完全平方公式說課稿(通用16篇)

格式:DOC 上傳日期:2023-12-13 13:11:20
完全平方公式說課稿(通用16篇)
時(shí)間:2023-12-13 13:11:20     小編:ZS文王

總結(jié)讓我們在喧囂的生活中停下腳步,審視自己的成長軌跡。怎樣提高寫作水平?讓我們一起探討一下吧。范文中的案例和觀點(diǎn),可以為你的總結(jié)寫作提供一些借鑒和引用。

完全平方公式說課稿篇一

一、學(xué)習(xí)目標(biāo):

2.會(huì)推導(dǎo)平方差公式,并能運(yùn)用公式進(jìn)行簡單的運(yùn)算.

二、重點(diǎn)難點(diǎn)。

難點(diǎn):理解平方差公式的結(jié)構(gòu)特征,靈活應(yīng)用平方差公式.

三、合作學(xué)習(xí)。

你能用簡便方法計(jì)算下列各題嗎?

12001×19992998×1002。

導(dǎo)入新課:計(jì)算下列多項(xiàng)式的積.

1x+1x-12m+2m-2。

32x+12x-14x+5yx-5y。

結(jié)論:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,等于這兩個(gè)數(shù)的平方差.

即:a+ba-b=a2-b2。

四、精講精練。

完全平方公式說課稿篇二

(2)切勿把“乘積項(xiàng)”2ab中的2丟掉.

今后在教學(xué)中?,要注意以下幾點(diǎn):

1.讓學(xué)生自編幾道符合平方差公式結(jié)構(gòu)的計(jì)算題,目的是辨認(rèn)題目的結(jié)構(gòu)特征.

2.引入完全平方公式,讓學(xué)生用文字概括公式的內(nèi)容,培養(yǎng)抽象的數(shù)字思維能力.

完全平方公式說課稿篇三

前不久聽了我校朱昌榮老師的一節(jié)數(shù)學(xué)課,這節(jié)課是朱老師安排的一節(jié)乘法公式——平方差公式的新授課,這節(jié)課給我留下了深刻的影響。

教師講課語言清晰,有較強(qiáng)的表達(dá)和應(yīng)變能力,課堂教學(xué)基本功好。

乘法公式的引入,使學(xué)生既復(fù)習(xí)了多項(xiàng)式的乘法運(yùn)算,又形象直觀地理解了乘法公式的內(nèi)在實(shí)質(zhì)。課堂教學(xué)中充分體現(xiàn)了以點(diǎn)撥為主的教學(xué)。對于公式的性能嚴(yán)格要求學(xué)生理解,課堂內(nèi)的練習(xí)量、內(nèi)容及安排上恰當(dāng)好處,有基本運(yùn)用公式,有變式運(yùn)用公式,也有適當(dāng)?shù)募由顟?yīng)用,滿足了不同層次的學(xué)生的學(xué)習(xí)。

一點(diǎn)建議:

1、引入時(shí),還可以安排得生動(dòng)一點(diǎn),可以先設(shè)疑,提出問題,讓學(xué)生探討,猜想,歸納,以激發(fā)學(xué)生更高的學(xué)習(xí)興趣,或采用多題的多項(xiàng)式乘法運(yùn)算,當(dāng)學(xué)生感到有些“煩“時(shí),讓學(xué)生猜想這類運(yùn)算能否運(yùn)用簡單的結(jié)論來得出,從而使學(xué)生感到今天要學(xué)的內(nèi)容的重要性,這樣學(xué)生的學(xué)習(xí)將更主動(dòng)。

2、剛才說過語言清晰,但不夠精煉,尤其在總結(jié)公式特征時(shí),未能用簡練的語言描述出特征,以致學(xué)生在完成例題和練習(xí)題的過程中,對在運(yùn)用公式之前需要變型的題型,出錯(cuò)率較高。其實(shí)平方差公式的特征就是有兩項(xiàng)相同,而另兩項(xiàng)恰恰是互為相反數(shù)或項(xiàng)。相同項(xiàng)在前,相反項(xiàng)在后,結(jié)果才能用相同項(xiàng)的平方減去相反項(xiàng)的平方。

3、對于平方差公式的幾何意義,敢于讓學(xué)生大膽上黑板演示是好的,但過程繁瑣,缺乏精煉,直觀,不能讓大部分學(xué)生弄懂。這時(shí)我們老師應(yīng)該給出恰當(dāng)準(zhǔn)確的解釋。

以上是我的淺顯認(rèn)識(shí),不妥之處,還望朱老師海涵,大家批評。

謝謝。

完全平方公式說課稿篇四

教師講課語言清晰,有較強(qiáng)的表達(dá)和應(yīng)變能力,課堂教學(xué)基本功好。

乘法公式的引入,使學(xué)生既復(fù)習(xí)了多項(xiàng)式的乘法運(yùn)算,又形象直觀地理解了乘法公式的內(nèi)在實(shí)質(zhì)。課堂教學(xué)中充分體現(xiàn)了以點(diǎn)撥為主的教學(xué)。對于公式的性能嚴(yán)格要求學(xué)生理解,課堂內(nèi)的練習(xí)量、內(nèi)容及安排上恰當(dāng)好處,有基本運(yùn)用公式,有變式運(yùn)用公式,也有適當(dāng)?shù)募由顟?yīng)用,滿足了不同層次的學(xué)生的學(xué)習(xí)。

一點(diǎn)建議:

1、引入時(shí),還可以安排得生動(dòng)一點(diǎn),可以先設(shè)疑,提出問題,讓學(xué)生探討,猜想,歸納,以激發(fā)學(xué)生更高的學(xué)習(xí)興趣,或采用多題的多項(xiàng)式乘法運(yùn)算,當(dāng)學(xué)生感到有些“煩“時(shí),讓學(xué)生猜想這類運(yùn)算能否運(yùn)用簡單的結(jié)論來得出,從而使學(xué)生感到今天要學(xué)的內(nèi)容的重要性,這樣學(xué)生的學(xué)習(xí)將更主動(dòng)。

2、剛才說過語言清晰,但不夠精煉,尤其在總結(jié)公式特征時(shí),未能用簡練的語言描述出特征,以致學(xué)生在完成例題和練習(xí)題的過程中,對在運(yùn)用公式之前需要變型的題型,出錯(cuò)率較高。其實(shí)平方差公式的特征就是有兩項(xiàng)相同,而另兩項(xiàng)恰恰是互為相反數(shù)或項(xiàng)。相同項(xiàng)在前,相反項(xiàng)在后,結(jié)果才能用相同項(xiàng)的平方減去相反項(xiàng)的平方。

3、對于平方差公式的幾何意義,敢于讓學(xué)生大膽上黑板演示是好的,但過程繁瑣,缺乏精煉,直觀,不能讓大部分學(xué)生弄懂。這時(shí)我們老師應(yīng)該給出恰當(dāng)準(zhǔn)確的解釋。

以上是我的淺顯認(rèn)識(shí),不妥之處,還望楊老師海涵,大家批評。

完全平方公式說課稿篇五

重點(diǎn)、難點(diǎn)根據(jù)公式的特征及問題的特征選擇適當(dāng)?shù)墓接?jì)算.

教學(xué)過程。

一、議一議。

1.邊長為(a+b)的正方形面積是多少?

2.邊長分別為a、b拍的兩個(gè)正方形面積和是多少?

3.你能比較(1)(2)的結(jié)果嗎?說明你的理由.師生共同討論:學(xué)生回答(1)(a+b)(2)a+b(3)因?yàn)?a+b)=a+2ab+b,所以(a+b)-(a+b)=a+2ab+b-a-b=2ab,即(1)中的正方形面積比(2)中的正方形面積大.

二、做一做。

例1.利用完全平方式計(jì)算1.102。

三、試一試。

計(jì)算:。

1.(a+b+c)。

2.(a+b)師生共同分析:對于1要把多項(xiàng)式完全平方轉(zhuǎn)化為二項(xiàng)式的完全平方,要使用加法結(jié)合律,為使用完全平方公式創(chuàng)造條件.如(a+b+c)=[a+(b+c)]對于(2)可化為(a+b)=(a+b)(a+b).學(xué)生動(dòng)筆:在練習(xí)本上解答,并與同伴交流你的做法.學(xué)生敘述。

四、隨堂練習(xí)。

p381。

五、小結(jié)。

本節(jié)課進(jìn)一步學(xué)習(xí)了完全平方公式,在應(yīng)用此公式運(yùn)算時(shí)注意以下幾點(diǎn).1.使用完全平方公式首先要熟記公式和公式的'特征,不能出現(xiàn)(ab)=ab的錯(cuò)誤,或(ab)=aab+b(漏掉2倍)等錯(cuò)誤.2.要能根據(jù)公式的特征及題目的特征靈活選擇適當(dāng)?shù)墓接?jì)算.3.用加法結(jié)合律,可為使用公式創(chuàng)造了條件.利用了這種方法,可以把多項(xiàng)式的完全平方轉(zhuǎn)化為二項(xiàng)式的完全平方.

六、作業(yè)。

課本習(xí)題1.14p381、2、3.

七、教后反思。

1.9整式的除法第一課時(shí)單項(xiàng)式除以單項(xiàng)式教學(xué)目標(biāo)1.經(jīng)歷探索單項(xiàng)式除法的法則過程,了解單項(xiàng)式除法的意義.

2.理解單項(xiàng)式除法法則,會(huì)進(jìn)行單項(xiàng)式除以單項(xiàng)式運(yùn)算.重點(diǎn)、難點(diǎn)重點(diǎn):單項(xiàng)式除以單項(xiàng)式的運(yùn)算.難點(diǎn):單項(xiàng)式除以單項(xiàng)式法則的理解.

完全平方公式說課稿篇六

本節(jié)課屬于人教版八年級數(shù)學(xué)上冊第十五章《整式乘除與因式分解》第二節(jié)中的內(nèi)容,前一節(jié)已學(xué)習(xí)習(xí)近平方差公式,這一課主要研究完全平方公式的特征及應(yīng)用。教學(xué)關(guān)鍵是引導(dǎo)學(xué)生正確理解完全平方公式的推導(dǎo)過程,幾何背景,并能準(zhǔn)確應(yīng)用完全平方公式解決相關(guān)問題。教學(xué)后我進(jìn)行反思如下:本課的知識(shí)要點(diǎn)是經(jīng)歷探索完全平方公式的過程,了解公式的幾何背景,會(huì)應(yīng)公式進(jìn)行簡單的計(jì)算,教學(xué)已基本達(dá)到了預(yù)期目標(biāo),能突出重點(diǎn),兼顧難點(diǎn)。本節(jié)課上學(xué)生體會(huì)了數(shù)形結(jié)合及轉(zhuǎn)化的數(shù)學(xué)思想,并知道猜想的結(jié)論必須要加以驗(yàn)證;授課思維流暢,知識(shí)發(fā)生發(fā)展過渡自然,學(xué)生容易得到一些結(jié)論但在老師的.引導(dǎo)下又使問題的探討得以不斷深入,學(xué)生思考積極、氣氛活躍,教學(xué)效果較好。采用以小組自主探究的學(xué)習(xí)方式,同時(shí)各小組展開激烈的比賽。整節(jié)課都在緊張而愉快的氣氛中進(jìn)行。學(xué)生非?;钴S。人人都能積極參與。先從代數(shù)式的幾何意義出發(fā),激發(fā)學(xué)生的圖形觀,利用拼圖的方法,使學(xué)生在動(dòng)手的過程中發(fā)現(xiàn)規(guī)律,并通過小組合作,探究歸納公式,然后強(qiáng)調(diào)數(shù)值的計(jì)算,使學(xué)生掌握公式的計(jì)算技巧。從而突出以學(xué)生為主體的探索性學(xué)習(xí)原則。讓學(xué)生自編符合完全平方公式和平方差公式結(jié)構(gòu)的計(jì)算題,從而有效地將兩類公式區(qū)分開,深刻認(rèn)識(shí)公式的結(jié)構(gòu)特征,并大大激發(fā)了學(xué)生的學(xué)習(xí)積極性。

同時(shí)課后感覺應(yīng)該引導(dǎo)學(xué)生用文字概括公式的內(nèi)容,從而培養(yǎng)學(xué)生抽象的數(shù)學(xué)思維能力和語言表達(dá)能力。對需要幫助的學(xué)生進(jìn)行針對性的個(gè)別指導(dǎo)較少。對于學(xué)生計(jì)算中存在的問題應(yīng)讓學(xué)生自己糾錯(cuò),教師不應(yīng)全權(quán)代勞。如利用兩數(shù)和的公式計(jì)算(a+b)2環(huán)節(jié),兩位學(xué)生分別講述自己的想法之后,教師應(yīng)該讓全體學(xué)生根據(jù)其方法進(jìn)行計(jì)算,自主驗(yàn)證,即使有些學(xué)生寫不出來,也會(huì)因?yàn)榻?jīng)過思考而印象深刻,如果為了節(jié)省時(shí)間教師自己代勞,那樣就不能夠充分體現(xiàn)學(xué)生的主體作用,而且效果也較前者差些。

在今后的教學(xué)中應(yīng)注意從以下幾個(gè)方面改進(jìn):1、在教學(xué)中要講法則、公式的應(yīng)用,也要講公式的推導(dǎo),使學(xué)生在理解公式,法則道理的基礎(chǔ)上進(jìn)行記憶,比如:我們要借助面積圖形對完全平方公式做直觀說明。

完全平方公式說課稿篇七

公式法進(jìn)行因式分解,除了逆用平方差公式之外,還有兩個(gè)相對來說較難的公式逆用即完全平方和(或差)公式:(a+b)2=a2+2ab+b2。

逆用完全平方公式進(jìn)行因式分解關(guān)鍵同樣是搞清完全平方公式的結(jié)構(gòu)特點(diǎn):等號(hào)左邊是一個(gè)二項(xiàng)式的.平方,等號(hào)右邊是一個(gè)二次三項(xiàng)式,其中有兩項(xiàng)是公式左邊二項(xiàng)式中每一項(xiàng)的平方,另一項(xiàng)是左邊二項(xiàng)式中那兩項(xiàng)乘積的2倍?;虻忍?hào)右邊記作:首平方,尾平方,2倍之積中間放。

有了前邊學(xué)習(xí)完全平方公式為基礎(chǔ),逆用完全平方公式進(jìn)行因式分解只需要“顛倒使用”即可:等號(hào)右邊作為“條件”,左邊作為“結(jié)果”,但對學(xué)生來說,還是相當(dāng)困難的。

1、寫成“首平方,尾平方,2倍之積中間放”的形式。

2、按公式寫出“兩項(xiàng)和的平方”的形式,即因式分解。

3、兩項(xiàng)和中能合并同類項(xiàng)的合并。

例題及練習(xí)的呈現(xiàn)次序盡量本著先易后難、先單一后綜合的螺旋上升原則。

1、a、b代表單獨(dú)單項(xiàng)式,如:(1)m2-6m+9(2)4a2-4ab+b2。

2、a、b代表多項(xiàng)式,如:(1)(a+2b)2-8a(a+2b)+16a2。

在此要有“整體思想”的意識(shí),注意:相同部分作為一個(gè)整體然后再套用公式。

(1)ay2-2a2y+a3。

(2)16xy2-9x2y-y2。

(1)-m2+2mn-n2(2)3a2+6a+27。

盡管課前進(jìn)行了充分的準(zhǔn)備工作,但是學(xué)生作業(yè)中仍暴露出許多問題,如部分學(xué)生直接感到無從下手。

完全平方公式說課稿篇八

1、了解完全平方公式的特征,會(huì)用完全平方公式進(jìn)行因式分解.

2、通過整式乘法逆向得出因式分解方法的過程,發(fā)展學(xué)生逆向思維能力和推理能力.

3、通過猜想、觀察、討論、歸納等活動(dòng),培養(yǎng)學(xué)生觀察能力,實(shí)踐能力和創(chuàng)新能力.

學(xué)習(xí)建議教學(xué)重點(diǎn):

完全平方公式說課稿篇九

引例講解:將下列各式分解因式。

1、x2+6x+92、4x2-20x+25。

問題:這兩題首先怎么分析?

生14:將9改寫成32,6x正好是x與3的乘積的2倍。(學(xué)生回答,教師板書)。

生15:將4x2寫成(2x)2,25寫成52,20x寫成2×2x×5。

x2+6x+9=x2+2×x×3+32=(x+3)2。

4x2-20x+25=(2x)2-2×2x×5+52=(2x-5)2。

(聯(lián)系字母表達(dá)式用箭頭對應(yīng)表示,加深學(xué)生印象。)。

生16:由符號(hào)來決定。

師:能不能具體點(diǎn)。

生16:由中間一項(xiàng)的符號(hào)決定,就是兩個(gè)數(shù)乘積2倍這項(xiàng)的符號(hào)決定,是正,就是兩個(gè)數(shù)的和;是負(fù),就是兩個(gè)數(shù)的差。

師:總之,在分解完全平方式時(shí),要根據(jù)第二項(xiàng)的符號(hào)來選擇運(yùn)用哪一個(gè)完全平方公式。

例題1:把25x4+10x2+1分解因式。

師:這道題目能否運(yùn)用以前所學(xué)的方法分解?就題目本身有什么特點(diǎn)?可以怎么分解?

生17:題目符合完全平方式的特點(diǎn),可以將25x4改寫成(5x2)2,1就是12,10x2改寫成2×5x2×1。(此學(xué)生板演,過程略)。

例題2:把-x2-4y2+4xy分解因式。

師:按照常規(guī)我們首先怎么辦?

生齊答:提取負(fù)號(hào)?!步處煱鍟?(x2+4y2-4xy)〕以下過程學(xué)生板演。

師:如果是這道題:4xy-x2-4y2怎么分解呢?(教師改變剛才題型)。

提示:從項(xiàng)的特征進(jìn)行考慮,怎樣轉(zhuǎn)化比較合理?四人小組討論。

生18:同樣還是將負(fù)號(hào)提取改變成完全平方式的形式。

師:從這里我們可以發(fā)現(xiàn),只要三項(xiàng)式中能改寫成平方的兩項(xiàng)是同號(hào),且另一項(xiàng)為兩底數(shù)積的2倍,我們都能利用這個(gè)公式分解,若這兩項(xiàng)同為正則可直接分解,若同為負(fù)則先提取負(fù)號(hào)再分解。

練習(xí)題:課本p21練習(xí):第1題,學(xué)生板演,教師講解,學(xué)生板演的同時(shí),教師提示注意點(diǎn)、多項(xiàng)式的特征;第2題,學(xué)生口答。

例題3:把3ax2+6axy+3ay2分解因式。

師:先觀察,再選擇適當(dāng)?shù)姆椒ā?學(xué)生板演,教師點(diǎn)評)。

練習(xí):課本p22第3題分兩組學(xué)生板演,教師評講、適當(dāng)提示注意點(diǎn)。

師:這一堂課我們一起研究了完全平方式的有關(guān)知識(shí),同學(xué)們先自查一下自己的收獲,然后請同學(xué)發(fā)表自己的見解。(學(xué)生小聲討論)。

生甲:我學(xué)到了如何將完全平方式分解因式,遇到三項(xiàng)式中有兩項(xiàng)符號(hào)相同且能化成平方的形式,另一項(xiàng)為這兩個(gè)數(shù)的積的2倍的形式,如果能化成平方項(xiàng)是負(fù)的,首先將負(fù)號(hào)提取再分解。第二項(xiàng)是正的就是兩數(shù)的和的平方,第二項(xiàng)是負(fù)的就是兩數(shù)差的平方。

生乙:有公因式可提取的先提取公因式,然后再分解,同時(shí)根據(jù)第二項(xiàng)的符號(hào)來選用合適的公式。

教師布置課堂作業(yè):課本p23習(xí)題8.2a組4~5偶數(shù)題。

課外作業(yè):課本p23習(xí)題8.2a組4~5奇數(shù)題。

下課!

完全平方公式說課稿篇十

本節(jié)內(nèi)容在全書及章節(jié)的地位:《完全平方公式》是北師大版數(shù)學(xué)七年級下冊第一章第八節(jié)的內(nèi)容。本課為第一課時(shí)。在此之前,學(xué)生已學(xué)習(xí)了多項(xiàng)式的乘法,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)課通過學(xué)生合作學(xué)習(xí),利用多項(xiàng)式相乘法則和圖形解釋而得到完全平方公式,進(jìn)而理解和運(yùn)用完全平方公式,對以后學(xué)習(xí)因式分解,解一元二次方程都具有舉足輕重的作用。

數(shù)學(xué)思想方法分析:作為一名數(shù)學(xué)老師,不僅要傳授給學(xué)生數(shù)學(xué)知識(shí),更重要的是傳授給學(xué)生數(shù)學(xué)思想、數(shù)學(xué)意識(shí),因此本節(jié)課在教學(xué)中力圖向?qū)W生滲透換元思想和數(shù)形結(jié)合思想。

二、教學(xué)目標(biāo)。

根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制定如下教學(xué)目標(biāo):

知識(shí)與技能目標(biāo):1.完全平方公式的推導(dǎo)及其應(yīng)用。2.完全平方公式的幾何證明。

過程與方法目標(biāo):經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展符號(hào)感和推理能力。

情感與態(tài)度目標(biāo):對學(xué)生觀察能力、概括能力、語言表述能力的培養(yǎng),以及數(shù)學(xué)思想的滲透。

三、教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵。

本著課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn)。

教法和學(xué)法。

(1)多媒體輔助教學(xué),將知識(shí)形象化、生動(dòng)化,激發(fā)學(xué)生的興趣。

(2)教學(xué)中逐步設(shè)置疑問,引導(dǎo)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口,積極參與知識(shí)全過程。

(3)由易到難安排例題、練習(xí),符合七年級學(xué)生的認(rèn)知結(jié)構(gòu)特點(diǎn)。

完全平方公式說課稿篇十一

學(xué)習(xí)了乘法公式中的完全平方,一個(gè)是兩數(shù)和的平方,另一個(gè)是兩數(shù)差的平方,兩者僅一個(gè)“符號(hào)”不同。相乘的結(jié)果是兩數(shù)的平方和,加上(或減去)兩數(shù)的積的2倍,兩者也僅差一個(gè)“符號(hào)”不同,運(yùn)用完全平方公式計(jì)算時(shí),要注意:

(1)切勿把此公式與平方差公式混淆,而隨意寫。

(2)切勿把“乘積項(xiàng)”2ab中的2丟掉。

(3)計(jì)算時(shí),要先觀察題目是否符合公式的條件。若不符合,應(yīng)先變形為符合公式的條件的形式,再利用公式進(jìn)行計(jì)算;若不能變?yōu)榉蠗l件的形式,則應(yīng)運(yùn)用乘法法則進(jìn)行計(jì)算。

今后在教學(xué)中,要注意以下幾點(diǎn):

1、讓學(xué)生自編幾道符合平方差公式結(jié)構(gòu)的計(jì)算題,目的是辨認(rèn)題目的結(jié)構(gòu)特征。

完全平方公式說課稿篇十二

在進(jìn)入三中這個(gè)大家庭里,我感受到了這個(gè)大家庭的愛,有來自領(lǐng)導(dǎo),師傅,辦公室同事的指導(dǎo),深感欣慰。由于第一次教授初中數(shù)學(xué),對于備學(xué)生和備教材缺乏全面理解,本節(jié)課的教學(xué)沒有很好的完成教學(xué)目的標(biāo),本課的知識(shí)要點(diǎn)是經(jīng)歷探索完全平方公式的過程,了解公式的幾何背景,會(huì)應(yīng)用公式進(jìn)行簡單的計(jì)算。理解公式的推導(dǎo)過程,了解公式的幾何背景,會(huì)應(yīng)用公式進(jìn)行簡單的計(jì)算。探索完全平方公式的過程,培養(yǎng)學(xué)生的發(fā)現(xiàn)能力、求簡意識(shí)、應(yīng)用意識(shí)、解決問題的能力和創(chuàng)新能力。培養(yǎng)學(xué)生敢于挑戰(zhàn),勇于探索的精神和善于觀察,大膽創(chuàng)新的思想品質(zhì)。

通過本課,讓學(xué)生體會(huì)公式的發(fā)現(xiàn)和推導(dǎo)過程,理解公式的本質(zhì),并會(huì)運(yùn)用公式進(jìn)行簡單的計(jì)算,理解公式中的字母含義,及公式的應(yīng)用。

通過本節(jié)課的教學(xué)得到如下收獲:。

(1)這節(jié)課倡導(dǎo)了以學(xué)生為主,教師為輔的思想,留足了一定的時(shí)間讓學(xué)生去發(fā)現(xiàn)探索、以及做練習(xí)。

(2)采用了多媒體輔助教學(xué),以較清晰的手段呈現(xiàn)了學(xué)生整個(gè)學(xué)習(xí)過程,讓課堂更加直觀明了,同時(shí)客容量也增大了。

(3)讓學(xué)生體會(huì)了數(shù)形結(jié)合及轉(zhuǎn)化的數(shù)學(xué)思想,并知道猜想的結(jié)論必須要加以驗(yàn)證。

本節(jié)課采用了以小組自主探究的學(xué)習(xí)方式,整節(jié)課都在緊張而愉快的氣氛中進(jìn)行,學(xué)生活躍,能積極參與。教學(xué)中,比較關(guān)注學(xué)生的情感態(tài)度,對那些積極動(dòng)腦,熱情參與的同學(xué),都給予了鼓勵(lì)和表揚(yáng),促使學(xué)生的情感和興趣始終保持最佳狀態(tài),進(jìn)而提高課堂教學(xué)的有效性。

完全平方公式說課稿篇十三

2.會(huì)用完全平方公式進(jìn)行運(yùn)算。教學(xué)難點(diǎn):會(huì)用完全平方公式進(jìn)行運(yùn)算教學(xué)過程:

一塊邊長為a米的正方形實(shí)驗(yàn)田,因需要將其邊長增加b米,形成四塊實(shí)驗(yàn)田,以種植不同的新品種。(圖略)。

用不同的`形式表示實(shí)驗(yàn)田的總面積,并進(jìn)行比較你發(fā)現(xiàn)了什么?

觀察得到的式子,想一想:

(1)(a+b)2等于什么?你能不能用多項(xiàng)式乘法法則說明理由呢?

(2)(a-b)2等于什么?小穎寫出了如下的算式:

(a-b)2=[a+(b)]2.

她是怎么想的?你能繼續(xù)做下去嗎?

(a+b)2=a2+2ab+b2。

(a-b)2=a22ab+b2。

教師在此時(shí)應(yīng)該引導(dǎo)觀察完全平方公式的特點(diǎn),并用自己的言語表達(dá)出來。

(1)(2x-3)2。

解:(2x-3)2。

=(2x)2-2(2x)3+32。

=4x12x+9。

(1);(2);。

(3);(4).

2.計(jì)算下列各式:

(1);(2);(3);。

(4);(5);。

(6).

4.填空:

(1)xxxxxxxxx_;(2);。

1.求的值,其中。

2.若。

對公式的真正理解有待加強(qiáng)。

完全平方公式說課稿篇十四

理解兩個(gè)完全平方公式的結(jié)構(gòu),靈活運(yùn)用完全平方公式進(jìn)行運(yùn)算。

在運(yùn)用完全平方公式的過程中,進(jìn)一步發(fā)展學(xué)生的符號(hào)演算的能力,提高運(yùn)算能力。

培養(yǎng)學(xué)生在獨(dú)立思考的基礎(chǔ)上,積極參與對數(shù)學(xué)問題的討論,敢于發(fā)表自己的見解。

一、復(fù)習(xí)導(dǎo)入。

2.計(jì)算,除了直接用兩數(shù)差的完全平方公式外,還有別的方法嗎?

學(xué)生思考后回答:由于兩數(shù)差可以轉(zhuǎn)化成兩數(shù)和,所以還可以用兩數(shù)和的完全平方公式計(jì)算,把“”看成加數(shù),按照兩數(shù)和的完全平方公式計(jì)算,結(jié)果是一樣的。

教師歸納:當(dāng)我們對差與和加以區(qū)分時(shí),兩個(gè)公式是有區(qū)別的,區(qū)別是其結(jié)果的中間項(xiàng)一個(gè)是“減”一個(gè)是“加”,注意到區(qū)別有助于計(jì)算的準(zhǔn)確;另一方面,當(dāng)我們對差與和不加區(qū)分,全部理解成“加項(xiàng)”時(shí),那么兩個(gè)公式從結(jié)構(gòu)上來看就是一致的了,其結(jié)構(gòu)都是“兩項(xiàng)和的平方,等于它們的平方和,加上它們的積的兩倍?!弊⒁獾剿鼈兊慕y(tǒng)一性,有于我們更深刻地理解公式特點(diǎn),提高運(yùn)算的靈活性。

我們學(xué)習(xí)運(yùn)算,除了要重視結(jié)果,還要重視過程,平時(shí)注意訓(xùn)練運(yùn)算方法的多樣性,可以加深對算理的理解和運(yùn)用,提高運(yùn)算過程的合理性和靈活性,從而真正的提高運(yùn)算能力。

二、新課講解。

溫故知新。

與,與相等嗎?為什么?

學(xué)生討論交流,鼓勵(lì)學(xué)生從不同的。角度進(jìn)行說理,共同歸納總結(jié)出兩條判斷的思路:

1.對原式進(jìn)行運(yùn)算,利用運(yùn)算的結(jié)果來判斷;

2.不對原式進(jìn)行運(yùn)算,只做適當(dāng)變形后利用整體的方法來判斷。

思考:與,與相等嗎?為什么?

利用整體的方法判斷,把看成一個(gè)數(shù),則是它的相反數(shù),相反數(shù)的奇次方是相反的,所以它們不相等。

總結(jié)歸納得到:;

三、典例剖析。

完全平方公式說課稿篇十五

1、使學(xué)生理解完全平方公式的意義,弄清完全平方公式的形式和特點(diǎn);使學(xué)生知道把完全平方公式反過來就可以得到相應(yīng)的因式分解。

2、掌握運(yùn)用完全平方公式分解因式的`方法,能正確運(yùn)用完全平方公式把多項(xiàng)式分解因式(直接用公式不超過兩次)。

教學(xué)方法:對比發(fā)現(xiàn)法課型新授課教具投影儀。

教師活動(dòng):學(xué)生活動(dòng)。

新課講解:

(投影)我們把形如a2+2ab+b2與a2-2ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項(xiàng)式因式分解。例如:

a2+8a+16=a2+2×4a+42=(a+4)2。

a2-8a+16=a2-2×4a+42=(a-4)2。

(要強(qiáng)調(diào)注意符號(hào))。

首先我們來試一試:(投影:牛刀小試)。

1.把下列各式分解因式:

(1)x2+8x+16;;(2)25a4+10a2+1。

(3)(m+n)2-4(m+n)+4。

(教師強(qiáng)調(diào)步驟的重要性,注意發(fā)現(xiàn)學(xué)生易錯(cuò)點(diǎn),及時(shí)糾正)。

2.把81x4-72x2y2+16y4分解因式。

(本題用了兩次乘法公式,難度稍大,教師要鼓勵(lì)學(xué)生大膽嘗試,敢于創(chuàng)新)。

將乘法公式反過來就得到多項(xiàng)式因式分解的公式。運(yùn)用這些公式把一個(gè)多項(xiàng)式分解因式的方法叫做運(yùn)用公式法。

練習(xí):第88頁練一練第1、2題。

完全平方公式說課稿篇十六

本節(jié)課屬于人教版八年級數(shù)學(xué)上冊第十五章《整式乘除與因式分解》第二節(jié)中的內(nèi)容,前一節(jié)已學(xué)習(xí)平方差公式,這一課主要研究完全平方公式的特征及應(yīng)用。教學(xué)關(guān)鍵是引導(dǎo)學(xué)生正確理解完全平方公式的推導(dǎo)過程,幾何背景,并能準(zhǔn)確應(yīng)用完全平方公式解決相關(guān)問題。教學(xué)后我進(jìn)行反思如下:本課的知識(shí)要點(diǎn)是經(jīng)歷探索完全平方公式的過程,了解公式的幾何背景,會(huì)應(yīng)公式進(jìn)行簡單的計(jì)算,教學(xué)已基本達(dá)到了預(yù)期目標(biāo),能突出重點(diǎn),兼顧難點(diǎn)。本節(jié)課上學(xué)生體會(huì)了數(shù)形結(jié)合及轉(zhuǎn)化的數(shù)學(xué)思想,并知道猜想的結(jié)論必須要加以驗(yàn)證;授課思維流暢,知識(shí)發(fā)生發(fā)展過渡自然,學(xué)生容易得到一些結(jié)論但在老師的引導(dǎo)下又使問題的探討得以不斷深入,學(xué)生思考積極、氣氛活躍,教學(xué)效果較好。采用以小組自主探究的學(xué)習(xí)方式,同時(shí)各小組展開激烈的比賽。整節(jié)課都在緊張而愉快的氣氛中進(jìn)行。學(xué)生非?;钴S。人人都能積極參與。先從代數(shù)式的幾何意義出發(fā),激發(fā)學(xué)生的圖形觀,利用拼圖的方法,使學(xué)生在動(dòng)手的過程中發(fā)現(xiàn)規(guī)律,并通過小組合作,探究歸納公式,然后強(qiáng)調(diào)數(shù)值的計(jì)算,使學(xué)生掌握公式的計(jì)算技巧。從而突出以學(xué)生為主體的探索性學(xué)習(xí)原則。讓學(xué)生自編符合完全平方公式和平方差公式結(jié)構(gòu)的計(jì)算題,從而有效地將兩類公式區(qū)分開,深刻認(rèn)識(shí)公式的結(jié)構(gòu)特征,并大大激發(fā)了學(xué)生的.學(xué)習(xí)積極性。

同時(shí)課后感覺應(yīng)該引導(dǎo)學(xué)生用文字概括公式的內(nèi)容,從而培養(yǎng)學(xué)生抽象的數(shù)學(xué)思維能力和語言表達(dá)能力。對需要幫助的學(xué)生進(jìn)行針對性的個(gè)別指導(dǎo)較少。對于學(xué)生計(jì)算中存在的問題應(yīng)讓學(xué)生自己糾錯(cuò),教師不應(yīng)全權(quán)代勞。如利用兩數(shù)和的公式計(jì)算(a+b)2環(huán)節(jié),兩位學(xué)生分別講述自己的想法之后,教師應(yīng)該讓全體學(xué)生根據(jù)其方法進(jìn)行計(jì)算,自主驗(yàn)證,即使有些學(xué)生寫不出來,也會(huì)因?yàn)榻?jīng)過思考而印象深刻,如果為了節(jié)省時(shí)間教師自己代勞,那樣就不能夠充分體現(xiàn)學(xué)生的主體作用,而且效果也較前者差些。

在今后的教學(xué)中應(yīng)注意從以下幾個(gè)方面改進(jìn):1、在教學(xué)中要講法則、公式的應(yīng)用,也要講公式的推導(dǎo),使學(xué)生在理解公式,法則道理的基礎(chǔ)上進(jìn)行記憶,比如:我們要借助面積圖形對完全平方公式做直觀說明。2.必須強(qiáng)調(diào)學(xué)生時(shí)刻把握公式的特征及用途。3.講聯(lián)系、講對比、講特征,要善于排除新舊知識(shí)間互相干擾的作用,規(guī)范板書。每節(jié)課的板書盡量堅(jiān)持做到三保留:重要知識(shí)點(diǎn)保留,典型例題保留,學(xué)生易錯(cuò)點(diǎn)保留。

【本文地址:http://m.aiweibaby.com/zuowen/19174291.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔