gè)錯(cuò)誤,以提高學(xué)生的運(yùn)算能力.

高一數(shù)學(xué)必修一第三章教案篇十三

在中國古代把數(shù)學(xué)叫算術(shù),又稱算學(xué),最后才改為數(shù)學(xué)。數(shù)學(xué)分為兩部分,一部分是幾何,另一部分是代數(shù)。數(shù)學(xué)網(wǎng)為大家推薦了高一數(shù)學(xué)必修一第三章函數(shù)的應(yīng)用知識(shí)點(diǎn),請(qǐng)大家仔細(xì)閱讀,希望你喜歡。

函數(shù)的應(yīng)用這一章包括兩個(gè)內(nèi)容,分別是函數(shù)與方程、函數(shù)模型及其應(yīng)用。

函數(shù)與方程這一節(jié)知識(shí)匯總。

知識(shí)點(diǎn)一:方程的根與函數(shù)的零點(diǎn)。

知識(shí)點(diǎn)二:函數(shù)與方程的思想。

知識(shí)點(diǎn)三:用二分法求解方程的近似解。

函數(shù)模型及其應(yīng)用這一節(jié)知識(shí)匯總。

知識(shí)點(diǎn)一:幾類不同增長的.函數(shù)模型(對(duì)數(shù)函數(shù)模型、冪函數(shù)模型和指數(shù)函數(shù)模型)。

知識(shí)點(diǎn)二:用已知函數(shù)模型解決問題(一次函數(shù)、二次函數(shù)和基本初等函數(shù))。

知識(shí)點(diǎn)三:建立實(shí)際問題的函數(shù)模型。

在本章中我們要理解函數(shù)與方程的思想,函數(shù)與方程怎么聯(lián)系和轉(zhuǎn)化,這是函數(shù)與方程思想的本質(zhì),函數(shù)反映變量之間的動(dòng)態(tài)變化規(guī)律,實(shí)際生產(chǎn)生活中,這種變化隨處可見,如何利用函數(shù)來揭示,這就是函數(shù)模型所要應(yīng)用的。

高一數(shù)學(xué)必修一第三章教案篇十四

教學(xué)目標(biāo)。

掌握三角函數(shù)模型應(yīng)用基本步驟:

(1)根據(jù)圖象建立解析式;

(2)根據(jù)解析式作出圖象;

(3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型。

教學(xué)重難點(diǎn)。

利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型。

教學(xué)過程。

一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題。

(精確到0.001).

米的速度減少,那么該船在什么時(shí)間必須停止卸貨,將船駛向較深的水域。

本題的解答中,給出貨船的進(jìn)、出港時(shí)間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實(shí)際意義。關(guān)于課本第64頁的“思考”問題,實(shí)際上,在貨船的安全水深正好與港口水深相等時(shí)停止卸貨將船駛向較深的水域是不行的,因?yàn)檫@樣不能保證船有足夠的時(shí)間發(fā)動(dòng)螺旋槳。

練習(xí):教材p65面3題。

三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:

(1)根據(jù)圖象建立解析式;

(2)根據(jù)解析式作出圖象;

(3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型。

2、利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型。

四、作業(yè)《習(xí)案》作業(yè)十四及十五。

高一數(shù)學(xué)必修一第三章教案篇十五

掌握用向量方法建立兩角差的余弦公式。通過簡單運(yùn)用,使學(xué)生初步理解公式的結(jié)構(gòu)及其功能,為建立其它和(差)公式打好基礎(chǔ)。

1.教學(xué)重點(diǎn):通過探索得到兩角差的余弦公式;

2.教學(xué)難點(diǎn):探索過程的組織和適當(dāng)引導(dǎo),這里不僅有學(xué)習(xí)積極性的問題,還有探索過程必用的基礎(chǔ)知識(shí)是否已經(jīng)具備的問題,運(yùn)用已學(xué)知識(shí)和方法的能力問題,等等。

1.學(xué)法:啟發(fā)式教學(xué)。

2.教學(xué)用具:多媒體。

(一)導(dǎo)入:我們在初中時(shí)就知道?,,由此我們能否得到大家可以猜想,是不是等于呢?

(二)探討過程:

在第一章三角函數(shù)的學(xué)習(xí)當(dāng)中我們知道,在設(shè)角的終邊與單位圓的交點(diǎn)為,等于角與單位圓交點(diǎn)的橫坐標(biāo),也可以用角的余弦線來表示,大家思考:怎樣構(gòu)造角和角?(注意:要與它們的正弦線、余弦線聯(lián)系起來。)。

展示多媒體動(dòng)畫課件,通過正、余弦線及它們之間的幾何關(guān)系探索與xx之間的關(guān)系,由此得到,認(rèn)識(shí)兩角差余弦公式的結(jié)構(gòu)。

提示:

1、結(jié)合圖形,明確應(yīng)該選擇哪幾個(gè)向量,它們是怎樣表示的?

2、怎樣利用向量的數(shù)量積的概念的計(jì)算公式得到探索結(jié)果?

展示多媒體課件。

比較用幾何知識(shí)和向量知識(shí)解決問題的不同之處,體會(huì)向量方法的作用與便利之處。

思考:再利用兩角差的余弦公式得出。

(三)例題講解。

例1、利用和、差角余弦公式求、的值。

解:分析:把、構(gòu)造成兩個(gè)特殊角的和、差。

點(diǎn)評(píng):把一個(gè)具體角構(gòu)造成兩個(gè)角的和、差形式,有很多種構(gòu)造方法,例如:,要學(xué)會(huì)靈活運(yùn)用。

例2、已知,是第三象限角,求的值。

解:因?yàn)椋纱说谩?/p>

又因?yàn)槭堑谌笙藿?,所以?/p>

所以。

點(diǎn)評(píng):注意角、的象限,也就是符號(hào)問題。

(四)小結(jié):本節(jié)我們學(xué)習(xí)了兩角差的余弦公式,首先要認(rèn)識(shí)公式結(jié)構(gòu)的特征,了解公式的推導(dǎo)過程,熟知由此衍變的兩角和的余弦公式。在解題過程中注意角、的象限,也就是符號(hào)問題,學(xué)會(huì)靈活運(yùn)用。

高一數(shù)學(xué)必修一第三章教案篇十六

教學(xué)目標(biāo)。

3.讓學(xué)生深刻理解向量在處理平面幾何問題中的優(yōu)越性.

教學(xué)重難點(diǎn)。

教學(xué)重點(diǎn):用向量方法解決實(shí)際問題的基本方法:向量法解決幾何問題的“三步曲”.

教學(xué)難點(diǎn):如何將幾何等實(shí)際問題化歸為向量問題.

教學(xué)過程。

由于向量的線性運(yùn)算和數(shù)量積運(yùn)算具有鮮明的幾何背景,平面幾何圖形的許多性質(zhì),如平移、全等、相似、長度、夾角等都可以由向量的線性運(yùn)算及數(shù)量積表示出來,因此,可用向量方法解決平面幾何中的一些問題,下面我們通過幾個(gè)具體實(shí)例,說明向量方法在平面幾何中的運(yùn)用。

思考:

運(yùn)用向量方法解決平面幾何問題可以分哪幾個(gè)步驟?

運(yùn)用向量方法解決平面幾何問題可以分哪幾個(gè)步驟?

“三步曲”:

(2)通過向量運(yùn)算,研究幾何元素之間的關(guān)系,如距離、夾角等問題;。

(3)把運(yùn)算結(jié)果“翻譯”成幾何關(guān)系.

高一數(shù)學(xué)必修一第三章教案篇十七

1、教材(教學(xué)內(nèi)容)。

2、設(shè)計(jì)理念。

3、教學(xué)目標(biāo)。

情感態(tài)度與價(jià)值觀目標(biāo):引導(dǎo)學(xué)生學(xué)會(huì)閱讀數(shù)學(xué)教材,學(xué)會(huì)發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美、

4、重點(diǎn)難點(diǎn)。

重點(diǎn):任意角三角函數(shù)的定義、

難點(diǎn):任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、

5、學(xué)情分析。

6、教法分析。

7、學(xué)法分析。

本課時(shí)先通過“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認(rèn)知結(jié)構(gòu),再通過類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運(yùn)用類比學(xué)習(xí)法,來研究三角函數(shù)一些基本性質(zhì)和符號(hào)問題,從而使學(xué)生形成新的認(rèn)識(shí)結(jié)構(gòu),達(dá)成教學(xué)目標(biāo)。

高一數(shù)學(xué)必修一第三章教案篇十八

(2)了解區(qū)間的概念;。

(2)了解區(qū)間的概念就是指能夠體會(huì)用區(qū)間表示數(shù)集的意義和作用;。

【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號(hào)的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個(gè)抽象的概念,對(duì)學(xué)生來說一個(gè)難點(diǎn)。要解決這一問題,就要在通過從實(shí)際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實(shí)際,把抽象轉(zhuǎn)化為具體。

問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時(shí)間t(單位:s)變化的規(guī)律是:h=130t-5t2.

1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?

1.2高度變量h與時(shí)間變量t之間的對(duì)應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?

設(shè)計(jì)意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會(huì)用解析式或圖象刻畫兩個(gè)變量之間的依賴關(guān)系,從問題的實(shí)際意義可知,在t的變化范圍內(nèi)任給一個(gè)t,按照給定的對(duì)應(yīng)關(guān)系,都有的一個(gè)高度h與之對(duì)應(yīng)。

問題2:分析教科書中的實(shí)例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的`圖象,都有的一個(gè)臭氧層空洞面積s與之相對(duì)應(yīng)。

問題3:要求學(xué)生仿照實(shí)例(1)、(2),描述實(shí)例(3)中恩格爾系數(shù)和時(shí)間的關(guān)系。

設(shè)計(jì)意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。

【本文地址:http://m.aiweibaby.com/zuowen/15874503.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔