多邊形的內(nèi)角和教案(熱門(mén)13篇)

格式:DOC 上傳日期:2023-11-26 10:34:11
多邊形的內(nèi)角和教案(熱門(mén)13篇)
時(shí)間:2023-11-26 10:34:11     小編:JQ文豪

編寫(xiě)教案可以幫助教師全面了解教學(xué)內(nèi)容,強(qiáng)化教學(xué)目標(biāo),提高教學(xué)質(zhì)量。教案的編寫(xiě)要注意教學(xué)資源的合理利用,提供多樣化的教學(xué)材料。閱讀這些教案范文可以了解到教師的教學(xué)思路和教學(xué)方法。

多邊形的內(nèi)角和教案篇一

難點(diǎn):探索多邊形內(nèi)角和時(shí),如何把多邊形轉(zhuǎn)化成三角形。

四、教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、討論法。

五、教具、學(xué)具。

教具:多媒體課件。

學(xué)具:三角板、量角器。

六、教學(xué)媒體:大屏幕、實(shí)物投影。

七、教學(xué)過(guò)程:

(一)創(chuàng)設(shè)情境,設(shè)疑激思。

師:大家都知道三角形的內(nèi)角和是180?,那么四邊形的內(nèi)角和,你知道嗎?

在獨(dú)立探索的基礎(chǔ)上,學(xué)生分組交流與研討,并匯總解決問(wèn)題的方法。

方法一:用量角器量出四個(gè)角的度數(shù),然后把四個(gè)角加起來(lái),發(fā)現(xiàn)內(nèi)角和是360?。

方法二:把兩個(gè)三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個(gè)三角形內(nèi)角和相加是360?。

接下來(lái),教師在方法二的基礎(chǔ)上引導(dǎo)學(xué)生利用作輔助線的方法,連結(jié)四邊形的對(duì)角線,把一個(gè)四邊形轉(zhuǎn)化成兩個(gè)三角形。

師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?

學(xué)生先獨(dú)立思考每個(gè)問(wèn)題再分組討論。

關(guān)注:(1)學(xué)生能否類比四邊形的方式解決問(wèn)題得出正確的結(jié)論。

(2)學(xué)生能否采用不同的方法。

方法1:把五邊形分成三個(gè)三角形,3個(gè)180?的和是540?。

方法2:從五邊形內(nèi)部一點(diǎn)出發(fā),把五邊形分成五個(gè)三角形,然后用5個(gè)180?的和減去一個(gè)周角360?。結(jié)果得540?。

方法3:從五邊形一邊上任意一點(diǎn)出發(fā)把五邊形分成四個(gè)三角形,然后用4個(gè)180?的和減去一個(gè)平角180?,結(jié)果得540?。

方法4:把五邊形分成一個(gè)三角形和一個(gè)四邊形,然后用180?加上360?,結(jié)果得540?。

師:你真聰明!做到了學(xué)以致用。

交流后,學(xué)生運(yùn)用幾何畫(huà)板演示并驗(yàn)證得到的方法。

得到五邊形的內(nèi)角和之后,同學(xué)們又認(rèn)真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720?,十邊形內(nèi)角和是1440?。

(二)引申思考,培養(yǎng)創(chuàng)新。

(3)從多邊形一個(gè)頂點(diǎn)引的對(duì)角線分三角形的個(gè)數(shù)與多邊形邊數(shù)的關(guān)系?

學(xué)生結(jié)合思考題進(jìn)行討論,并把討論后的結(jié)果進(jìn)行交流。

發(fā)現(xiàn)1:四邊形內(nèi)角和是2個(gè)180?的和,五邊形內(nèi)角和是3個(gè)180?的'和,六邊形內(nèi)角和是4個(gè)180?的和,十邊形內(nèi)角和是8個(gè)180?的和。

發(fā)現(xiàn)3:一個(gè)n邊形從一個(gè)頂點(diǎn)引出的對(duì)角線分三角形的個(gè)數(shù)與邊數(shù)n存在(n-2)的關(guān)系。

(三)實(shí)際應(yīng)用,優(yōu)勢(shì)互補(bǔ)。

(2)一個(gè)多邊形的內(nèi)角和是1440?,且每個(gè)內(nèi)角都相等,則每個(gè)內(nèi)角的度數(shù)是()。

(四)概括存儲(chǔ)。

學(xué)生自己歸納總結(jié):

2、運(yùn)用轉(zhuǎn)化思想解決數(shù)學(xué)問(wèn)題。

3、用數(shù)形結(jié)合的思想解決問(wèn)題。

(五)作業(yè):練習(xí)冊(cè)第93頁(yè)1、2、3。

八、教學(xué)反思:

1、教的轉(zhuǎn)變。

本節(jié)課教師的角色從知識(shí)的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者,在引導(dǎo)學(xué)生畫(huà)圖、測(cè)量發(fā)現(xiàn)結(jié)論后,利用幾何畫(huà)板直觀地展示,激發(fā)學(xué)生自覺(jué)探究數(shù)學(xué)問(wèn)題,體驗(yàn)發(fā)現(xiàn)的樂(lè)趣。

2、學(xué)的轉(zhuǎn)變。

學(xué)生的角色從學(xué)會(huì)轉(zhuǎn)變?yōu)闀?huì)學(xué)。本節(jié)課學(xué)生不是停留在學(xué)會(huì)課本知識(shí)層面,而是站在研究者的角度深入其境。

3、課堂氛圍的轉(zhuǎn)變。

整節(jié)課以“流暢、開(kāi)放、合作、‘隱’導(dǎo)”為基本特征,教師對(duì)學(xué)生的思維減少干預(yù),教學(xué)過(guò)程呈現(xiàn)一種比較流暢的特征。整節(jié)課學(xué)生與學(xué)生,學(xué)生與教師之間以“對(duì)話”、“討論”為出發(fā)點(diǎn),以互助合作為手段,以解決問(wèn)題為目的,讓學(xué)生在一個(gè)比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價(jià)值。

多邊形的內(nèi)角和教案篇二

二、教學(xué)目標(biāo)。

2、數(shù)學(xué)思考:通過(guò)把多邊形轉(zhuǎn)化成三角形體會(huì)轉(zhuǎn)化思想在幾何中的運(yùn)用,同時(shí)讓學(xué)生體會(huì)從特殊到一般的認(rèn)識(shí)問(wèn)題的方法。

3、解決問(wèn)題:通過(guò)探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問(wèn)題的方法并能有效地解決問(wèn)題。

4、情感態(tài)度目標(biāo):通過(guò)猜想、推理活動(dòng)感受數(shù)學(xué)活動(dòng)充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生學(xué)習(xí)熱情。

三、教學(xué)重、難點(diǎn)。

難點(diǎn):探索多邊形內(nèi)角和時(shí),如何把多邊形轉(zhuǎn)化成三角形。

四、教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、討論法。

五、教具、學(xué)具。

教具:多媒體課件。

學(xué)具:三角板、量角器。

六、教學(xué)媒體:大屏幕、實(shí)物投影。

七、教學(xué)過(guò)程:

(一)創(chuàng)設(shè)情境,設(shè)疑激思。

師:大家都知道三角形的內(nèi)角和是180o,那么四邊形的內(nèi)角和,你知道嗎?

在獨(dú)立探索的基礎(chǔ)上,學(xué)生分組交流與研討,并匯總解決問(wèn)題的方法。

方法一:用量角器量出四個(gè)角的度數(shù),然后把四個(gè)角加起來(lái),發(fā)現(xiàn)內(nèi)角和是360o。

方法二:把兩個(gè)三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個(gè)三角形內(nèi)角和相加是360o。

接下來(lái),教師在方法二的基礎(chǔ)上引導(dǎo)學(xué)生利用作輔助線的方法,連結(jié)四邊形的對(duì)角線,把一個(gè)四邊形轉(zhuǎn)化成兩個(gè)三角形。

師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?

學(xué)生先獨(dú)立思考每個(gè)問(wèn)題再分組討論。

關(guān)注:(1)學(xué)生能否類比四邊形的方式解決問(wèn)題得出正確的結(jié)論。

(2)學(xué)生能否采用不同的方法。

方法1:把五邊形分成三個(gè)三角形,3個(gè)180o的和是540o。

方法2:從五邊形內(nèi)部一點(diǎn)出發(fā),把五邊形分成五個(gè)三角形,然后用5個(gè)180o的和減去一個(gè)周角360o。結(jié)果得540o。

方法3:從五邊形一邊上任意一點(diǎn)出發(fā)把五邊形分成四個(gè)三角形,然后用4個(gè)180o的和減去一個(gè)平角180o,結(jié)果得540o。

方法4:把五邊形分成一個(gè)三角形和一個(gè)四邊形,然后用180o加上360o,結(jié)果得540o。

交流后,學(xué)生運(yùn)用幾何畫(huà)板演示并驗(yàn)證得到的方法。

得到五邊形的內(nèi)角和之后,同學(xué)們又認(rèn)真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720o,十邊形內(nèi)角和是1440o。

(二)引申思考,培養(yǎng)創(chuàng)新。

師:通過(guò)前面的討論,你能知道多邊形內(nèi)角和嗎?

思考:(1)多邊形內(nèi)角和與三角形內(nèi)角和的關(guān)系?

(3)從多邊形一個(gè)頂點(diǎn)引的對(duì)角線分三角形的個(gè)數(shù)與多邊形邊數(shù)的關(guān)系?

學(xué)生結(jié)合思考題進(jìn)行討論,并把討論后的結(jié)果進(jìn)行交流。

發(fā)現(xiàn)1:四邊形內(nèi)角和是2個(gè)180o的和,五邊形內(nèi)角和是3個(gè)180o的和,六邊形內(nèi)角和是4個(gè)180o的和,十邊形內(nèi)角和是8個(gè)180o的和。

發(fā)現(xiàn)3:一個(gè)n邊形從一個(gè)頂點(diǎn)引出的對(duì)角線分三角形的個(gè)數(shù)與邊數(shù)n存在(n-2)的關(guān)系。

(三)實(shí)際應(yīng)用,優(yōu)勢(shì)互補(bǔ)。

(2)一個(gè)多邊形的內(nèi)角和是1440o,且每個(gè)內(nèi)角都相等,則每個(gè)內(nèi)角的度數(shù)是()。

(四)概括存儲(chǔ)。

學(xué)生自己歸納總結(jié):

2、運(yùn)用轉(zhuǎn)化思想解決數(shù)學(xué)問(wèn)題。

3、用數(shù)形結(jié)合的思想解決問(wèn)題。

(五)作業(yè):練習(xí)冊(cè)第93頁(yè)1、2、3。

多邊形的內(nèi)角和教案篇三

(1)知識(shí)結(jié)構(gòu):

(2)重點(diǎn)和難點(diǎn)分析:

重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理。因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識(shí),對(duì)后繼知識(shí)的學(xué)習(xí)起著重要的作用,數(shù)學(xué)教案-多邊形的內(nèi)角和。

難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用。在前面講解三角形的概念時(shí),因?yàn)槿切蔚娜齻€(gè)頂點(diǎn)確定一個(gè)平面,所以三個(gè)頂點(diǎn)總是共面的,也就是說(shuō),三角形肯定是平面圖形,而四邊形就不是這樣,它的四個(gè)頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個(gè)條件,這幾個(gè)字的意思學(xué)生不好理解,所以是難點(diǎn)。

2.教法建議。

(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過(guò)這個(gè)課件,使學(xué)生認(rèn)識(shí)到這些四邊形都是常見(jiàn)圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

(2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過(guò)類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長(zhǎng)等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對(duì)比著指給學(xué)生看,讓學(xué)生明確這些概念。

(3)因?yàn)樵谌切沃袥](méi)有對(duì)角線,所以四邊形的對(duì)角線是一個(gè)新概念,它是解決四邊形問(wèn)題時(shí)常用的輔助線,通過(guò)它可以把四邊形問(wèn)題轉(zhuǎn)化為三角形問(wèn)題來(lái)解決。結(jié)合圖形,讓學(xué)生自己動(dòng)手作四邊形的一條對(duì)角線,并觀察四邊形的一條對(duì)角線把它分成幾個(gè)三角形??jī)蓷l對(duì)角線呢?使學(xué)生加深對(duì)對(duì)角線的作用的認(rèn)識(shí)。

(4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識(shí)時(shí)要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對(duì)這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問(wèn)題要轉(zhuǎn)化為簡(jiǎn)單的、已知的問(wèn)題,初中數(shù)學(xué)教案《數(shù)學(xué)教案-多邊形的內(nèi)角和》。

教學(xué)目標(biāo):

1.使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;

2.通過(guò)引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;

3.通過(guò)推導(dǎo)四邊形內(nèi)角和定理,對(duì)學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;

4.講解四邊形的有關(guān)概念時(shí),聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想。

教學(xué)重點(diǎn):

教學(xué)難點(diǎn):

四邊形的概念。

教學(xué)過(guò)程:

(一)復(fù)習(xí)。

在小學(xué)里,我們學(xué)過(guò)長(zhǎng)方形、正方形、平行四邊形和梯形的有關(guān)知識(shí)。請(qǐng)同學(xué)們回憶一下這些圖形的概念。找學(xué)生說(shuō)出四種幾何圖形的概念,教師作評(píng)價(jià)。

(二)提出問(wèn)題,引入新課。

利用這些圖形的定義,你能在下圖中找出長(zhǎng)方形、正方形、平行四邊形和梯形嗎?教師說(shuō)完就打開(kāi)多媒體課件。(先看畫(huà)面一)。

問(wèn)題:你能類比三角形的概念,說(shuō)出四邊形的概念嗎?

(三)理解概念。

1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形。

在定義中要強(qiáng)調(diào)“在同一平面內(nèi)”這個(gè)條件,或?yàn)閷W(xué)生稍微說(shuō)明一下。其次,要給學(xué)生講清楚“首尾”和“順次”的含義。

2.類比三角形的邊、頂點(diǎn)、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點(diǎn)、內(nèi)角、外交的概念。

3.四邊形的記法:對(duì)照?qǐng)D形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點(diǎn)的順序書(shū)寫(xiě),可以按順時(shí)針或逆時(shí)針的順序。

練習(xí):課本124頁(yè)1、2題。

4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會(huì)辨認(rèn)一個(gè)四邊形是不是凸四邊形就可以了。

5.四邊形的對(duì)角線:

(四)四邊形的內(nèi)角和定理。

定理:四邊形的內(nèi)角和等于.

注意:在研究四邊形時(shí),常常通過(guò)作它的對(duì)角線,把關(guān)于四邊形的問(wèn)題化成關(guān)于三角形的問(wèn)題來(lái)解決。

(五)應(yīng)用、反思。

例1已知:如圖,直線,垂足為b,直線,垂足為c.

求證:(1);(2)。

證明:(1)(四邊形的內(nèi)角和等于),

練習(xí):

1.課本124頁(yè)3題。

小結(jié):

知識(shí):四邊形的有關(guān)概念及其內(nèi)角和定理。

能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法。

作業(yè):課本130頁(yè)2、3、4題。

多邊形的內(nèi)角和教案篇四

《探索多邊形的內(nèi)角和》一課終于上完了,然而對(duì)這一課的思考才剛剛開(kāi)始,正如周夢(mèng)莉校長(zhǎng)所說(shuō),我們的目標(biāo)不是這一課本身,而是對(duì)于這一課的研究給我們數(shù)學(xué)教學(xué)的一點(diǎn)啟發(fā)。

有幸與實(shí)驗(yàn)小學(xué)趙麗老師同時(shí)選中《多邊形的內(nèi)角和》這一課,但我們從不同角度不同方式對(duì)它進(jìn)行了解讀。20世紀(jì)90年代,因?yàn)檗r(nóng)村小學(xué)學(xué)生人數(shù)的急劇減少,我們學(xué)校在課堂上嘗試性的進(jìn)行了分層異步教學(xué),在同一節(jié)課中,根據(jù)學(xué)生認(rèn)知水平差異,把學(xué)生分成a,b兩組,在組內(nèi)又依托知識(shí)水平相近原則,把3,4名學(xué)生分為一個(gè)小組,通常采用合——分——合的模式進(jìn)行教學(xué),即,當(dāng)a組同學(xué)教學(xué)時(shí),b組自學(xué),反之亦然,經(jīng)過(guò)與普通班的對(duì)比研究,發(fā)現(xiàn)復(fù)式班學(xué)生在學(xué)習(xí)效果上有著明顯的成效。基于這一基礎(chǔ),我采用分層的模式來(lái)進(jìn)行多邊形的內(nèi)角和的教學(xué),這一嘗試,讓我對(duì)自己的.數(shù)學(xué)教學(xué)有了如下反思:

1,以經(jīng)驗(yàn)為基礎(chǔ),讓學(xué)生得到不同的發(fā)展。

基于學(xué)生的認(rèn)知經(jīng)驗(yàn)及活動(dòng)經(jīng)驗(yàn),對(duì)學(xué)生進(jìn)行分組,以期達(dá)到不同的學(xué)生在數(shù)學(xué)上得到不同程度的發(fā)展的目標(biāo),學(xué)習(xí)能力較強(qiáng)的同學(xué)要能吃飽,學(xué)習(xí)能力較弱的同學(xué)要在原有基礎(chǔ)上有所進(jìn)步。在實(shí)際教學(xué)中,對(duì)于a組和b組的學(xué)生,除了在教學(xué)形式上有所區(qū)別外,a組教學(xué)為主,b組自學(xué)為主,我在教學(xué)時(shí)間的分配上對(duì)ab組并沒(méi)有顯著區(qū)分,在以后的嘗試探索中,我應(yīng)對(duì)a組加以更細(xì)致的教學(xué)指導(dǎo),對(duì)b組更大膽的放手,讓學(xué)生上臺(tái)說(shuō),做,教,減少b組的教學(xué)時(shí)間。

2,勇于放手,培養(yǎng)學(xué)生自學(xué)的能力。

在一開(kāi)始設(shè)計(jì)b組的學(xué)習(xí)單時(shí),即使b組同學(xué)學(xué)習(xí)能力較強(qiáng),但出于對(duì)學(xué)生的擔(dān)憂,擔(dān)心學(xué)生想不到用分一分的方法,在學(xué)習(xí)單上,我引導(dǎo)學(xué)生,多邊形能夠分成幾個(gè)三角形,內(nèi)角和怎么算。而周校長(zhǎng)建議我,是否能給學(xué)生更多的空間,把“小問(wèn)題”變?yōu)椤按髥?wèn)題”,直接提問(wèn)學(xué)生,多邊形的內(nèi)角和是多少,讓學(xué)生去嘗試探索各種方法,而不僅局限于轉(zhuǎn)化為三角形內(nèi)角和的方法。在后來(lái)的實(shí)際教學(xué)中,采用了“大問(wèn)題”的提問(wèn)方式,我驚喜的發(fā)現(xiàn),學(xué)生的探究自學(xué)能力比我預(yù)想的出色許多。

3,細(xì)節(jié)入手,培養(yǎng)學(xué)生良好習(xí)慣。

小學(xué)數(shù)學(xué)良好習(xí)慣的培養(yǎng)不僅對(duì)學(xué)生自身的數(shù)學(xué)學(xué)習(xí)有所裨益,對(duì)課堂教效果的影響更是尤為明顯。在分層教學(xué)的模式中,為避免ab組互相間的干擾,必須在課堂上對(duì)每組學(xué)生提出明確的要求,課前乃至平時(shí)都要對(duì)學(xué)生的學(xué)習(xí)習(xí)慣進(jìn)行培養(yǎng),這樣才能讓我們的數(shù)學(xué)老師對(duì)課堂全局的把握更加深刻,才能夠讓數(shù)學(xué)課堂井然有序,數(shù)學(xué)教學(xué)效果得到最大程度的保證。

“授人以魚(yú),不如授人以漁?!蔽覀兊臄?shù)學(xué)分層教學(xué)不光是為了學(xué)生掌握某一定的知識(shí),而是讓學(xué)生在不同的學(xué)習(xí)方式中不斷感悟體會(huì),尋找適合自己的學(xué)習(xí)方法,最終以得到不同程度的發(fā)展。

多邊形的內(nèi)角和教案篇五

(1)知識(shí)結(jié)構(gòu):

(2)重點(diǎn)和難點(diǎn)分析:

重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理.因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識(shí),對(duì)后繼知識(shí)的學(xué)習(xí)起著重要的作用。

難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用.在前面講解三角形的概念時(shí),因?yàn)槿切蔚娜齻€(gè)頂點(diǎn)確定一個(gè)平面,所以三個(gè)頂點(diǎn)總是共面的,也就是說(shuō),三角形肯定是平面圖形,而四邊形就不是這樣,它的四個(gè)頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個(gè)條件,這幾個(gè)字的意思學(xué)生不好理解,所以是難點(diǎn)。

2.教法建議。

(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過(guò)這個(gè)課件,使學(xué)生認(rèn)識(shí)到這些四邊形都是常見(jiàn)圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

(2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過(guò)類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長(zhǎng)等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對(duì)比著指給學(xué)生看,讓學(xué)生明確這些概念。

(3)因?yàn)樵谌切沃袥](méi)有對(duì)角線,所以四邊形的對(duì)角線是一個(gè)新概念,它是解決四邊形問(wèn)題時(shí)常用的輔助線,通過(guò)它可以把四邊形問(wèn)題轉(zhuǎn)化為三角形問(wèn)題來(lái)解決.結(jié)合圖形,讓學(xué)生自己動(dòng)手作四邊形的一條對(duì)角線,并觀察四邊形的一條對(duì)角線把它分成幾個(gè)三角形?兩條對(duì)角線呢?使學(xué)生加深對(duì)對(duì)角線的作用的認(rèn)識(shí)。

(4)本節(jié)用到的`數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識(shí)時(shí)要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對(duì)這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問(wèn)題要轉(zhuǎn)化為簡(jiǎn)單的、已知的問(wèn)題。

教學(xué)目標(biāo):

2.通過(guò)引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;。

3.通過(guò)推導(dǎo)四邊形內(nèi)角和定理,對(duì)學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;。

4.講解四邊形的有關(guān)概念時(shí),聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.

教學(xué)重點(diǎn):

教學(xué)難點(diǎn):

四邊形的概念。

教學(xué)過(guò)程:

(一)復(fù)習(xí)。

在小學(xué)里,我們學(xué)過(guò)長(zhǎng)方形、正方形、平行四邊形和梯形的有關(guān)知識(shí).請(qǐng)同學(xué)們回憶一下這些圖形的概念.找學(xué)生說(shuō)出四種幾何圖形的概念,教師作評(píng)價(jià).

(二)提出問(wèn)題,引入新課。

利用這些圖形的定義,你能在下圖中找出長(zhǎng)方形、正方形、平行四邊形和梯形嗎?教師說(shuō)完就打開(kāi)多媒體課件.(先看畫(huà)面一)。

問(wèn)題:你能類比三角形的概念,說(shuō)出四邊形的概念嗎?

(三)理解概念。

1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.

在定義中要強(qiáng)調(diào)“在同一平面內(nèi)”這個(gè)條件,或?yàn)閷W(xué)生稍微說(shuō)明一下.其次,要給學(xué)生講清楚“首尾”和“順次”的含義.

2.類比三角形的邊、頂點(diǎn)、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點(diǎn)、內(nèi)角、外交的概念.

3.四邊形的記法:對(duì)照?qǐng)D形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點(diǎn)的順序書(shū)寫(xiě),可以按順時(shí)針或逆時(shí)針的順序.

練習(xí):課本124頁(yè)1、2題.

4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會(huì)辨認(rèn)一個(gè)四邊形是不是凸四邊形就可以了.

5.四邊形的對(duì)角線:

注意:在研究四邊形時(shí),常常通過(guò)作它的對(duì)角線,把關(guān)于四邊形的問(wèn)題化成關(guān)于三角形的問(wèn)題來(lái)解決.

(五)應(yīng)用、反思。

例1已知:如圖,直線,垂足為b,直線,垂足為c.

求證:(1);(2)。

(2)。

練習(xí):

1.課本124頁(yè)3題.

小結(jié):

能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.

作業(yè):課本130頁(yè)2、3、4題.

多邊形的內(nèi)角和教案篇六

設(shè)計(jì)理念:。

一教材分析:。

從教材的編排上,本節(jié)課作為第三章的第三節(jié)。從三角形的內(nèi)角和到四邊形的內(nèi)角和至多邊形的內(nèi)角和,環(huán)環(huán)相扣。同時(shí),對(duì)今后學(xué)習(xí)的鑲嵌,正多邊形和圓等都是非常重要的。知識(shí)的聯(lián)系性比較強(qiáng)。因此,本節(jié)課具在承上啟下的作用,符合學(xué)生的認(rèn)知規(guī)律。再?gòu)谋竟?jié)的教學(xué)理念看,編者從簡(jiǎn)單的幾何圖形入手,蘊(yùn)含了把復(fù)雜問(wèn)題轉(zhuǎn)化為簡(jiǎn)單問(wèn)題,化未知為已知的思想。充分體現(xiàn)了人人學(xué)有價(jià)值的數(shù)學(xué),這一新課程標(biāo)準(zhǔn)精神。

二、學(xué)情分析:。

三、教學(xué)目標(biāo)的確定:。

3、通過(guò)探索多邊形內(nèi)角和公式,讓學(xué)生逐步從實(shí)驗(yàn)幾何過(guò)渡到論證幾何。

四、重難點(diǎn)的確立:。

既然是多邊形內(nèi)角和具有承上啟下的作用。因此確定本節(jié)課的重點(diǎn)是探究多邊形的內(nèi)角和的公式。由于七年級(jí)學(xué)生初學(xué)幾何,所以學(xué)生在幾何的邏輯推理上感到有難度。所以我確定本節(jié)課的難點(diǎn)是探究多邊形內(nèi)角和公式推導(dǎo)的基本思想,而解決問(wèn)題的關(guān)鍵是教師恰當(dāng)?shù)囊龑?dǎo)。

多邊形的內(nèi)角和教案篇七

難點(diǎn):探索多邊形內(nèi)角和時(shí),如何把多邊形轉(zhuǎn)化成三角形。

四、教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、討論法。

五、教具、學(xué)具。

教具:多媒體課件。

學(xué)具:三角板、量角器。

六、教學(xué)媒體:大屏幕、實(shí)物投影。

七、教學(xué)過(guò)程:

(一)創(chuàng)設(shè)情境,設(shè)疑激思。

師:大家都知道三角形的內(nèi)角和是180?,那么四邊形的內(nèi)角和,你知道嗎?

在獨(dú)立探索的基礎(chǔ)上,學(xué)生分組交流與研討,并匯總解決問(wèn)題的方法。

方法一:用量角器量出四個(gè)角的度數(shù),然后把四個(gè)角加起來(lái),發(fā)現(xiàn)內(nèi)角和是360?。

方法二:把兩個(gè)三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個(gè)三角形內(nèi)角和相加是360?。

接下來(lái),教師在方法二的基礎(chǔ)上引導(dǎo)學(xué)生利用作輔助線的方法,連結(jié)四邊形的對(duì)角線,把一個(gè)四邊形轉(zhuǎn)化成兩個(gè)三角形。

師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?

學(xué)生先獨(dú)立思考每個(gè)問(wèn)題再分組討論。

關(guān)注:(1)學(xué)生能否類比四邊形的方式解決問(wèn)題得出正確的結(jié)論。

(2)學(xué)生能否采用不同的方法。

方法1:把五邊形分成三個(gè)三角形,3個(gè)180?的和是540?。

方法2:從五邊形內(nèi)部一點(diǎn)出發(fā),把五邊形分成五個(gè)三角形,然后用5個(gè)180?的和減去一個(gè)周角360?。結(jié)果得540?。

方法3:從五邊形一邊上任意一點(diǎn)出發(fā)把五邊形分成四個(gè)三角形,然后用4個(gè)180?的和減去一個(gè)平角180?,結(jié)果得540?。

方法4:把五邊形分成一個(gè)三角形和一個(gè)四邊形,然后用180?加上360?,結(jié)果得540?。

師:你真聰明!做到了學(xué)以致用。

交流后,學(xué)生運(yùn)用幾何畫(huà)板演示并驗(yàn)證得到的方法。

得到五邊形的內(nèi)角和之后,同學(xué)們又認(rèn)真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720?,十邊形內(nèi)角和是1440?。

(二)引申思考,培養(yǎng)創(chuàng)新。

師:通過(guò)前面的討論,你能知道多邊形內(nèi)角和嗎?

思考:(1)多邊形內(nèi)角和與三角形內(nèi)角和的關(guān)系?

(3)從多邊形一個(gè)頂點(diǎn)引的對(duì)角線分三角形的個(gè)數(shù)與多邊形邊數(shù)的關(guān)系?

學(xué)生結(jié)合思考題進(jìn)行討論,并把討論后的結(jié)果進(jìn)行交流。

發(fā)現(xiàn)1:四邊形內(nèi)角和是2個(gè)180?的和,五邊形內(nèi)角和是3個(gè)180?的'和,六邊形內(nèi)角和是4個(gè)180?的和,十邊形內(nèi)角和是8個(gè)180?的和。

發(fā)現(xiàn)3:一個(gè)n邊形從一個(gè)頂點(diǎn)引出的對(duì)角線分三角形的個(gè)數(shù)與邊數(shù)n存在(n-2)的關(guān)系。

(三)實(shí)際應(yīng)用,優(yōu)勢(shì)互補(bǔ)。

(2)一個(gè)多邊形的內(nèi)角和是1440?,且每個(gè)內(nèi)角都相等,則每個(gè)內(nèi)角的度數(shù)是()。

(四)概括存儲(chǔ)。

學(xué)生自己歸納總結(jié):

2、運(yùn)用轉(zhuǎn)化思想解決數(shù)學(xué)問(wèn)題。

3、用數(shù)形結(jié)合的思想解決問(wèn)題。

(五)作業(yè):練習(xí)冊(cè)第93頁(yè)1、2、3。

八、教學(xué)反思:

1、教的轉(zhuǎn)變。

本節(jié)課教師的角色從知識(shí)的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者,在引導(dǎo)學(xué)生畫(huà)圖、測(cè)量發(fā)現(xiàn)結(jié)論后,利用幾何畫(huà)板直觀地展示,激發(fā)學(xué)生自覺(jué)探究數(shù)學(xué)問(wèn)題,體驗(yàn)發(fā)現(xiàn)的樂(lè)趣。

2、學(xué)的轉(zhuǎn)變。

學(xué)生的角色從學(xué)會(huì)轉(zhuǎn)變?yōu)闀?huì)學(xué)。本節(jié)課學(xué)生不是停留在學(xué)會(huì)課本知識(shí)層面,而是站在研究者的角度深入其境。

3、課堂氛圍的轉(zhuǎn)變。

整節(jié)課以“流暢、開(kāi)放、合作、‘隱’導(dǎo)”為基本特征,教師對(duì)學(xué)生的思維減少干預(yù),教學(xué)過(guò)程呈現(xiàn)一種比較流暢的特征。整節(jié)課學(xué)生與學(xué)生,學(xué)生與教師之間以“對(duì)話”、“討論”為出發(fā)點(diǎn),以互助合作為手段,以解決問(wèn)題為目的,讓學(xué)生在一個(gè)比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價(jià)值。

多邊形的內(nèi)角和教案篇八

教學(xué)內(nèi)容:

教學(xué)目標(biāo):

1、通過(guò)觀察、比較等方法,初步認(rèn)識(shí)四邊形、五邊形、六邊形等平面圖形。

2.參與對(duì)圖形的描、圍、折等實(shí)踐活動(dòng),體會(huì)圖形的變換,發(fā)展空間觀念。

3.在學(xué)習(xí)活動(dòng)中積累對(duì)數(shù)學(xué)的興趣,培養(yǎng)交往、合作意識(shí)。

教學(xué)重點(diǎn):

教學(xué)難點(diǎn):

理解邊的概念明白圖形按邊的數(shù)量分類、命名的意義。

學(xué)生準(zhǔn)備:

文具、釘子板、橡皮筋、正方形紙。

教師準(zhǔn)備:

多媒體課件、釘子板、橡皮筋、多邊形卡片。

教學(xué)過(guò)程:

一、創(chuàng)設(shè)情境,導(dǎo)入新課。

今天我們繼續(xù)來(lái)研究圖形。

二、操作活動(dòng),探索新知。

(1)師指一個(gè)三角形,放大,瞧,這個(gè)是?你怎么知道的?

預(yù)設(shè)一:生:它有三個(gè)角。師:怪不得叫三角形的呢?除了三個(gè)角,還有什么?生:還有三個(gè)(條)邊。什么樣的邊?你能來(lái)指一指嗎?(學(xué)生點(diǎn)1、2、3)師:這條邊從哪里到哪里?你能完整地指一指嗎?師師范指(從這里開(kāi)始,一條邊,兩條邊,三條邊),這三條邊緊緊地_____?(連在一起)師:連,這個(gè)字用得十分貼切,在數(shù)學(xué)上,可以換一個(gè)字,圍,讓我們一起伸出手指圍一個(gè)三角形。

預(yù)設(shè)二:生:它有三個(gè)(條)邊,你能指一指嗎?(1)同預(yù)設(shè)一。

(2)三角形是由幾條邊圍成的圖形?(三條邊)對(duì),也可以叫它三邊形。

(3)機(jī)器人身上還有三角形嗎?在哪?師:對(duì)了,它們都是三角形???,這是他們的家,走,一起送他們回家吧!

(1)師:兩只小手真可愛(ài)!它們還是三角形嗎?為什么?像這樣由四條邊圍成的圖形是四邊形。

那一只手是什么圖形?為什么?讓我們一起來(lái)數(shù)一數(shù)。師:哦,他們都是有四條邊圍成的圖形,就是四邊形。讓我們一起把他們送回四邊形的家吧。

多邊形的內(nèi)角和教案篇九

教學(xué)目標(biāo)?。

知識(shí)技能。

通過(guò)探究,歸納出???。

數(shù)學(xué)思考。

1、?通過(guò)測(cè)量、類比、推理等數(shù)學(xué)活動(dòng),探索的公式,感受數(shù)學(xué)思考過(guò)程的條理性,發(fā)展推理能力和語(yǔ)言表達(dá)能力。

2、?通過(guò)把多邊形轉(zhuǎn)化成三角形體會(huì)轉(zhuǎn)化思想在幾何中的應(yīng)用,同時(shí)。

時(shí)讓學(xué)生體會(huì)從特殊到一般的認(rèn)識(shí)問(wèn)題的方法。

3、?通過(guò)探索多邊形內(nèi)角和公式,讓學(xué)生逐步從實(shí)驗(yàn)幾何過(guò)度到。

論證幾何。

解決問(wèn)題。

通過(guò)探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問(wèn)題的方法并能有效的解決問(wèn)題。

情感態(tài)度。

通過(guò)對(duì)生活中數(shù)學(xué)問(wèn)題的探究,進(jìn)一步提高學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),在自主探究、合作交流的過(guò)程中,體會(huì)數(shù)學(xué)的重要作用,感受數(shù)學(xué)活動(dòng)的重要意義和合作成功的喜悅,提高學(xué)生學(xué)習(xí)的熱情。

重點(diǎn)。

難點(diǎn)。

在探索時(shí),如何把多邊形轉(zhuǎn)化成三角形。

知識(shí)聯(lián)系。

多邊形的對(duì)角線和三角形的內(nèi)角和為本節(jié)課的知識(shí)做了鋪墊,本節(jié)課的內(nèi)容為多邊形的外角和做知識(shí)上的準(zhǔn)備。

知識(shí)背景。

對(duì)多邊形在生活中有所認(rèn)識(shí)。

學(xué)習(xí)興趣。

通過(guò)探究過(guò)程更能激發(fā)學(xué)生學(xué)習(xí)的興趣。

教學(xué)工具。

三角板和幾何畫(huà)板。

教學(xué)流程設(shè)計(jì)。

活動(dòng)流程圖。

活動(dòng)內(nèi)容和目的。

活動(dòng)一,教師和學(xué)生任意畫(huà)幾個(gè)多邊形,用量角器測(cè)其內(nèi)角和。

活動(dòng)四、探索任意公式。

活動(dòng)六、小結(jié)和布置作業(yè)?。

通過(guò)分組測(cè)量,得出這幾個(gè)。

通過(guò)用不同方法分割四邊形為三角形,探索四邊形的內(nèi)角和。

通過(guò)類比四邊形內(nèi)角和的得出方法,探索其他,發(fā)展學(xué)生的推理能力。

通過(guò)畫(huà)正八邊形體會(huì)和應(yīng)用。

梳理所學(xué)知識(shí),達(dá)到鞏固發(fā)展和提高的目的。

教學(xué)過(guò)程?設(shè)計(jì)。

問(wèn)題與情景。

師生行為。

設(shè)計(jì)意圖。

設(shè)計(jì)情景:什么是正多邊形?

正八邊形有什么特點(diǎn)?

你會(huì)畫(huà)邊長(zhǎng)為3cm的正八邊形嗎?

學(xué)生思考并回答問(wèn)題。

學(xué)生不會(huì)畫(huà)八邊形,畫(huà)八邊形需要知道它的每一個(gè)內(nèi)角,怎么就能知道八邊形的每一個(gè)內(nèi)角,就是今天要解決的問(wèn)題,以此來(lái)激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲。

活動(dòng)1、

在練習(xí)本畫(huà)出任意四邊形,五邊星,六邊形,七邊形。

通過(guò)測(cè)量猜想每一個(gè),感受數(shù)學(xué)的可實(shí)驗(yàn)性,感受數(shù)學(xué)由特殊到一般的研究思想。

活動(dòng)2(重點(diǎn))(難點(diǎn))。

學(xué)生在練習(xí)本上把一個(gè)四邊形分割成幾個(gè)三角形,教師在黑板上畫(huà)幾個(gè)四邊形,叫幾個(gè)學(xué)生來(lái)分割,從而用推理求四邊形的內(nèi)角和,師生共同討論比較那一種分割方法比較合理有優(yōu)點(diǎn)。

通過(guò)分割及推理,培養(yǎng)學(xué)生用推理論證來(lái)說(shuō)明數(shù)學(xué)結(jié)論的能力,同時(shí)也培養(yǎng)學(xué)生比較和歸納的能力。

通過(guò)分割及推理,進(jìn)一步培養(yǎng)學(xué)生的解決問(wèn)題和推理的能力。

活動(dòng)4、探索任意。

把活動(dòng)2和3中的結(jié)論寫(xiě)下來(lái),進(jìn)行對(duì)比分析,進(jìn)一步猜想和推導(dǎo)任意,教師作總結(jié)性的結(jié)論,并且用動(dòng)畫(huà)演示多邊形隨著邊數(shù)的增加其內(nèi)角和的變化過(guò)程。

活動(dòng)5、畫(huà)一個(gè)邊長(zhǎng)為3cm的八邊形。

讓學(xué)生在練習(xí)本上畫(huà)一個(gè)邊長(zhǎng)為3cm的八邊形,教師進(jìn)行評(píng)價(jià)和展示。

活動(dòng)6、小結(jié)和布置作業(yè)?。

師生共同回顧本節(jié)所學(xué)過(guò)的內(nèi)容。

多邊形的內(nèi)角和教案篇十

《探索多邊形的內(nèi)角和》一課終于上完了,然而對(duì)這一課的思考才剛剛開(kāi)始,正如周夢(mèng)莉校長(zhǎng)所說(shuō),我們的目標(biāo)不是這一課本身,而是對(duì)于這一課的研究給我們數(shù)學(xué)教學(xué)的一點(diǎn)啟發(fā)。

有幸與實(shí)驗(yàn)小學(xué)趙麗老師同時(shí)選中《多邊形的內(nèi)角和》這一課,但我們從不同角度不同方式對(duì)它進(jìn)行了解讀。20世紀(jì)90年代,因?yàn)檗r(nóng)村小學(xué)學(xué)生人數(shù)的急劇減少,我們學(xué)校在課堂上嘗試性的進(jìn)行了分層異步教學(xué),在同一節(jié)課中,根據(jù)學(xué)生認(rèn)知水平差異,把學(xué)生分成a,b兩組,在組內(nèi)又依托知識(shí)水平相近原則,把3,4名學(xué)生分為一個(gè)小組,通常采用合——分——合的模式進(jìn)行教學(xué),即,當(dāng)a組同學(xué)教學(xué)時(shí),b組自學(xué),反之亦然,經(jīng)過(guò)與普通班的對(duì)比研究,發(fā)現(xiàn)復(fù)式班學(xué)生在學(xué)習(xí)效果上有著明顯的成效?;谶@一基礎(chǔ),我采用分層的模式來(lái)進(jìn)行多邊形的內(nèi)角和的教學(xué),這一嘗試,讓我對(duì)自己的.數(shù)學(xué)教學(xué)有了如下反思:

1,以經(jīng)驗(yàn)為基礎(chǔ),讓學(xué)生得到不同的發(fā)展。

基于學(xué)生的認(rèn)知經(jīng)驗(yàn)及活動(dòng)經(jīng)驗(yàn),對(duì)學(xué)生進(jìn)行分組,以期達(dá)到不同的學(xué)生在數(shù)學(xué)上得到不同程度的發(fā)展的目標(biāo),學(xué)習(xí)能力較強(qiáng)的同學(xué)要能吃飽,學(xué)習(xí)能力較弱的同學(xué)要在原有基礎(chǔ)上有所進(jìn)步。在實(shí)際教學(xué)中,對(duì)于a組和b組的學(xué)生,除了在教學(xué)形式上有所區(qū)別外,a組教學(xué)為主,b組自學(xué)為主,我在教學(xué)時(shí)間的分配上對(duì)ab組并沒(méi)有顯著區(qū)分,在以后的嘗試探索中,我應(yīng)對(duì)a組加以更細(xì)致的教學(xué)指導(dǎo),對(duì)b組更大膽的放手,讓學(xué)生上臺(tái)說(shuō),做,教,減少b組的教學(xué)時(shí)間。

2,勇于放手,培養(yǎng)學(xué)生自學(xué)的能力。

在一開(kāi)始設(shè)計(jì)b組的學(xué)習(xí)單時(shí),即使b組同學(xué)學(xué)習(xí)能力較強(qiáng),但出于對(duì)學(xué)生的擔(dān)憂,擔(dān)心學(xué)生想不到用分一分的方法,在學(xué)習(xí)單上,我引導(dǎo)學(xué)生,多邊形能夠分成幾個(gè)三角形,內(nèi)角和怎么算。而周校長(zhǎng)建議我,是否能給學(xué)生更多的空間,把“小問(wèn)題”變?yōu)椤按髥?wèn)題”,直接提問(wèn)學(xué)生,多邊形的內(nèi)角和是多少,讓學(xué)生去嘗試探索各種方法,而不僅局限于轉(zhuǎn)化為三角形內(nèi)角和的方法。在后來(lái)的實(shí)際教學(xué)中,采用了“大問(wèn)題”的提問(wèn)方式,我驚喜的發(fā)現(xiàn),學(xué)生的探究自學(xué)能力比我預(yù)想的出色許多。

3,細(xì)節(jié)入手,培養(yǎng)學(xué)生良好習(xí)慣。

小學(xué)數(shù)學(xué)良好習(xí)慣的培養(yǎng)不僅對(duì)學(xué)生自身的數(shù)學(xué)學(xué)習(xí)有所裨益,對(duì)課堂教效果的影響更是尤為明顯。在分層教學(xué)的模式中,為避免ab組互相間的干擾,必須在課堂上對(duì)每組學(xué)生提出明確的要求,課前乃至平時(shí)都要對(duì)學(xué)生的學(xué)習(xí)習(xí)慣進(jìn)行培養(yǎng),這樣才能讓我們的數(shù)學(xué)老師對(duì)課堂全局的把握更加深刻,才能夠讓數(shù)學(xué)課堂井然有序,數(shù)學(xué)教學(xué)效果得到最大程度的保證。

“授人以魚(yú),不如授人以漁?!蔽覀兊臄?shù)學(xué)分層教學(xué)不光是為了學(xué)生掌握某一定的知識(shí),而是讓學(xué)生在不同的學(xué)習(xí)方式中不斷感悟體會(huì),尋找適合自己的學(xué)習(xí)方法,最終以得到不同程度的發(fā)展。

多邊形的內(nèi)角和教案篇十一

1、通過(guò)測(cè)量、類比、推理等數(shù)學(xué)活動(dòng),探索多邊形的內(nèi)角和的公式,感受數(shù)學(xué)思考過(guò)程的條理性,發(fā)展推理能力和語(yǔ)言表達(dá)能力。

2、通過(guò)把多邊形轉(zhuǎn)化成三角形體會(huì)轉(zhuǎn)化思想在幾何中的應(yīng)用,同時(shí)。

時(shí)讓學(xué)生體會(huì)從特殊到一般的認(rèn)識(shí)問(wèn)題的方法。

3、通過(guò)探索多邊形內(nèi)角和公式,讓學(xué)生逐步從實(shí)驗(yàn)幾何過(guò)度到。

論證幾何。

解決問(wèn)題。

通過(guò)探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問(wèn)題的方法并能有效的解決問(wèn)題。

情感態(tài)度。

通過(guò)對(duì)生活中數(shù)學(xué)問(wèn)題的探究,進(jìn)一步提高學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),在自主探究、合作交流的過(guò)程中,體會(huì)數(shù)學(xué)的重要作用,感受數(shù)學(xué)活動(dòng)的重要意義和合作成功的喜悅,提高學(xué)生學(xué)習(xí)的熱情。

重點(diǎn)。

難點(diǎn)。

知識(shí)聯(lián)系。

多邊形的對(duì)角線和三角形的內(nèi)角和為本節(jié)課的知識(shí)做了鋪墊,本節(jié)課的內(nèi)容為多邊形的外角和做知識(shí)上的準(zhǔn)備。

知識(shí)背景。

對(duì)多邊形在生活中有所認(rèn)識(shí)。

學(xué)習(xí)興趣。

通過(guò)探究過(guò)程更能激發(fā)學(xué)生學(xué)習(xí)的興趣。

教學(xué)工具。

三角板和幾何畫(huà)板。

教學(xué)流程設(shè)計(jì)。

活動(dòng)流程圖。

活動(dòng)內(nèi)容和目的。

活動(dòng)一,教師和學(xué)生任意畫(huà)幾個(gè)多邊形,用量角器測(cè)其內(nèi)角和。

多邊形的內(nèi)角和教案篇十二

本節(jié)課從復(fù)習(xí)舊知入手,在引課時(shí)提問(wèn)三角形的相關(guān)知識(shí),讓學(xué)生在思想上對(duì)本節(jié)課產(chǎn)生興趣,并且會(huì)覺(jué)得知識(shí)點(diǎn)不是很難,提高學(xué)生的學(xué)習(xí)興趣,同時(shí)加強(qiáng)了數(shù)學(xué)與實(shí)際生活的聯(lián)系,讓學(xué)生感到數(shù)學(xué)離自己很近,激發(fā)了學(xué)生的求知欲,創(chuàng)設(shè)了良好的教學(xué)氛圍。

其次注重讓學(xué)生在學(xué)習(xí)活動(dòng)中領(lǐng)悟數(shù)學(xué)思想方法。數(shù)學(xué)的思想方法比有限的數(shù)學(xué)知識(shí)更為重要。學(xué)生在探索多邊形內(nèi)角和的過(guò)程中先把多邊形轉(zhuǎn)化成三角形、進(jìn)而求出內(nèi)角和,這體現(xiàn)了由未知轉(zhuǎn)化為已知的思想。特別是在課堂教學(xué)中適時(shí)的利用問(wèn)題加以引導(dǎo),使學(xué)生領(lǐng)會(huì)數(shù)學(xué)思想方法,真正理解和掌握數(shù)學(xué)的知識(shí)、技能,增強(qiáng)空間觀念及數(shù)學(xué)思考能力培養(yǎng),并獲得數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。同時(shí),恰當(dāng)?shù)氖褂谜n件擴(kuò)大了課堂容量,使課堂教學(xué)的深度和廣度都有所提高。同時(shí)也加大了練習(xí)量,有助于學(xué)生知識(shí)可鞏固和提高。

整節(jié)課學(xué)生的情緒飽滿,思維活躍,在教師適當(dāng)?shù)囊龑?dǎo)下,學(xué)生能夠合作交流和自主探究,成功的探索出了多邊形的內(nèi)角和公式,較好的完成了本節(jié)課的教學(xué)目標(biāo)。

不足之處:

1、本節(jié)課給學(xué)生提供的探究思考與交流的時(shí)間比較充足,但展示交流的機(jī)會(huì)不夠充分,并且個(gè)別學(xué)生沒(méi)有很好的融入課堂,游離于課本之外。

2、本節(jié)課學(xué)生小組活動(dòng)的準(zhǔn)備、具體實(shí)施、歸納交流、評(píng)價(jià)等環(huán)節(jié)設(shè)計(jì)不夠完善。

3、練習(xí)不夠多樣化。

多邊形的內(nèi)角和教案篇十三

各位領(lǐng)導(dǎo),各位老師:

????大家下午好,很高興有機(jī)會(huì)參加這次教學(xué)研究活動(dòng)。

我的教學(xué)設(shè)計(jì)是華師大版七年級(jí)數(shù)學(xué)(下)第八章第三節(jié)"多邊形的內(nèi)角和與外角和"。根據(jù)新的課程標(biāo)準(zhǔn),我從以下七個(gè)方面說(shuō)一下本節(jié)課的教學(xué)設(shè)想:

從教材的編排上,本節(jié)課作為第八章的第三節(jié)是承上啟下的一節(jié),在內(nèi)容上,從三角形的內(nèi)角和到四邊形的內(nèi)角和到多邊形的內(nèi)角和環(huán)環(huán)相扣,前面的知識(shí)為后邊的知識(shí)做了鋪墊,知識(shí)聯(lián)系性比較強(qiáng),特別是教材中設(shè)計(jì)了一些"想一想""試一試""做一做"等內(nèi)容,體現(xiàn)了課改的精神。在編寫(xiě)意圖上,編者有意從簡(jiǎn)單的幾何圖形入手,讓學(xué)生經(jīng)歷探索,猜想,歸納等過(guò)程,發(fā)展了學(xué)生的合情推理能力。

學(xué)生上節(jié)課剛剛學(xué)完三角形的內(nèi)角和,對(duì)內(nèi)角和的問(wèn)題有了一定的認(rèn)識(shí),加上七年級(jí)的學(xué)生具有好奇心,求知欲強(qiáng),互相評(píng)價(jià)互相提問(wèn)的積極性高。因此對(duì)于學(xué)習(xí)本節(jié)內(nèi)容的知識(shí)條件已經(jīng)成熟,學(xué)生參加探索活動(dòng)的熱情已經(jīng)具備,因此把這節(jié)課設(shè)計(jì)成一節(jié)探索活動(dòng)課是切實(shí)可行的。

新的課程標(biāo)準(zhǔn)注重學(xué)生所學(xué)內(nèi)容與現(xiàn)實(shí)生活的聯(lián)系,注重學(xué)生經(jīng)歷觀察,操作,推理,想象等探索過(guò)程。根據(jù)新課標(biāo)和本節(jié)課的內(nèi)容特點(diǎn)我確定以下教學(xué)目標(biāo)及重點(diǎn),難點(diǎn)。

【知識(shí)與技能】掌握多邊形內(nèi)角和與外角和定理,進(jìn)一步了解轉(zhuǎn)化的數(shù)學(xué)思想。

【過(guò)程與方法】經(jīng)歷質(zhì)疑,猜想,歸納等活動(dòng),發(fā)展學(xué)生的合情推理能力,積累數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),在探索中學(xué)會(huì)與人合作,學(xué)會(huì)交流自己的思想和方法。

【情感態(tài)度與價(jià)值觀】讓學(xué)生體驗(yàn)猜想得到證實(shí)的成功喜悅和成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿著探索和創(chuàng)造。

【教學(xué)難點(diǎn)】轉(zhuǎn)化的數(shù)學(xué)思維方法。

本次課改很大程度上借鑒了美國(guó)教育家杜威的"在做中學(xué)"的理論,突出學(xué)生獨(dú)立數(shù)學(xué)思考活動(dòng),希望通過(guò)活動(dòng)使學(xué)生主動(dòng)探索,實(shí)踐,交流,達(dá)到掌握知識(shí)的目的,尤其是本節(jié)課更是一節(jié)難得的探索活動(dòng)課,按新的課程理論和葉圣陶先生所倡導(dǎo)的"解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時(shí)間"及初一學(xué)生的特點(diǎn),我確定如下教法和學(xué)法。

【課堂組織策略】利用學(xué)生的好奇心,設(shè)疑,解疑,組織活潑互動(dòng),有效的教學(xué)活動(dòng),鼓勵(lì)學(xué)生積極參與,大膽猜想,積極思考,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。

【學(xué)生學(xué)習(xí)策略】明確學(xué)習(xí)目標(biāo),在教師的組織,引導(dǎo),點(diǎn)撥下進(jìn)行主動(dòng)探索,實(shí)踐,交流等活動(dòng)。

【輔助策略】利用多媒體課件展示三角形內(nèi)角和向多邊形內(nèi)角和轉(zhuǎn)化,突破這一教學(xué)難點(diǎn),另外利用演示法,歸納法,討論法,分組竟賽法,使不同學(xué)生的知識(shí)水平得到恰當(dāng)?shù)陌l(fā)展和提高。

整個(gè)教學(xué)過(guò)程分五步完成。

1,創(chuàng)設(shè)情景,引入新課。

首先解決四邊形內(nèi)角的問(wèn)題,通過(guò)轉(zhuǎn)化為三角形問(wèn)題來(lái)解決。

2,合作交流,探索新知。

更進(jìn)一步解決五邊形內(nèi)角和,乃至六邊形,七邊形直到n邊形的內(nèi)角和,都能用同樣的方法解決。學(xué)生分組討論。

3,歸納總結(jié),建構(gòu)體系。

多邊形內(nèi)角和已得出,對(duì)外角和更是水到渠成,這時(shí)要適當(dāng)?shù)目偨Y(jié),讓學(xué)生自己得到零散的知識(shí)體系。

4,實(shí)際應(yīng)用,提高能力。

"木工師傅可以用邊角余料鋪地板的原因是什么"這既是對(duì)本節(jié)所學(xué)知識(shí)在現(xiàn)實(shí)生活中的應(yīng)用,又是本章第一節(jié)的延伸,同時(shí)也為下節(jié)打下了一個(gè)鋪墊。

5,分組競(jìng)賽,升華情感。

四組不同難度的電子試卷,既鞏固本節(jié)課所學(xué)的知識(shí),又使學(xué)生本節(jié)課產(chǎn)生的激情得以釋放。

板書(shū)本節(jié)課學(xué)生所需掌握的知識(shí)目標(biāo):即多邊形內(nèi)角和與外角和定理。

本節(jié)課在知識(shí)上由簡(jiǎn)單到復(fù)雜,學(xué)生經(jīng)歷質(zhì)疑,猜想,驗(yàn)證的同時(shí),在情感上,由好奇到疑惑,由解決單個(gè)問(wèn)題的一點(diǎn)點(diǎn)快感,到解決整個(gè)問(wèn)題串的極大興奮,產(chǎn)生了強(qiáng)烈的學(xué)習(xí)激情。這時(shí),一次有效的教學(xué)競(jìng)賽活動(dòng),使學(xué)生的學(xué)習(xí)激情得到釋放,學(xué)科個(gè)性得以張揚(yáng),教師稍加點(diǎn)撥,適可而止,把更多的思考空間留給學(xué)生。

【本文地址:http://m.aiweibaby.com/zuowen/15238366.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔