教案是教師在備課過程中制定的教學計劃,它指導著課堂教學的開展。在教案中,教師應該合理安排教學內容,確保學生能夠逐步深入理解。教師編寫教案時還應考慮到學生的學習動機和興趣,激發(fā)他們的學習潛能。
正反比例教案篇一
2.利用反比例函數(shù)的圖象解決有關問題.
1.經歷對反比例函數(shù)圖象的觀察、分析、討論、概括過程,會說出它的性質;。
2.探索反比例函數(shù)的圖象的性質,體會用數(shù)形結合思想解數(shù)學問題.
一、創(chuàng)設情境。
上節(jié)的練習中,我們畫出了問題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線.那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù)(k是常數(shù),k0)的圖象,探究它有什么性質.
二、探究歸納。
1.畫出函數(shù)的圖象.
分析畫出函數(shù)圖象一般分為列表、描點、連線三個步驟,在反比例函數(shù)中自變量x0.
解1.列表:這個函數(shù)中自變量x的取值范圍是不等于零的一切實數(shù),列出x與y的對應值:
2.描點:用表里各組對應值作為點的坐標,在直角坐標系中描出在京各點點(-6,-1)、(-3,-2)、(-2,-3)等.
3.連線:用平滑的曲線將第一象限各點依次連起來,得到圖象的第一個分支;用平滑的曲線將第三象限各點依次連起來,得到圖象的另一個分支.這兩個分支合起來,就是反比例函數(shù)的圖象.
上述圖象,通常稱為雙曲線(hyperbola).
提問這兩條曲線會與x軸、y軸相交嗎?為什么?
學生試一試:畫出反比例函數(shù)的圖象(學生動手畫反比函數(shù)圖象,進一步掌握畫函數(shù)圖象的步驟).
學生討論、交流以下問題,并將討論、交流的結果回答問題.
1.這個函數(shù)的圖象在哪兩個象限?和函數(shù)的圖象有什么不同?
2.反比例函數(shù)(k0)的圖象在哪兩個象限內?由什么確定?
(2)當k0時,函數(shù)的圖象在第二、四象限,在每個象限內,曲線從左向右上升,也就是在每個象限內y隨x的增加而增加.
注1.雙曲線的兩個分支與x軸和y軸沒有交點;。
2.雙曲線的兩個分支關于原點成中心對稱.
以上兩點性質在上堂課的問題1和問題2中反映了怎樣的實際意義?
在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時間少.
在問題2中反映了在面積一定的情況下,飼養(yǎng)場的一邊越長,另一邊越小.
三、實踐應用。
例1若反比例函數(shù)的圖象在第二、四象限,求m的值.
分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+10,由這兩個條件可解出m的值.
解由題意,得解得.
例2已知反比例函數(shù)(k0),當x0時,y隨x的.增大而增大,求一次函數(shù)y=kx-k的圖象經過的象限.
分析由于反比例函數(shù)(k0),當x0時,y隨x的增大而增大,因此k0,而一次函數(shù)y=kx-k中,k0,可知,圖象過二、四象限,又-k0,所以直線與y軸的交點在x軸的上方.
解因為反比例函數(shù)(k0),當x0時,y隨x的增大而增大,所以k0,所以一次函數(shù)y=kx-k的圖象經過一、二、四象限.
例3已知反比例函數(shù)的圖象過點(1,-2).
(1)求這個函數(shù)的解析式,并畫出圖象;。
(2)由點a在反比例函數(shù)的圖象上,易求出m的值,再驗證點a關于兩坐標軸和原點的對稱點是否在圖象上.
解(1)設:反比例函數(shù)的解析式為:(k0).
而反比例函數(shù)的圖象過點(1,-2),即當x=1時,y=-2.
所以,k=-2.
(2)點a(-5,m)在反比例函數(shù)圖象上,所以,
點a的坐標為.
點a關于x軸的對稱點不在這個圖象上;。
點a關于y軸的對稱點不在這個圖象上;。
點a關于原點的對稱點在這個圖象上;。
(1)求m的值;。
(2)它的圖象在第幾象限內?在各象限內,y隨x的增大如何變化?
(3)當-3時,求此函數(shù)的最大值和最小值.
解(1)由反比例函數(shù)的定義可知:解得,m=-2.
(2)因為-20,所以反比例函數(shù)的圖象在第二、四象限內,在各象限內,y隨x的增大而增大.
(3)因為在第個象限內,y隨x的增大而增大,
所以當x=時,y最大值=;。
當x=-3時,y最小值=.
所以當-3時,此函數(shù)的最大值為8,最小值為.
例5一個長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米.
(1)寫出用高表示長的函數(shù)關系式;。
(2)寫出自變量x的取值范圍;。
(3)畫出函數(shù)的圖象.
解(1)因為100=5xy,所以.
(2)x0.
(3)圖象如下:
說明由于自變量x0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內的一個分支.
四、交流反思。
本節(jié)課學習了畫反比例函數(shù)的圖象和探討了反比例函數(shù)的性質.
1.反比例函數(shù)的圖象是雙曲線(hyperbola).
(2)當k0時,函數(shù)的圖象在第二、四象限,在每個象限內,曲線從左向右上升,也就是在每個象限內y隨x的增加而增加.
五、檢測反饋。
1.在同一直角坐標系中畫出下列函數(shù)的圖象:
(1);(2).
2.已知y是x的反比例函數(shù),且當x=3時,y=8,求:
(1)y和x的函數(shù)關系式;。
(2)當時,y的值;。
(3)當x取何值時,?
3.若反比例函數(shù)的圖象在所在象限內,y隨x的增大而增大,求n的值.
4.已知反比例函數(shù)經過點a(2,-m)和b(n,2n),求:
(1)m和n的值;。
(2)若圖象上有兩點p1(x1,y1)和p2(x2,y2),且x1x2,試比較y1和y2的大小.
正反比例教案篇二
1.從現(xiàn)實情境和已有的知識經驗出發(fā),討論兩個變量之間的相似關系,加深對函數(shù)概念的理解.
2.經歷抽象反比例函數(shù)概念的過程,領會反比例函數(shù)的意義,理解反比例函數(shù)的概念.
(二)能力訓練要求。
結合具體情境體會反比例函數(shù)的意義,能根據(jù)已知條件確定反比例函數(shù)表達式.
(三)情感與價值觀要求。
結合實例引導學生了解所討論的函數(shù)的表達形式,形成反比例函數(shù)概念的具體形象,是從感性認識到理性認識的轉化過程,發(fā)展學生的思維;同時體驗數(shù)學活動與人類生活的密切聯(lián)系及對人類歷史發(fā)展的作用.
正反比例教案篇三
(一)復習猜想導入,引出問題。
1、成正比例的量有什么特征?什么叫正比例關系?
2、在生活中兩個相關聯(lián)的量有的成正比例關系,還可能成什么關系?學生很自然想到反比例,激發(fā)學生的學習欲望,問學生想學反比例的哪些知識,學生大膽猜測,對反比例的意義展開合理的猜想。由此導入新課。
達成目標:猜想導課,激發(fā)探究愿望。
(二)共同探索,總結方法。
1、明確這節(jié)課的學習目標:(1)理解反比例的意義,能正確地判斷兩種相關聯(lián)的量是不是成反比例的量。(2)經歷反比例意義的探究過程,體驗觀察比較、推理、歸納的學習方法。
2、情境導入,學習探究。
(1)我們先來看一個實驗。
高度(厘米)302015105。
底面積(平方厘米)1015203060。
體積(立方厘米)。
提問:根據(jù)列表,你從中你發(fā)現(xiàn)了什么?
(2)學生討論交流。
(3)引導學生回答:表中的兩個量是高度和底面積。
高度擴大,底面積反而縮小;高度縮小,底面積反而擴大。
每兩個相對應的數(shù)的乘積都是300.
(4)計算后你又發(fā)現(xiàn)了什么?
每兩個相對應的數(shù)的乘積都是300,乘積一定。
教師小結:我們就說水的高度和體積成反比例關系,水的高度和體積是成反比例的量。
教師提問:高底面積和體積,怎樣用式子表示他們的關系?板書:高×底面積=水的體積(一定)。
(5)如果用字母x和y表示兩種相關聯(lián)的量,用k表示他們的積一定,反比例關系可以用一個什么樣的式子表示?板書:x×y=k(一定)。
小結:通過上面的學習,你認為判斷兩種相關聯(lián)的量是否成反比例,關鍵是什么?
(6)歸納總結反比例的意義。
達成目標:比較思想是在小學數(shù)學教學中應用十分普遍的數(shù)學思想方法,《成反比例的量》是繼《成正比例的量》一課后學習的內容,兩節(jié)課的學習內容和學習方法有相似之處,學生從知識的差別中找到同一,也可以從同一中找出差別,學生學習新知識,進行深化拓展,歸納總結。
(三)運用方法,解決問題。
1、生活中,哪些相關聯(lián)的量成反比例關系,舉例說一說。
2、課后做一做每天運的噸數(shù)和運貨的天數(shù)成反比例關系嗎?為什么?
3、出示反比例圖像,與正比例圖像進行比較學習。
達成目標:學生利用對反比例概念的理解,判斷相關聯(lián)的量是否成反比例,學會分析并進行判斷。
(四)反饋鞏固,分層練習。
判斷下面每題中的兩個量是不是成反比例,并說明理由。
(1)路程一定,速度和時間。
(2)小明從家到學校,每分走的速度和所需時間。
(3)平行四邊形面積一定,底和高。
(4)小林做10道數(shù)學題,已做的題和沒有做的題。
(5)小明拿一些錢買鉛筆,單價和購買的數(shù)量。
達成目標:使學生體會到數(shù)學來源于現(xiàn)實生活,又服務于現(xiàn)實生活的特點,體現(xiàn)數(shù)學的應用性。
(五)課堂總結,提升認識。
高度(厘米)302015105。
底面積(平方厘米)1015203060。
體積(立方厘米)300300300300300。
高度擴大,底面積反而縮小;高度縮小,底面積反而擴大。
高×底面積=水的體積(一定)。
反比例關系式:x×y=k(一定)。
正反比例教案篇四
二、展示與交流。
利用反義詞來導入今天研究的課題。今天研究兩種量成反比例關系的變化規(guī)律。
情境(一)。
認識加法表中和是12的直線及乘法表中積是12的曲線。
引導學生發(fā)現(xiàn)規(guī)律:加法表中和是12,一個加數(shù)隨另一個加數(shù)的變化而變化;乘法表中積是12,一個乘數(shù)隨另一個乘數(shù)的變化而變化。
情境(二)。
情境(三)。
寫出關系式:每杯果汁量×杯數(shù)=果汗總量(一定)。
5、以上兩個情境中有什么共同點?
引導小結:都有兩種相關聯(lián)通的量,其中一種量變化,另一種量也隨著變化,并且這兩種量中相對應的兩個數(shù)的乘積是一定的。這兩種量之間是反比例關系。
活動四:想一想。
二、反饋與檢測。
1、判斷下面每題是否成反比例。
(1)出油率一定,香油的質量與芝麻的質量。
(2)三角形的面積一定,它的底與高。
(3)一個數(shù)和它的倒數(shù)。
(4)一捆100米電線,用去長度與剩下長度。
(5)圓柱體的體積一定,底面積和高。
(6)小林做10道數(shù)學題,已做的題和沒有做的題。
(7)長方形的長一定,面積和寬。
(8)平行四邊形面積一定,底和高。
2、教材“練一練”p33第1題。
3、教材“練一練”p33第2題。
4、找一找生活中成反比例的例子,并與同伴交流。
兩個相關聯(lián)的量,乘積一定,成反比例。
關系式:x×y=k(一定)。
正反比例教案篇五
反比例的意義》是新課標人教版小學數(shù)學六年級下冊第47-48頁的內容。本節(jié)課的內容是在教學了成正比例的量的`基礎上進行教學的,是前面“比例”知識的深化,是后面學習“用它解決一些簡單正、反比例的實際問題”的基礎,它起著承前啟后的作用,是小學階段比例初步知識教學中的一項重要內容。為此,教學時先引導學生回憶已學過的數(shù)量關系,通過舉例、交流,知識遷移,體會生活中存在著大量的反比例的關系,在此基礎上探求新知,最后深化新知。
正反比例教案篇六
知識與技能目標:使學生理解反比例關系的意義,能根據(jù)反比例的意義正確判斷兩種量是否成反比例。
能力目標:經歷反比例意義的構建過程,培養(yǎng)發(fā)現(xiàn)的能力和歸納概括的能力。
情感與態(tài)度目標:體會反比例與生活之間的聯(lián)系,感悟到事物之間相互聯(lián)系和相互轉化的辨證唯物主義的觀點。
正反比例教案篇七
本課時教學設計特點:一是情景設置和幾個表格的設計,都注重從現(xiàn)實題材出發(fā),讓學生感受到反比例在現(xiàn)實生活中的廣泛應用。二是通過讓學生自己去分類整理、自主探究、合作交流得出反比例的意義,有利于發(fā)展學生的數(shù)學思維。
正反比例教案篇八
有些好的教學片段,往往在不經意間被你瞬間捕捉。而一堂精彩的數(shù)學課,必須有教學理念的支撐,教學方法的落實,學生思維的啟發(fā)。
比例分配應用題剛上完。我對此有些想法,以便在今后的教學中積累一點有用的東西,以便更好的服務于學生。
一、有價值的問題,激發(fā)學生積極思維。
導課問題有價值。我處理如下,有45只蘋果分給六(1)班的男女同學,你們自己打算怎樣分。這樣的問題比較開放,不以條條框框限制學生思維,限制學生的思維空間,體現(xiàn)學生主體性發(fā)展的過程,充分挖掘每個學生的潛能。
引導問題有價值。如能否根據(jù)比例與分數(shù)之間的聯(lián)系來解決比例分配應用題等。問題必須提在點子上,讓學生在已有的基礎上,運用知識遷移解釋問題的解決。一堂成功的數(shù)學課就在于師生之間的解釋清晰明了的程度。
二、營造機會,尋找思維的切入口。
聯(lián)系導課問題,營造機會。抓住按男女生人數(shù)來分作為契機,六(1)班男生21人,女生24人,以班級實際聯(lián)系比的知識,讓學生自編符合課時要求的應用題。拉進知識與學生的距離,啟發(fā)學生思維,創(chuàng)造距離機會。
三、提供線索條件,讓學生嘗試摸索。
如比例分配應用題解答方法不是一種,賽一賽誰的方法多,并給自己的方法取個名好嗎?再如男女生人數(shù)比是7比8,你知道了什么?也可以接著給予提示。教學就是要創(chuàng)設一個寬松的環(huán)境,鼓勵學生思考、討論、想象。敢于提出自己的`獨立見解和方法。
四、倡導學生相互解釋,驗證方案地可行性。
現(xiàn)在的學習,是多渠道、多元化、提倡終身學習的學習。學生最終必須得依賴自己,而不是教師,因此他們不得不學會學習。在數(shù)學教學中,盡量避免教師的絕對權威,判斷學生的是非。應在教師的引導下,逐步應用一些方法讓學生用自己的知識來審視自己的思考過程。
最后,針對自己不足提些疑問,希望我的教學反思上交后,幫助我解決一個疑問。再此我表示深深地感謝。
(1)、課文規(guī)定一課時的內容我能否分兩課時上,比如情況出現(xiàn)在公開課。
(2)、方法多樣化,是否能夠照顧到后近生。
(3)、上課時,鼓勵學生一題多解,有時學生的方法確實可行,但你不能很好的解釋,該如何處理。
正反比例教案篇九
小學數(shù)學十二冊比例的應用,本節(jié)課是在學生理解了正、反比例的意義并學會解比例的基礎上進行教學的主要包括正、反比例的應用題,這是比和比例知識的綜合運用,教材通過兩個例題,講解正、反比例應用題的解法通過講解使學生掌握正、反比例應用題的特點以及解題的步驟。
用正、反比例解應用題,首先要根據(jù)題意分析數(shù)量關系,能從題中找出兩種相關聯(lián)的量,這兩種量中相對應的兩個數(shù)的比值(或積)是一定,從而判斷這兩種量中是否成正(或者反)比例,然后設未知數(shù)x,比例解答,判斷過程也是正反比例意義實際應用的過程。
數(shù)學目標。
一、知識目標。
1、使學生能正確判斷應用題中涉及的量成什么比例關系。
二、能力目標。
1、培養(yǎng)學生的判斷推理能力。
2、培養(yǎng)學生的.分析能力。
三、情感目標。
引導學生利用已有的知識,自己探索,解決實際問題,培養(yǎng)學生的勇于探索的精神。
教學生點、難點。
正確判斷題中數(shù)量成何比例,根據(jù)相等關系等式。
教學方法。
引導探究,合作學習。
教學手段。
多媒體輔助教學。
教學流程。
復習導入。
本節(jié)課的教學內容是正、反比例的應用,因此通過本小節(jié)的教學,使學生加深對正、反比例的意義的理解,能正確判斷成正、反比的量。
正反比例教案篇十
教學目標:
知識與技能:
1.結合豐富的實例,認識反比例。
2.能根據(jù)反比例的意義,判斷兩個相關聯(lián)的量是不是反比例。
過程與方法:
通過猜想、分析、對比、概括、舉例、判斷等活動,結合實例,理解反比例的意義,認識反比例。
情感態(tài)度價值觀:
培養(yǎng)學生自主、合作學習、探索新知的能力,激發(fā)學習數(shù)學的熱情。感受反比例關系在生活中的廣泛應用。初步滲透函數(shù)思想。
認識反比例,根據(jù)反比例意義判斷兩個相關聯(lián)的量是否成反比例。
認識反比例,根據(jù)反比例意義判斷兩個相關聯(lián)的量是否成反比例。
電腦課件。
一、復習引入。
1、計算。
2、判斷下面各題中的兩種量是否成正比例?為什么?
(1)文具盒的單價一定,買文具盒的個數(shù)和總價。
(2)一堆貨物一定,運走的量和剩下的量。
(3)汽車行駛的速度一定,行駛的路程和時間。
3、說說什么是正比例。
師:大家對正比例知識理解掌握得非常好,接下來我們就該學習什么了?
二、出示學習目標。
1.能根據(jù)反比例的意義,判斷兩個相關聯(lián)的量是不是反比例。
2.通過猜想、分析、對比、概括、舉例、判斷等活動,結合實例,理解反比例的意義,認識反比例。
3.培養(yǎng)學生探索研究的能力,感受反比例關系在生活中的廣泛應用。
三、指導自學。
師:給你們講個小故事:
過了幾天,財主到了裁縫店取帽子,結果一看,頓時傻了眼:10頂?shù)拿弊有〉弥荒艽髟谑种割^上了!
學習提示:獨立思考?
1、“為什么同一匹布,裁縫說做1頂帽子,2頂帽子,10頂都可以呢?”
合作學習小組討論上述的問題??磿献鲗W習。
1、把25頁例。
2、例3的表格補充完整。
4、你知道什么是反比例嗎?
四、學生自學。
五、檢查自學效果。
讓學生說說自學要求中的內容。
師歸納:兩種相關聯(lián)的量,一種量隨著另一種量的變化而變化,在變化過程中兩種量的積一定,那么這兩種量成反比例。
六、引導更正,指導運用。
你們還找出類似這樣關系的量來嗎?”
學生:要走一段路,速度越慢(快),用的時間就越多(少)運一堆貨物,每次運的越多(少),運的次數(shù)就越小(多)百米賽跑,路程100米不變,速度和時間是反比例;排隊做操,總人數(shù)不變,排隊的行數(shù)和每行的人數(shù)是反比例;長方體的體積一定,底面積和高是反比例。
七、當堂訓練基礎練習。
1、填空。
兩種_____的量,一種量隨著另一種量變化,如果這兩種量中相對應的兩個數(shù)的______,這兩種量叫做成反比例的量,它們的關系叫做_______關系。
2、判斷下面每題中的兩種量是不是成反比例,并說明理由。
(1)煤的總量一定,每天的燒煤量和能夠燒的天數(shù)。
(2)張伯伯騎自行車從家到縣城,騎自行車的速度和所需的時間。
(3)生產電視機的總臺數(shù)一定,每天生產的臺數(shù)和所用的天數(shù)。
(4)圓柱體的體積一定,底面積和高。
(5)小林做10道數(shù)學題,已做的題和沒有做的題。
(6)長方形的長一定,面積和寬。
(7)平行四邊形面積一定,底和高。提高練習。
四、小結。
通過這節(jié)課的學習,你有什么收獲?
相關聯(lián),一個量變化,另一個量也隨著變化積一定。
xy=k(一定)。
正反比例教案篇十一
知識與技能目標:使學生理解反比例關系的意義,能根據(jù)反比例的意義正確判斷兩種量是否成反比例。
能力目標:經歷反比例意義的構建過程,培養(yǎng)發(fā)現(xiàn)的能力和歸納概括的能力。
情感與態(tài)度目標:體會反比例與生活之間的聯(lián)系,感悟到事物之間相互聯(lián)系和相互轉化的辨證唯物主義的觀點。
重點:理解反比例關系的意義,能根據(jù)反比例的意義正確判斷兩種量是否成反比例。
難點:掌握反比例的特征,能夠正確判斷反比例關系。
(一)復習猜想導入,引出問題。
1、成正比例的量有什么特征?什么叫正比例關系?
2、在生活中兩個相關聯(lián)的量有的成正比例關系,還可能成什么關系?學生很自然想到反比例,激發(fā)學生的學習欲望,問學生想學反比例的哪些知識,學生大膽猜測,對反比例的意義展開合理的猜想。由此導入新課。
達成目標:猜想導課,激發(fā)探究愿望。
(二)共同探索,總結方法。
1、明確這節(jié)課的學習目標:
(1)理解反比例的意義,能正確地判斷兩種相關聯(lián)的量是不是成反比例的量。
(2)經歷反比例意義的探究過程,體驗觀察比較、推理、歸納的學習方法。
2、情境導入,學習探究。
(1)我們先來看一個實驗。
高度(厘米)302015105。
底面積(平方厘米)1015203060。
體積(立方厘米)。
提問:根據(jù)列表,你從中你發(fā)現(xiàn)了什么?
(2)學生討論交流。
(3)引導學生回答:表中的兩個量是高度和底面積。
高度擴大,底面積反而縮??;高度縮小,底面積反而擴大。
每兩個相對應的數(shù)的乘積都是300.
(4)計算后你又發(fā)現(xiàn)了什么?
每兩個相對應的數(shù)的乘積都是300,乘積一定。
教師小結:我們就說水的高度和體積成反比例關系,水的高度和體積是成反比例的量。
教師提問:高底面積和體積,怎樣用式子表示他們的關系?板書:高×底面積=水的體積(一定)。
(5)如果用字母x和y表示兩種相關聯(lián)的量,用k表示他們的積一定,反比例關系可以用一個什么樣的式子表示?板書:x×y=k(一定)。
小結:通過上面的學習,你認為判斷兩種相關聯(lián)的`量是否成反比例,關鍵是什么?
(6)歸納總結反比例的意義。
(7)比較歸納正反比例的異同點。
達成目標:比較思想是在小學數(shù)學教學中應用十分普遍的數(shù)學思想方法,《成反比例的量》是繼《成正比例的量》一課后學習的內容,兩節(jié)課的學習內容和學習方法有相似之處,學生從知識的差別中找到同一,也可以從同一中找出差別,學生學習新知識,進行深化拓展,歸納總結。
(三)運用方法,解決問題。
1、生活中,哪些相關聯(lián)的量成反比例關系,舉例說一說。
2、課后做一做每天運的噸數(shù)和運貨的天數(shù)成反比例關系嗎?為什么?
3、出示反比例圖像,與正比例圖像進行比較學習。
達成目標:學生利用對反比例概念的理解,判斷相關聯(lián)的量是否成反比例,學會分析并進行判斷。
(四)反饋鞏固,分層練習。
判斷下面每題中的兩個量是不是成反比例,并說明理由。
(1)路程一定,速度和時間。
(2)小明從家到學校,每分走的速度和所需時間。
(3)平行四邊形面積一定,底和高。
(4)小林做10道數(shù)學題,已做的題和沒有做的題。
(5)小明拿一些錢買鉛筆,單價和購買的數(shù)量。
達成目標:使學生體會到數(shù)學來源于現(xiàn)實生活,又服務于現(xiàn)實生活的特點,體現(xiàn)數(shù)學的應用性。
(五)課堂總結,提升認識。
正反比例教案篇十二
正反比例應用題從教參上看主要是分三個層次:1、正比例應用題的教學,2、反比例應用題的教學,3、正反比例應用題解答方法的。重點應放在如何判斷每題中的兩個量是否成比例,成什么比例上。下面我結合自己本節(jié)課的教學談一談我自己的體會。成功之處:
1、開頭的復習比較的設計比較到位,層次分明,時間分配得當。
2、總結解比例的方法時能鼓勵學生去體驗,通過小組的方式去總結解正反比例應用題的方法。
不足之處:
1、例題教學時應讓學生討論分析,多花時間研究數(shù)量關系式。
2、教師在教學時不能按步就搬,學生的閃光點,及進表揚,充分讓學生表現(xiàn)自己。
3、改造例1時讓學生宏觀上思考與例1的區(qū)別,這樣可讓學生更深層次地理解比例應用題的解題步驟。
4、練習題中的表述要清,練習的亮點沒有得到很好的拓展。
只不過是比例的兩種形式而已。
好不容易有這樣熱烈的氣氛,我趁熱打鐵,把練習十的第8題繼續(xù)讓學生分組討論列式,結果又有兩種列式(1)解:設如果每分鐘整修8平方米x分鐘可以整修完成。列方程為6.4×30=x×8。(2)解:設如果每小時整修8平方米x小時可以整修完成。列式為6.4×0.5=x×8。按例每分鐘整修6.4平方米乘0.5小時不能表示什么,也就是這個式子根本沒意義,但是用反比例的意義來理解這題,也就不難理解了。
通過這樣的教學,把“正反比例應用題”這課上活了,而且把正反比例的意義挖的更深,學生的興趣更濃,積極性更高,掌握的知識更牢。
正反比例教案篇十三
蘇霍姆林斯基說過:“在人的心靈深處,總有一種根深蒂固的需要,這就是希望自己是一個發(fā)現(xiàn)者、研究者、探索者。”這種需要在兒童的身上表現(xiàn)得更為突出。一旦學生的學習興趣被激發(fā)起來,他們就希望通過自己的努力來獲取知識,從而體驗成功的喜悅。
考慮到學生學習基礎、能力的差異,練習設計為學生提供多層次、多種類的選擇,以滿足不同層次學生發(fā)展的需要。以上的幾個練習分成三個層次,設置了三個智力臺階(基礎性練習、綜合性練習、拓展性練習),適合不同層次學生的需要,為不同層次的學生提供取得成功機會,使他們在練習中獲得成功的體驗,樹立積極自信的信心。
現(xiàn)在數(shù)學與實際生活聯(lián)系越來越密切,應用性越來越強,我在這節(jié)課的練習設計也反映這一特點,其中有許多與現(xiàn)實生活及各行各業(yè)密切聯(lián)系的習題,既有學生做練習,騎車上學,又有學校燒煤、買課桌,農民播種,工廠運貨物等問題。使學生體會到數(shù)學來源于現(xiàn)實生活,又服務于現(xiàn)實生活的特點,體現(xiàn)數(shù)學的應用性。
正反比例教案篇十四
1.經歷探索兩種相關聯(lián)的量的變化情況過程,發(fā)現(xiàn)規(guī)律,理解反比例的意義。
2.根據(jù)反比例的意義,正確判斷兩種量是否成反比例。
教學重點:反比例的意義。
教學難點:正確判斷兩種量是否成反比例。
一導入新課。
1.讓學生說一說成正比例的兩種量的變化規(guī)律。
回答要點:
(1)兩種相關聯(lián)的量;
(2)一個量增加,另一個量也相應增加;一個量減少,另一個量也相應減少;
(3)兩個量的比值一定。
2.舉例說明。
如:每袋大米質量相同,大米的袋數(shù)與總質量成正比例。
理由:
(1)每袋大米質量一定,大米的.總質量隨著袋數(shù)的變化而變化;
(2)大米的袋數(shù)增加,大米的總質量也相應增加,大米的袋數(shù)。
減少,大米的總質量也相應減少;
(3)總質量與袋數(shù)的比值一定。
所以,大米的袋數(shù)與總質量成正比例。
板書:
3.揭示課題。
今天,我們一起來學習反比例。兩種量是什么樣的關系時,這兩種量成反比例呢?
板書課題:成反比例的量。
正反比例教案篇十五
反比例。(教材第47頁例2)。
1.使學生理解反比例的意義,能正確地判斷兩種相關聯(lián)的量是不是成反比例的量。
2.讓學生經歷反比例意義的探究過程,體驗觀察比較、推理、歸納的學習方法。
引導學生總結出成反比例的量的特點,進而抽象概括出反比例的關系式。利用反比例的意義,正確判斷兩個量是否成反比例。
投影儀。
復習導入
1.讓學生說說什么是正比例,然后用投影出示下面的題。
下面各題中哪兩種量成正比例?為什么?
(1)每公頃產量一定,總產量和公頃數(shù)。
(2)一袋大米的重量一定,吃了的和剩下的。
(3)修房屋時,粉刷的面積和所需涂料的數(shù)量。
教師:如果加工零件總數(shù)一定,每小時加工數(shù)和加工時間會成什么變化?關系怎樣?這就是我們這節(jié)課要學習的內容。
1.教學例2。
創(chuàng)設情境。
教師:把相同體積的水倒入底面積不同的杯子,高度會怎樣變化?
出示教材第47頁例2的情境圖和表格。
請學生認真觀察表中數(shù)據(jù)的變化情況,組織學生分小組討論:
(1)水的高度和底面積變化有關系嗎?
(2)水的高度是怎樣隨著底面積變化的?
(3)水的高度和底面積的變化有什么規(guī)律?
學生不難發(fā)現(xiàn):底面積越大,水的高度越低;底面積越小,水的高度越高,而且高度和底面積的乘積(水的體積)一定。
教師板書配合說明這一規(guī)律:
30×10=20×15=15×20=……=300
教師根據(jù)學生的匯報說明:高度和底面積有這樣的變化關系,我們就說高度和底面積成反比例的關系,高度和底面積叫做成反比例的量。
2.歸納反比例的意義。
組織學生小組內討論:反比例的意義是什么?
學生小組內交流,指名匯報。
教師總結:像這樣,兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關系叫做反比例關系。
3.用字母表示。
學生探討后得出結果。
x×y=k(一定)
4.師:生活中還有哪些成反比例的量?
在教師的引導下,學生舉例說明。如:
(1)大米的質量一定,每袋質量和袋數(shù)成反比例。
(2)教室地板面積一定,每塊地磚的面積和塊數(shù)成反比例。
(3)長方形的面積一定,長和寬成反比例。
5.組織學生將例1與例2進行比較,小組內討論:
正比例與反比例的相同點和不同點有哪些?
學生交流、匯報后,引導學生歸納:
相同點:都表示兩種相關聯(lián)的量,且一種量變化,另一種量也隨著變化。
不同點:正比例關系中比值一定,反比例關系中乘積一定。
6.你還有什么疑問
?如果學生提出表示反比例關系的圖像有什么特征,教師應該引導學生觀察教材第48頁“你知道嗎?”中的圖像。
反比例關系也可以用圖像來表示,表示兩個量的點不在同一條直線上,點所連接起來的圖像是一條曲線,圖像特征不要求掌握。
課堂作業(yè)
1.教材第48頁的“做一做”。
2.教材第51頁第9、10題。
答案:1.(1)每天運的噸數(shù)和所需的天數(shù)兩種量,它們是相關聯(lián)的量。
(2)300×1=150×2=100×3=300(答案不唯一),積都是300。積表示貨物的總量。
(3)成反比例,因為每天運的噸數(shù)變化,需要的天數(shù)也隨著變化,且它們的積一定。
2.第9題:成反比例,因為每瓶的容量與瓶數(shù)的乘積一定。
第10題:5010012
說一說成反比例關系的量的變化特征。
課后作業(yè)
1.完成練習冊中本課時的練習。
2.教材51~52頁第8、14題。
答案:
2.第8題:成反比例,因為教室的面積一定,而每塊地磚的面積與所需數(shù)量的乘積都等于教室的面積54m2。
第14題:(1)斑馬和長頸鹿的奔跑路程和奔跑時間成正比例。
(2)分析:可以通過圖像直接估計,先在橫軸上找到18分的位置,然后在兩個圖像中找到相應的點,再分別在豎軸上找到與這個點對應的數(shù)值;也可以通過計算找到。
解答:從圖像中可以知道斑馬10min跑12km,那么1min跑1.2km,18min跑1.2×18=21.6(km)。
從圖像中可以知道長頸鹿5min跑4km,1min跑0.8km,18min跑0.8×18=14.4(km)。
(3)斑馬跑得快。
第3課時反比例
兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關系叫做反比例關系。
用x和y表示兩種相關聯(lián)的量,x和y成反比例關系用字母表示為×y=k(一定)
正比例與反比例的相同點和不同點:
相同點:都表示兩種相關聯(lián)的量,且一種量變化,另一種量也隨著變化。
不同點:正比例關系中比值一定,反比例關系中乘積一定。
正反比例教案篇十六
《成反比例的量》是在學習《成正比例的量》之后學習的。為了吸取上次課的教學經驗,我改變了教學方法,目是調動學生學習的興趣,培養(yǎng)學生自主學習的能力。
一、復習舊知,引入新知。
二、自主探究,學習新知。
有了一些疑問,相信學生們會急著想要解決呢!我就順勢提出讓學生們自己看書來尋找這些答案,然后再進行交流。在交流的過程中,讓學生對別人的發(fā)言及時補充和發(fā)表自己看法,這樣既學會了思考,又培養(yǎng)了學生學會傾聽的學習習慣。接著對成正比例的量和成反比例的量進行比較,找到新舊知識之間的聯(lián)系與區(qū)別。
在整個自主學習的過程中,學生們很好地利用已有知識和經驗的遷移,理解了反比例的意義,不僅讓學生獲得了數(shù)學知識,還增強了自主學習數(shù)學的信心,同時還培養(yǎng)了學生自主獲取新知識的能力。
這課學生自主學習的積極性都很高,學習效果較好,為了鼓勵學生學習的積極和主動性:
一是人人能自主積極參加新知的探索與學習;
二是大家能充分合作,發(fā)揮出了各自的能力;
三是大家學會了如何利用舊知識來學習新知識的方法;四是很多同學通過自主學習獲得知識后,有一種快樂感和成就感。
【本文地址:http://m.aiweibaby.com/zuowen/17063137.html】